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Abstract  High Frequency Oscillations (HFOs) in the range of 80-500Hz seem to be a reliable biomarker of tissue capable 
of producing seizures. Visual marking of HFOs related to long duration/multi channel EEG data is extremely tedious, highly 
time-consuming and inevitably subjective. Therefore, automated and reliable detection of HFOs is much more efficient. The 
purpose of the present study is to improve in the first stage three existing HFOs detectors (CMV, MP, BMT), and 
subsequently compare them on the same database. Our main findings are summarized as follows: The efficiency of methods 
depends on the required sensitivity and the False Discovery Rate (FDR). First, if the required sensitivity below 87% is 
sufficient for the intended application, CMV method could perform well in terms of low false detection rate (FDR<14%). 
Secondly, if the application requires a sensitivity between 87% and 92%, the three methods could perform in a similar way in 
terms o f performance, which approximately corresponds to an FDR in  the range of 14-19%. Finally, if a  high sensitivity is 
required (92% up to 98%), BMT based method can be considered the most efficient and leads to significantly lower FDR 
values (19% to 23%) compared to other methods. 
Keywords  Ep ilepsy, High frequency oscillations (HFOs), Intracereberal Electroencephalography (iEEG), Complex 
MORLET wavelet (CMW), Matching Pursuit (MP), Bumps Modeling Technique (BMT). 

 

1. Introduction 
High frequency oscillation (HFO) is a short rhythmic 

brain wave consisting of at least three oscillations in the 
frequency range 80-500Hz[1], and can be clearly 
distinguished from background activities[2]. HFOs are 
divided into Ripples 80-250Hz and Fast Ripples (FRs) 
250-500Hz[1,2,3,4,5,6]. HFOs can be recorded with 
invasive EEG procedure using commercial subdural 
grid/strip and depth electrodes. Invasive EEG can give an 
accurate reading of neural activit ies recorded at the brain 
surface level and within  the brain volume[7] for patients with 
intractable epilepsy. Recent studies reported that HFOs 
bursts in the band of 40-200Hz[8] and 80-150Hz[9] can also 
be recorded on the scalp EEG. 

HFOs are more specific and accurate than spikes/sharp 
waves to delineate the seizure onset zone (SOZ)[6,10]. HFOs 
were d is covered  in  ep ilep t ic  rats  and  pat ients  with 
epilepsy[1,3,4] and may be encountered under physiological 
[11] or under patho log ical condit ions[6,11]. It  has been  
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reported that a large proportion of HFOs co-occur with 
spikes[5], and can also occur independently in non spiking 
channels[6,12]. Postsurgical study[13] showed a good 
correlation between  surgical outcome and removal of 
channels with high HFO rates. Rates[5,6,12], powers[5], and 
durations[6,12] of HFOs were higher within than outside the 
SOZ. Moreover, HFOs bursts mark epileptogenicity rather 
than lesion type[14]. In summary, HFOs bursts seem to be a 
reliable b iomarker of epileptogenic tissue capable of 
producing seizures and can provide some useful information 
for understanding of the fundamental neural mechanisms 
underlying epileptic phenomena.  

Visual analysis of HFOs was previously provided a good 
and adequate understanding[5,6] o f the relat ion of HFOs 
with ep ilepsy. However, this manual p rocedure is tedious 
especially for analyzing long and multi channels EEG 
recordings, time-consuming (it  takes about 10 hour to 
visually mark HFOs in a 10- channel/10-min recording[15]), 
inevitably subjective. It is also possible that some actual 
small HFOs oscillations escape visual inspection[16]. Visual 
processing of HFOs may also be subject to error prone and 
requires a great deal of mental concentration and 
qualified/experienced reviewers. Thus, automated and 
reliable detection of HFOs may be more useful, fast, 
consistent, and objective than the visual identification. 
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Moreover, automated software is crucial and necessary for 
the systematic study and investigation of HFOs in large scale 
research. A comparison of existing detectors on the same 
database is important to analyze their performance in terms 
of correct/false detection rate, and for comparing their 
robustness of detection.  

In the present framework, we firstly improved three 
existing HFOs detectors, which are based on time frequency 
techniques. We then compared their performance to that of a 
human reviewer using two commonly metrics: Sensitivity 
and False Discovery Rate (FDR). The first method is based 
on Complex MORLET Wavelet (CMV). The second is 
derived from Matching Pursuit (MP), and the third  uses 
Bumps Modeling Technique (BMT).  

The structure of the paper parts is ordered as follows: 
Section.1 presents Introduction. Section.2 describes the 
clin ical database. In section.3, the various details of the 
mentioned methods are provided. Section.4 describes visual 
marking of HFOs and section.5 presents performance 
metrics. Section.6 presents the discussion and the 
comparison of different methods. Last section presents 
conclusion and our outlines future work. 

