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Abstract  A constant false alarm rate in the presence of variable levels of noise is usually a requirement placed on any 
modern radar. The CA- and OS-CFAR detectors are the most widely used ones in the CFAR world. The cell-averaging (CA) 
is the optimum CFAR detector in terms of detection probability in homogeneous background when the reference cells have 
identical, independent and exponentially distributed signals. The ordered-statistic (OS) is an alternative to the CA processor,  
which trades a small loss in detection performance, relative to the CA scheme, in ideal conditions for much less performance 
degradation in non-ideal background environments. To benefice the merits of these well-known schemes, two modified 
versions (MX- & MN-CFAR) have been recently  suggested. This paper is devoted to the detection performance evaluation of 
these modified versions as well as a novel one (ML-CFAR). Exact formulas for their false alarm and detection performances 
are derived, in  the absence as well as in the presence of spurious targets. The results of these performances obtained for 
Rayleigh clutter and Rayleigh target indicate that the MN-CFAR scheme performs  nearly  as good as OS detector in the 
presence of outlying targets and all the developed versions perform much better than that processor when the background 
environment is homogeneous. When compared to CA-CFAR, the modified schemes perform better in an ideal condition, and 
behave much better in the presence of interfering targets. 

Keywords  Adaptive Detection Techniques, Clutter Edge, Average Detection Threshold, Receiver Operating 
Characteristic, Target Mult iplicity Environments 

 

1. Introduction 
The detection of the radar's signal becomes a complex task 

when its returns are non-stationary background noise (or 
no is e-p lus -clutter). Many  radar systems  operate in an 
environment where the no ise generated with in its  own 
receiver is  not  the dominant  source o f interference. 
Undesired echoes from rain and unwanted signals from other 
radiating sources often exceed the receiver noise level. These 
sources of interference may completely ob literate the radar 
display, or may  overload the computer which is making 
Yes/No decisions as to which echoes are valid. To reduce 
th is  p rob lem, radar detect ion  p rocess ing  can  use an 
algorithm to estimate the clutter energy in the target test cell 
and then adjust the detection threshold to reflect changes in 
th is  energy  at  d ifferen t  test  cell pos it ions . As  the 
clutter-p lus -no ise power is not  known a priori, a  fixed 
threshold detection scheme cannot be applied to the radar 
return if the false alarm is to be controlled. In other words, 
the false alarm probability increases intolerably if a fixed 
threshold is used as a detection scheme. Therefore, adaptive  
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threshold techniques are required in order to maintain  a 
nearly constant false alarm rate. Because of the diversity of 
radar search environment, such as mult iple targets and 
abrupt change in clutter, there exist no universal CFAR 
scheme. As a consequence, much attention has been paid to 
the task of designing and assessing these adaptive detection 
schemes[1-3, 8,11]. 

A variety of CFAR techniques are developed according to 
the logic used to estimate the unknown noise power level. An 
attractive class of such schemes, which set the threshold 
adaptively based on local information of total noise power, 
includes CA, OS and their modified versions. The threshold 
in a CFAR detector is set on a cell basis using estimated 
noise power by processing a group of reference cells 
surrounding the cell under investigation. The cell-averaging 
(CA) is an adaptive processor that can play an effect ive part 
in much noise and clutter environments, and provide nearly 
the best ability of signal detection while reserving the 
enough constant false alarm rate. This algorithm has the best 
performance in homogeneous background since it uses the 
maximum likelihood estimate of the noise power to set the 
adaptive threshold. However, the existence of 
heterogeneities in practical operating environments renders 
this processor ineffect ive[4-5,7,10]. Heterogeneities arise 
due to the presence of multip le targets and clutter edges. In 
the case of multip le targets, the detection probability of CA 
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degrades seriously due to the non-avoidance of including the 
interfering signal power in noise level estimate. 
Consequently, this in  turn leads to an unnecessary increase in 
overall threshold. When a clutter edge is present in the 
reference window and the test cell contains a clutter sample, 
a significant increase in the false alarm rate results. Both of 
these effects worsen as the clutter power increases. In order 
to overcome the problems associated with non-homogeneous 
noise backgrounds, alternative schemes have been developed 
to address this issue, including ordered-statistic (OS) and its 
versions as well as various windowing techniques aimed to 
exclude heterogeneous regions . The well-known OS-CFAR 
processor estimates the noise power simply  by selecting the 
Kth largest cell in the reference set of size N. It suffers only 
minor degradation in detection probability and can resolves 
closely spaced targets effectively for K different from the 
maximum. However, this processor is unable to p revent 
excessive false alarm rate at clutter edges, unless K is very 
close to N, but in  this case the processor suffers greater loss 
of detection performance[9,12].  

In practical applications, the informat ion about the 
number of interfering targets is not known in advance. The 
biggest samples of reference window are always trimmed 
with OS or TM method not only in mult iple targets situation 
but also in homogeneous background. This, in turn, will 
result in  additional CFAR loss, especially  in  the case where 
the size of the reference window is short. The resulting 
CFAR loss becomes unacceptable, and this  can usually be 
encountered in complicated environment and lower SNR 
situation[13].  