2. Clinical Database 
The clinical database used in the present study was 

recorded using the Harmonic system (Stellate) at the 
Montreal Neurological Institute and Hospital (MNI), Canada. 
The data was low-pass filtered at 500 Hz and subsequently 
sampled at 2000 Hz. Then, sampled data was quantized 
using a 16 bit analog-to-digital converter. In order to avoid 
the risk of focusing our study on a particular data, the used 
channels were chosen based on the following criteria: clear 
presence of interictal HFOs upon initial rev iew is firstly 
controlled. Second, both channels with active and rare HFO 
events were considered. Third, a  group of three consecutive 
patients with intractable ep ilepsy was considered for the 
current study. In the last, channels contain different 
background level were selected. All patients gave informed 
consent in agreement with the research ethics board of MNI. 

3. Methods 
Time-frequency (TF) based methods are a combination of 

both theory and information. TF methods have been used 
extensively in the processing and analysis of non stationary 
signals, as found in a wide range of applicat ion including 
biomedical engineering. Their advantage can be resumed as 
follows: localization of information about both time and 
frequency together, automated classification of specific 
patterns based on their frequency components. They allow 
determining of coupling relationships among frequencies, 
amplitudes and phases of signals, which can provide insights 
about some underly ing physiologic, pathologic process of 
many neurological diseases like Epilepsy, Parkinson and 

Alzheimer. TF based methods also allow measuring the 
reproducibility in signals and interpretation of models that 
may  reflect pathological and physiological behavior in 
neuroscience. 

Details for HFOs detection using the mentioned methods 
are provided below: 

3.1. Detection of HFOs based on Complex MORLET 
Wavelet (CMW Method) 

For HFOs detection based on CMW, power coefficients 
X(𝑓𝑓, 𝑛𝑛)  is firstly computed using the complex MORLET 
wavelet 𝜓𝜓(𝑡𝑡) [2,17]. 
𝜓𝜓(𝑡𝑡) is defined as follows: 

𝜓𝜓(𝑡𝑡) = 1
�2𝜋𝜋.σ𝑡𝑡2 𝑒𝑒

𝑖𝑖2𝜋𝜋 𝑓𝑓𝑐𝑐 𝑡𝑡𝑒𝑒
−𝑡𝑡2

2.σ 𝑡𝑡
2        (1) 

Where 𝑓𝑓𝑐𝑐  represents the central frequency of the mother 
wavelet 𝜓𝜓(𝑡𝑡). The standard deviation (σ𝑡𝑡 ) of the gaussian 
window used here is set to 1. The wavelet  family is chosen so 
that the ratio of its center frequency to bandwidth is equal to 
7, which corresponds to a good HFOs legib ility and lead to 
the highest correlation coefficients with HFOs events. This 
choice according to the following equation: 

𝑓𝑓𝑐𝑐
σ𝑓𝑓

= 7                  (2) 

Where, the Fourier spectrum of the complex MORLET 
wavelet is a Gaussian with standard deviation σ𝑓𝑓 . The 
relationship between σ𝑡𝑡  and σ𝑓𝑓  is defined as follows: 

σ𝑓𝑓= 1/2π . σ𝑡𝑡               (3) 
The mother wavelet 𝜓𝜓(𝑡𝑡)  defined above in equation.1, 

can be scaled by a factor 𝑎𝑎 and translated by an amount 𝑏𝑏 
in time as follows: 

𝜓𝜓(𝑎𝑎, 𝑏𝑏) = 𝜓𝜓 �𝑡𝑡−𝑏𝑏
𝑎𝑎
�          (4) 

𝜓𝜓(𝑎𝑎, 𝑏𝑏) is known as a daughter wavelet. Scale 𝑎𝑎 is related 
to a pseudo-frequency  𝑓𝑓 , according to the fo llowing 
relationship:   

𝑎𝑎 = 𝑓𝑓𝑐𝑐
(T.𝑓𝑓)

              (5) 

Where T is the sampling period and 𝑓𝑓𝑐𝑐  is equal to (7/2π) 
in our case. The wavelet power 𝑤𝑤(𝑎𝑎, 𝑏𝑏) is then computed as 
follows: 

𝑤𝑤(𝑎𝑎 ,𝑏𝑏) =  | 1
√𝑎𝑎
∫ 𝑓𝑓(𝑡𝑡)𝜓𝜓(𝑡𝑡−𝑏𝑏

𝑎𝑎
�������+∞

−∞ ) 𝑑𝑑𝑑𝑑|2      (6) 
X(𝑓𝑓, 𝑛𝑛)  is computed from wavelet power 𝑤𝑤(𝑎𝑎, 𝑏𝑏)  by 

transforming scale a into integer pseudo-frequency f using 
equation.5 and rep lacing b  by the sample 𝑛𝑛 . Pseudo 
frequency values ranging from 80Hz up to 500Hz with a step 
of 5Hz were used. X(𝑓𝑓, 𝑛𝑛)  represents a three-dimensional 
map described in time (x-axis), pseudo-frequency (y-axis), 
and coefficient values (z-axis) in dB. Afterwards, to improve 
the localization of HFO events and to reduce noise impacts, 
time frequency map is subsequently smoothed using a robust 
smoothn function described in[18]. More details about this 
function are availab le at:  

http://www.biomecardio.com/matlab/smoothn.html. 
If an HFO is present, then it  will create a local maximum 

(also called burst) in the power coefficients map  X(𝑓𝑓, 𝑛𝑛). For 
each burst exceeds a power threshold, the location of its 
maximum amplitude is determined, which automat ically 
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corresponds to a frequency 𝑓𝑓𝑓𝑓. 
For 𝑋𝑋(𝑓𝑓𝑓𝑓, 𝑛𝑛1:𝑛𝑛2) >𝐾𝐾1. 𝐾𝐾2 (𝑓𝑓𝑓𝑓 ), let[𝑛𝑛1, 𝑛𝑛2 ] delimit  the 

portion of the considered burst above the power threshold 
𝐾𝐾1. 𝐾𝐾2  (𝑓𝑓𝑓𝑓 ). Where 𝐾𝐾2 (𝑓𝑓𝑓𝑓) represents the corresponding 
power threshold which is a function of the pseudo frequency, 
and 𝐾𝐾1is a setting factor.  

Finally, If the temporal width 𝑛𝑛2 − 𝑛𝑛1  exceeds a 
duration 𝐷𝐷𝐷𝐷(𝑓𝑓𝑓𝑓) which is expressed in equation.7. Then, 
the temporal width [𝑛𝑛1   𝑛𝑛2] can be detected as a candidate 
HFO. The frequency 𝑓𝑓𝑓𝑓 can characterize the detected HFO 
if a ripp le or fast ripple. 𝑐𝑐  is the number of wave-cycles  is 
fixed at 3, 𝑓𝑓 is the frequency of the detected burst, and 𝐹𝐹𝐹𝐹  
is the sampling frequency. 

𝐷𝐷𝐷𝐷(𝑓𝑓) = 𝑐𝑐
𝑓𝑓

. 𝐹𝐹𝐹𝐹                (7) 

Finally, the grouping of overlapped detected ripples and 
fast ripples into a single HFO event is done. 

3.2. Detection of HFOs Based on Matching Pursuit (MP) 

The Matching Pursuit (MP) procedure[16,19,20, 21] relies 
on adaptive decomposition of the signal into weighted atoms. 
The atoms are drawn from a large redundant dictionary D. 
To implement our custom HFO detector, we used the 
implementation of the MP available at http://eeg.pl/mp. The 
dictionary D used in the mentioned software is constructed 
from a normalized real Gabor atom 𝑔𝑔𝛾𝛾 (𝑛𝑛)  which can be 
expressed as follows: 

𝑔𝑔𝛾𝛾 (𝑛𝑛) = 𝐾𝐾(𝛾𝛾)𝑒𝑒−𝜋𝜋(𝑛𝑛−𝑢𝑢𝑠𝑠 )2
cos(2𝜋𝜋𝜋𝜋. (n−u )

Fs
+ Ø)     (8) 

Where dictionary D is then a set of elementary waveforms 
(sine modulated Gaussian functions) that can be generated 
by varying different parameters of 𝑔𝑔𝛾𝛾 (𝑛𝑛) , that are 
respectively: the frequency 𝑓𝑓  is used to quantify the 
frequency in (Hz) o f the HFO burst. The t ime occurrence 𝑢𝑢 
in (sample) is used to characterize the central timing of the 
HFO event. The scale 𝑠𝑠 (in  sample) approximates the 
duration of the HFO pattern. The phase  Ø in (rad) 
corresponds to the phase of the HFO. Where Fs  is the 
sampling frequency.  𝐾𝐾(𝛾𝛾) is chosen so that ∣∣ 𝑔𝑔𝛾𝛾 (𝑛𝑛) ∣∣=1. 

At the ith iteration (i =1..... M), a best-match atom 𝑔𝑔𝑖𝑖(𝑛𝑛) 
is selected from d ictionary D, which maximizes the 
correlation with the residual (ie Maxi | ∑ 𝑅𝑅𝑖𝑖(𝑛𝑛) . 𝑔𝑔(𝑛𝑛)𝐿𝐿

𝑛𝑛=1 |). 
Where 𝑅𝑅1(𝑛𝑛)   is the original signal and L its length. The 
procedure can be described by: 

𝑔𝑔𝑖𝑖 (𝑛𝑛) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑔𝑔(𝑛𝑛)𝜖𝜖𝜖𝜖 |�𝑅𝑅𝑖𝑖(𝑛𝑛), 𝑔𝑔(𝑛𝑛)�|      (9) 
Subsequently, the weighted best-match atom 𝑔𝑔𝑖𝑖𝑤𝑤(𝑛𝑛)  is 

derived from 𝑔𝑔𝑖𝑖(𝑛𝑛) through the following equation: 
𝑔𝑔𝑖𝑖𝑤𝑤 (𝑛𝑛) = |�𝑅𝑅𝑖𝑖(𝑛𝑛), 𝑔𝑔𝑖𝑖 (𝑛𝑛) �|. 𝑔𝑔𝑖𝑖 (𝑛𝑛)        (10) 

And the next  residual 𝑅𝑅𝑖𝑖+1(𝑛𝑛)  can be obtained by 
subtracting 𝑔𝑔𝑖𝑖𝑤𝑤(𝑛𝑛)  from the previous residual 𝑅𝑅𝑖𝑖(𝑛𝑛). 

𝑅𝑅𝑖𝑖+1(𝑛𝑛) = 𝑅𝑅𝑖𝑖(𝑛𝑛) − 𝑔𝑔𝑖𝑖𝑤𝑤 (𝑛𝑛)        (11) 
In our previous studies, we used as an input parameter for 

training our algorithm an energetic parameter (𝑃𝑃). 
𝑃𝑃 represents the energy percentage of the synthesized 

signal compared to the input original signal. The synthesized 
signal is the sum of the extracted weighted Gabor atoms 
𝑔𝑔𝑖𝑖𝑤𝑤 (𝑛𝑛) . Definition o f the 𝑃𝑃  parameter is according to the 

following equation: 
∑ | ∑ 𝑔𝑔𝑖𝑖𝑤𝑤𝑀𝑀

𝑖𝑖=1 (𝑛𝑛)|𝐿𝐿
𝑛𝑛 =1

2 = 𝑃𝑃. ∑ |𝑠𝑠(𝑛𝑛)|2 𝐿𝐿
𝑛𝑛 =1     (12) 

Where 𝑠𝑠(𝑛𝑛) is the original signal. 
A given signal cannot be perfectly synthesized by few 

atoms. Too few atoms (low 𝑃𝑃 value) could miss some true 
oscillations have low amplitudes (for example a Fast Ripple 
pattern), while too many atoms (h igh 𝑃𝑃 value) will end up  in 
the last iterations as correction atoms (come from jumps, 
vertex waves, sharp waves, linearity…etc) which can be 
misclassified as true HFOs. In the fact, the main  limitation 
for using  𝑃𝑃 parameter as an  input setting for training our MP 
algorithm, that in last iterations when HFOs bursts have low 
amplitudes and low energies are going to be extracted by MP 
decomposition, the noise can be modeled by lengthy Gabor 
atoms have low amplitudes and significant energies. 
Therefore, noise has the priority to be modeled as spurious 
HFOs events compared to numerous relevant HFOs have 
both low energies and amplitudes together. That could 
increase the false detection rate. Thus, P parameter should be 
dimin ished, which would also decrease the sensitivity.  

Another robust criterion was chosen for the detection of 
HFOs using MP, is to fit the signal in the first step with a 
high value of energetic parameter (P=99.99%), so that all 
relevant HFOs events can be extracted. Subsequently, a 
filtering MP in HFO band (80-500Hz) is applied.  Each 
putative Gabor atom in the HFO band must satisfy the two 
following conditions to be as a candidate HFO: its amplitude 
(represents the input setting in the current study) must 
exceed a fixed threshold (its amplitude > 𝑎𝑎𝑎𝑎𝑎𝑎_𝑡𝑡ℎ𝑟𝑟) and its 
scale must also exceed a duration threshold which is equal to 
(𝐷𝐷𝐷𝐷(𝑓𝑓) = 𝑐𝑐

𝑓𝑓
. 𝐹𝐹𝐹𝐹). Where f is the assessed frequency of the 

considered Gabor atom, 𝐹𝐹𝐹𝐹  is the sampling frequency and c 
is the number of wave cycles is set to 3. Finally, as a final 
step, the grouping of overlapped detected Ripples and Fast 
Ripples into a single HFO event is done. 

3.3. Detection of HFOs Based on Bumps Modelling 
Thechnique (BMT) 

The bump modeling of a time-frequency map aims at 
representing the map with a set of predefined elementary 
parameterized functions called bumps[22]. The purpose of 
this technique was to reduce the huge quantity of parameters 
(hundreds of thousands coefficients) that describe a 
time-frequency map to a sum of parametric functions. A 
parsimonious representation is then obtained, which  is 
relevant for further analysis, investigation and automated 
detection. The method is somewhat similar in spirit to the 
matching-pursuit algorithm that applied directly to the input 
original signal. In  previous investigations, Bumps technique 
was successfully provides a quantitative estimate of the 
reproducibility of the time-frequency events[22]. Afterwards, 
it was used to investigate several aspects of brain oscillatory 
dynamics of Alzheimer's disease (AD)[22]. Bumps 
modeling technique was previously used for detection of 
HFOs bursts in[23]. Different  details and improvement for 
detection of HFOs based on this method are described 
below: 
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3.3.1. Choice o f Bump Function 

Different kinds of functions were used for bump modeling. 
The prominent function that was used in the processing of 
EEG s ignals and led to a s maller modeling error is the 
half-ellipsoid function which is defined as follows: 

φb (𝑓𝑓, 𝑛𝑛) = 𝑎𝑎√1 − 𝜈𝜈  : For 0 ≤ 𝜈𝜈 ≤1 
φb (𝑓𝑓, 𝑛𝑛) = 0        : For 𝜈𝜈 >1         (13) 

Where 𝜈𝜈 = (𝑒𝑒𝑓𝑓 2 + 𝑒𝑒𝑛𝑛 2)  
𝑒𝑒𝑓𝑓 = (𝑓𝑓 − µ𝑓𝑓 )/𝑙𝑙𝑓𝑓   and 𝑒𝑒𝑛𝑛 = (𝑛𝑛 − µ𝑛𝑛 )/ 𝑙𝑙𝑛𝑛 
µ𝑓𝑓  and  µ𝑛𝑛  are the coordinates of the center of the 

half-ellipsoid function. 𝑙𝑙𝑓𝑓  and 𝑙𝑙𝑛𝑛 are the half-lengths of the 
principal axes along the frequency and time axes 
respectively, and 𝑎𝑎 is its amplitude. 

3.3.2. Resolution and Windowing 

The time extension of wavelets is frequency-dependent: 
for h igh frequency, wavelets have a small time extension 
(high time resolution), but their frequency spectrum is large 
(low frequency resolution). Whereas, the inverse occurs at 
low frequency. The trade-off between  the time resolution 
and frequency resolution is depending on Heisenberg-Gabor 
equation which is defined as follows:  

𝛥𝛥𝛥𝛥𝛥𝛥𝛥𝛥 ≥ 1/4𝜋𝜋               (14) 
Thus, time-frequency patterns to be modeled are 

characterized by a frequency-dependent time resolution as 
shown in equation.3. HFO seem as a sinusoidal signal that 
lasts at least 3 periods. Sliding windows defined as follows 
were used for modeling of the HFOs events:  

- The time extension L (in  sample) of a window centered at 
frequency f is equal to the duration of an oscillation. L is 
defined as follows: 

L=Fs. 𝑁𝑁
𝑓𝑓

                   (15) 

Where Fs is the sampling frequency and N is set to 3 
cycles.  

Therefore, the ratio of the time extension L o f the window 
to the time resolution σt  of a wavelet at that frequency is 
defined as: 

N/f
σt

= 8π/7                 (16) 

- The ratio of the frequency extension H of that window to 
the frequency resolution σf  of the wavelet is also equal to 
8π/7. 

H
σf

= 8π/7               (17) 

H = 2π
49

N. f               (18) 

3.3.3. Define the Boundaries of the Map  

For each point of the map under consideration, a  
time-frequency window 𝑊𝑊 centered at that point is obtained. 
Due to boundaries effect in time-frequency map, the section 
of signal to be modeled must start with a fixed duration equal 
to (Fs.(N/2*fl)) before the useful part of the signal and 
stopped after it  with the same durat ion. The lowest frequency 
must be started with frequency (𝑓𝑓𝑓𝑓 − 𝜋𝜋

49
𝑁𝑁. 𝑓𝑓𝑓𝑓)  and the 

highest frequency must be stopped at (𝑓𝑓ℎ + 𝜋𝜋
49
𝑁𝑁. 𝑓𝑓ℎ), where 

𝑓𝑓ℎ is set to 400 Hz and 𝑓𝑓𝑓𝑓 is set to 80 Hz. 

3.3.4. Search fo r the Zone Containing the Maximal Amount 
of Oscillatory Activ ity 

The intensities map of the pixels contained in a window W 
describe the amount of oscillatory activity within the 
considered window. The modeling algorithm searches for 
the window Wmax containing the maximal energy amount: 
for each window W, the sum S of the intensities of the pixels 
within the window W is computed as follow: 

𝑆𝑆 = ∑ 𝐶𝐶𝑛𝑛,𝑓𝑓⋲𝑊𝑊 (𝑓𝑓,𝑛𝑛)           (19) 
The summat ion runs on all points within window W. The 

window Wmax with maximal S is then selected. 

3.3.5. Bump Adaptation 

Within the selected window Wmax, a bump function 𝜑𝜑𝑏𝑏  
is adapted, starting with a bump extending over the whole 
area of the window. Thus, the bump function has five 
parameters, subject to the following constraints: 

-  µ𝑛𝑛> 0, µ𝑓𝑓 > 0 are represent the center of the bump lies 
within the window Wmax. 

- 0 <𝑙𝑙𝑛𝑛< L, 0 <𝑙𝑙𝑓𝑓< H, where L and H are the height and 
width of the window Wmax as defined by equation.15 and 
equation.18. 

- Amplitude a > 0. 
The adaptation phase is performed across the cost function 

E to be optimized based on the modeling error of the bump, 
defined by the sum of squared errors. The cost function is 
defined as follows: 

𝐸𝐸 = 1
2

(∑ 𝐶𝐶(𝑓𝑓, 𝑛𝑛) − 𝜑𝜑𝑏𝑏 (𝑓𝑓, 𝑛𝑛)𝑛𝑛 ,𝑓𝑓⋲𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 )2     (20) 
Where the summation runs on all p ixels within the 

window 𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊  under consideration for instance. 
When the bump is finally adapted, it is subtracted from the 

original time-frequency map, and the process is iterated with 
the next bump. The procedure of bumps decomposition    
is done across Butlf toolbox[24,25] decomposition availab le 
at: 

http://www.bsp.brain.riken.jp/~fvialatte/bumptoolbox/too
lbox_home. 

Thus, each modeled bump is restricted to one biologically  
HFO oscillat ion with duration of three periods. Longer 
oscillations will be modeled by two bumps or more 
(non-overlapping or overlapping). 

3.3.6. Termination Criterion  

A trade-off usually exists between the rate of correct and 
false detection. If the number o f bumps in the model is too 
low, the latter will not be sensitive; if it is too large, the noise 
will be modeled, hence irrelevant informat ion would be built 
into the model, which could increase false detection rate. For 
the actual application, we first design a model with a largest 
number of bumps within  a reasonable computation time 
(chosen header.limit parameter=0.0001[24,25]).  

Subsequently, each extracted bump must satisfy the 
following conditions to be as a candidate HFO: its frequency 



 American Journal of Signal Processing 2013, 3(2): 25-34 29 
 

 

(µ𝑓𝑓 ) must be included in HFO band (80-400Hz), and its 
fraction rat io F is defined in equation.21 should exceed a 
threshold (Fc). Fc is considered as the input parameter for 
training the current method (if F>Fc, Bump is considered as 
a candidate HFO, else is rejected). The fraction ratio (F) of 
the intensity modeled by a one given bump to the total 
intensity of the map is computed as follows: 

𝐹𝐹 = ∑𝑛𝑛∑𝑓𝑓 𝜑𝜑𝐵𝐵(𝑓𝑓, 𝑛𝑛) /∑𝑛𝑛∑𝑓𝑓 𝑀𝑀𝑀𝑀𝑀𝑀(𝑓𝑓, 𝑛𝑛)      (21) 
The mentioned threshold (Fc) can also lead to a modified 

trade-off between the detected relevant HFOs and the 
detected spurious energetic oscillat ions come from the 
filtering of spikes without HFOs, sharp waves without HFOs, 
and backgrounds activities. 

As a last step for HFOs detection using Bumps modeling, 
the grouping of overlapped detected Ripples and Fast 
Ripples into a single HFO event is then done. 

4. Visual Marking of HFOs 
Based on our custom Graphical User Interface (GUI), two  

reviewers trained in electrophysiology and HFOs analysis 
identified visually  and independently all relevant HFOs 
included in the used channels. The visual marking of HFOs 
was performed by splitting the screen horizontally in which 
the reviewer can v iewed a raw of unfiltered EEG and a 
filtered version (band-pass filtered at 80-500Hz) simultaneo
usly. The unfiltered  EEG signal is seen in  the top plot and the 
filtered signal in the bottom plot. The filtered EEG is viewed 
at a higher gain than unfiltered EEG. The filter removes 
lower frequency components and helps to locate HFO events. 
The higher gain is necessary because HFOs have very low 
amplitudes compared  to the unfiltered EEG s ignals. Each 
event is marked as a relevant HFO, if it seems as regular 
oscillation that has at least 3 consecutive periods, and can be 
clearly distinguished from the background activity in the 
filtered signal, and is confirmed in the unfiltered EEG signal. 
Each event detected by the two reviewers was considered as 
relevant HFO burst. The remain ing events were    
excluded from the analysis. Finally, marked HFOs    
events were automat ically saved in a database for future 
analysis. 

5. Performance Metrics 
Performance measure was quantified using the False 

Discovery Rate (FDR) which is a robust metric that 
characterize the false detection rate. The sensitivity metric is 
used to quantify the rate of correct detection. The two 
metrics are defined as follows: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = 100 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷
𝑃𝑃𝑃𝑃𝑃𝑃

         (22) 

𝐹𝐹𝐹𝐹𝐹𝐹 = 100 𝐹𝐹𝐹𝐹
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

               (23) 
HFOs detection software produces a list of candidate 

HFOs with their location, duration, and frequency. 
Candidate HFOs could overlap  with Positives, Negatives. 
Positives: are different HFOs segments visually identified. 

Negatives: are different baseline segments. Pos: is the total 
number of positives. Dpos (Detected Positives): is the 
number of positives which overlap with at least one 
candidate-HFO. TP  (True Positives): is the number of 
candidate-HFOs which overlap with at least one Positive 
event. FP (False Positives): is the number of candidate-HF
Os which could not overlap with any positive event.  

6. Result and Discussion 

Previous studies[5,6] proved that visual marking of HFOs 
provides a good understanding of some underlying brain 
mechanis ms for epilepsy. However, this visual process is 
highly time consuming, subjective and might be subject to 
error-prone. Fast, object ive, reliable and automated detection 
of HFOs is necessary for the systematic investigation of 
HFOs and to propel the clinical use of them as a reliab le 
biomarker of epileptogenic tissue. Another important benefit 
of automated detection process: permits to parameterize the 
detected discharges such as determination of their position, 
duration, amplitude and frequency, estimat ion of HFOs rates, 
and assessment of HFOs power. These extracted parameters 
may be very useful for investigation of important clinical 
informat ion like the determination of underly ing dynamic 
change of HFOs during inter-ictal[5,6,10], pre-ictal and 
ictal[9] periods. 

Performance measure of HFOs detector depends on 
experts visual review- is considered the gold standard and 
must be associated with high inter-rater reliab ility. In the 
present study, 361 HFOs events were visually  reviewed and 
considered as ground-truths for the performance measure 
and the comparison of the three improved existing HFOs 
detectors. The used data contains different background noise 
level, and includes both channels with active and rare HFOs 
rates. Receiver operating characteristic curves (ROC) of 
sensitivity vs. FDR, were used to test results of methods 
according to the different input parameters 
(𝐾𝐾1, 𝑎𝑎𝑎𝑎𝑎𝑎_𝑡𝑡ℎ𝑟𝑟, 𝐹𝐹𝐹𝐹). The input parameters are respectively: 
the power threshold (𝐾𝐾1) for CMOR wavelet based method, 
the amplitude threshold of Gabor atoms (𝑎𝑎𝑎𝑎𝑎𝑎_𝑡𝑡ℎ𝑟𝑟) for MP 
method and the fraction ratio threshold (𝐹𝐹𝐹𝐹 ) for Bumps 
method. During the train ing, the vary ing input parameter was 
considered optimal when the discrimination between 
undesirable (spurious HFOs) and desirable events (detected 
positives) was maximized as much as possible. That means 
the difference between the sensitivity and the FDR should be 
maximized. The choice of this criterion is clearly justified by 
Rahul et al[2]. 

As is shown in figure.1, the optimal tradeoff between the 
sensitivity and the FDR for each method is indicated by the 
proper dash arrow for each curve. The table.1 illustrates a 
summarization of d ifferent results of the performance 
measure. The comparison is also done between our results 
and previous studies. Trapezoidal numerical integration 
method was used to determine the area under the ROC 
curves (AUC), the obtained AUC were respectively: 0.9406, 
0.8496 and 0.9116.  
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Table 1.  Summary of detection performance for different Methods 

Method Performance (optimal trade-off) Area under a curve (AUC) 
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Figure 1.  ROC curves of different methods: Optimal performance (best tradeoff) is indicated by the proper dash arrow for each curve 

The main findings of the present study are summarized as follows: The efficiency of methods depends on the required 
sensitivity and FDR. First, If the required sensitivity below 87% is sufficient for the considered application, CMOR wavelet 
method could perform well in  terms o f low false detection rate (FDR<14%). Secondly, if the application requires a sensitivity 
between 87% and 92%, the three methods could perform in a similar way in terms of performance, which approximately 
corresponds to an FDR in the range of 14-19%. Finally, if a very high sensitivity is required (92% up to 98%), bumps 
modeling method can be considered the most efficient and can lead to significantly lower FDR values (19% to 23%) 
compared to other methods.  

A snapshot of HFOs detection using CMOR wavelet (CMV) is illustrated in figure.2. The first plot represents the original 
EEG signal which is an active EEG segment. The second plot shows its corresponding time frequency map computed using 
CMOR2-1.114 wavelet family. Finally, automat ically detected HFOs events are classified into true (relevant) HFOs events 
are indicated by the green rectangles and spurious detected oscillat ions are indicated by the red rectangles. 
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Figure 2.  A snapshot of HFOs detection using CMOR wavelet. Optimal configuration for the power threshold: K1=2.1 

A snapshot of HFOs detection using Matching Pursuit (MP) is illustrated in figure.3. The first plot represents the original 
EEG signal. The second plot shows the filtering of signal in the HFOs band. Finally, automatically detected HFOs events are 
classified into relevant HFOs events are indicated by the green rectangles and spurious oscillations are indicated by the red 
rectangles. 

 
Figure 3.  A snapshot of HFOs detection using Matching pursuit . Optimal configuration for the amplitude threshold of Gabor atoms: 𝑎𝑎𝑎𝑎𝑎𝑎_𝑡𝑡ℎ𝑟𝑟=5µv 
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A snapshot of HFOs detection using Bumps modeling technique (BMT) is illustrated in figure.4. The first plot represents 
the same original EEG signal. The second plot shows the time frequency map  computed using CMOR 2.0558-0.5874 wavelet 
family. The third plot shows the extracted Bumps as candidate HFOs. Finally, automat ically detected HFOs events are 
classified into relevant HFOs events are indicated by the yellow rectangles and false oscillations are indicated by the red 
rectangles. 

 
Figure 4.  A snapshot of HFOs detection using Bumps modeling technique. Optimal configuration for the Fraction ratio threshold is set to: Fc =0.00003 

Different mentioned methods in the present study have 
advantages and disadvantages: 

CMOR wavelet method is sensitive to detect HFOs, and 
good in terms of AUC. It might classify directly candidates 
HFOs into ripples and fast ripples. Moreover, it is faster than 
other methods. However, the fundamental limitation for this 
method is that most spikes and sharp waves without HFOs 
included in EEG record ings are better approximated as 
triangular pulses. The spectrum of triangular pulse is a 
squared-sinc function. Spurious blobs can be easily detected 
as probable HFOs come from side-lobe peaks of the squared 
sinc function. 

Matching pursuit algorithm has also a good sensitivity. 
Moreover, the classification of candidate HFOs into ripples 
and fast ripples using the frequency of Gabor atoms can be 
done. The main limitation is that a given signal cannot be 
perfectly synthesized by few atoms. The extraction of all 
HFOs events using MP decomposition require model with 
high energetic parameter. In fact, high P value can cause a 
generation of correction atoms which essentially arising 
from reconstruction of jumps, vertex waves, sharp waves, 
linearity…etc. Correction atoms could have similar energies 
and amplitudes compared to numerous HFOs events. As 
result, using amplitude of Gabor atom as input setting can 

lead to a tradeoff between true and false detection, which 
usually cannot be avoided. In addit ion, it is possible that 
distortions may be generated by the subtractive step of MP. 
Long time computation is also considered as disadvantage 
for this method. 

Bumps modeling based method is highly sensitive; the 
sensitivity could exceed 98% with a min imum FDR. It might 
classify directly candidate HFOs into ripples and fast ripples. 
Using CMOR wavelet decomposition as a first step of this 
method can produce several spurious blobs having 
significant energy in  time frequency map. The ment ioned 
spurious patterns come essentially  from side-lobe peaks of 
the squared sinc function resulting from filtering of spikes 
and sharp waves without HFOs. Time consuming also 
considered as disadvantage for this method. 

7. Conclusions and Perspectives 
An automated and reliable detector is crucial fo r the 

investigation of HFOs and for the understanding of their 
relationship to the underlying pathology in epilepsy. 

Thus, several automatic detectors were developed for 
different EEG record ings and with different aims. Improving 
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and comparing them in a single dataset is important to 
analyze their performance and robustness. The efficiency of 
the tested methods described in the current study depends on 
the required sensitivity and the FDR, which are related to the 
intended application (supervised or unsupervised detection 
method, time computation, complexity,…). 

As a conclusion, the three algorithms described here can 
achieve a high sensitivity. Bumps modeling based method 
can achieve a high sensitivity up to 98% with the minimum 
FDR compared to MP and CMOR wavelet based methods.  

To date, there can be an overlap between the 
time–frequency representation of transients (spikes, sharp 
waves, artifacts) and HFOs oscillat ions. The majority of 
HFOs detection methods are frequency based decomposition 
that can lead easily to detection of false-positive events, 
which arise essentially from the filtering of spikes and sharp 
waves without HFOs. Still, the best method must have as 
much sensitivity as possible to correctly detect all true HFOs 
events included in EEG data. False detection should be 
reduced to the min imum as possible. Also the best method 
should not be sensitive to spikes/ sharp waves without HFOs. 
In addition, such a robust detector should perform in a 
similar way for all types of channels with active and rare 
events and for different background levels.  

Further studies based on advanced signals processing are 
needed, such as the approaches based on mathematical 
morphology and geometric analysis, which  may  discriminate 
between transients without HFOs and transients with HFOs. 
This can improve the detection performance of different 
algorithms in large scale. Another potential interesting path 
that could be further exp lored is to address the question of 
whether a consensus automatic procedure that combines all 
three available methods (e.g. letting each method vote on 
each event) could outperform the results of a single approach. 
This can also improve our results and reduce false detection 
rate. Still, fast software and powerful systems are needed. 
Our future work will be focused on analyzing large amounts 
of EEG data using scalp EEG recordings and Invasive EEG 
based on a consensus automatic procedure that combines all 
the three available methods. 
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