Two novel constant false alarm rate detectors; the 
maximum (MX)-CFAR and the minimum (MN)-CFAR, are 
recently appear in the literature[6]. These new formulas of 
CFAR detectors improve the conventional CA- and 
OS-CFAR schemes by making full use of the cell 
informat ion. The novel CFAR processors combine the result 
of the CA and OS to get a better detection performance. In 
homogeneous background, the mathematical models of the 
two new CFAR detectors  are derived and the performance of 
them has been evaluated and compared with that of CA- and 
OS-CFAR schemes. With the maximum-of CFAR detector, 
the problem of the increase of the false alarm probability due 
to the presence of a step discontinuity in the distributed 
clutter cloud has been treated. The minimum-of CFAR 
processor, on the other hand, was introduced to improve the 
resolution of closely spaced targets. These two new radar 
CFAR detectors synthesizing the advantages of CA- and 
OS-CFAR are analysed in an ideal environment. The 
modified CFAR structures make use of the two threshold 
settings of the well-known processors and compare them 
with the cell under test to achieve the judgment. For the 
MX-CFAR algorithm, when the cell under test is greater than 
both of the CA- and OS-CFAR thresholds, a target present 
will be declared. Otherwise, no target will be indicated. For 
the MN-CFAR algorithm, on the other hand, when the cell 
under test is greater than any of the two thresholds, a target 
present will be declared. Otherwise a no target declaration 

will be made.  
Our goal in the present paper is to analyse these modified 

versions along with a new procedure in non-homogeneous 
situations. In section II, we formulate the underlined problem 
and describe the model of the processors under investigation. 
The performance of the schemes under consideration is 
analysed, in ideal (homogeneous) background environment, 
in section III. Section IV is devoted to the performance 
evaluation of these schemes in  clutter edges and multitarget 
environments. In section V, we present a brief discussion 
along with our conclusions. 

2. Model Description and Problem 
Formulation 

Fig.(1) depicts the architecture of the underlined CFAR 
detection procedure. It uses an adaptive threshold whose 
level is determined by the clutter and/or noise in the vicinity 
of the radar echo. Two tapped delay-lines sample echo 
signals from the environment in  a number of reference cells 
located on both sides of the cell under test. The spacing 
between reference cells is equal to the radar range resolution 
(usually the pulse width). The output of the cell under 
investigation is the radar video output, which is compared to 
the adaptive threshold derived from the outputs of the tapped 
delay-lines. This threshold, therefore, represents the radar 
environment to either side of the tested cell. It changes as the 
radar environment changes and as the pulse travels out in 
time. When mult iplied by a predetermined constant scale 
factor "T", it provides a detection threshold against which the 
content of the cell under investigation is compared to decide 
whether the radar target is present or absent. Thus, the 
constructed threshold can adapt to the environment as the 
pulse travels in time.  

 
Figure 1. The diagrammatic sketch of the modified versions of adaptive 
radar target detectors 
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Let the input target signal and noise to the square-law 
detector are represented by the complex vectors u + jv and a 
+ jb, respectively. The variables "u" and "v" represent the 
in-phase and quadrature components of the target signal at 
the square-law detector, while the corresponding 
components of noise are denoted by "a" and "b", respectively. 
The target's signal is assumed to be independent of the noise 
and the in-phase samples are assumed to be independent and 
identically distributed (IID) with the Gaussian probability 
density function (PDF). The output of square-law detector, 
normalized to the noise power, is 

( )2 21
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∆ + + +          (1) 

The characteristic function (CF) of "ν" can be expressed as 

2
2

( ) ( ) exp( )

( ) ( ) exp
2u a

y y dy

u a u a da du

pC

p p

ν ν
ω ω

ω
ψ

∞

−∞

∞ ∞

−∞ −∞

∆ −

   = − +  
   

∫

∫ ∫

(2) 

In the above expression, pu (u) and pa (a) denote the PDF’s 
of "u" and "a", respectively, "ψ" represents the noise power. 
From our p revious assumptions, one can write the joint PDF 
of "a" as 
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The substitution of Eq.(3) in Eq.(2) yields 
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There are many PDF's for target cross section which are 
used to characterize fluctuating targets. The more important 
PDF is the so-called χ2 distribution with 2κ degrees of 
freedom. The χ2 model approximates a target with a large 
reflector and a group of s mall reflectors, as well as a large 
reflector over a small range of aspect values. The χ2 family 
includes the Rayleigh (Swerling  cases I & II) model, the 
four-degree of freedom model (Swerling cases III & IV), the 
Weinstock model (κ <1) and the generalized model (κ a 
positive real number)[7]. These models are used to represent 
complex targets such as aircraft and have the characteristic 
that the distribution is more concentrated about the mean as 
the value of the parameter κ is increased. This distribution 
has a PDF g iven by[5] 
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(5) 

In the above expression, σ  represents the average cross 
section over all target fluctuations and U(.) denotes unit step 
function. When κ=1, the PDF of Eq.(5) reduces to the 
exponential or Rayleigh power distribution that applies to the 
Swerling case I. Swerling cases II, III, and IV correspond to 
κ=M, 2, and 2M, respectively. Here, we are concerned only 
with single sweep case (M=1).  

It is finally of importance to note that the χ2 distribution 
with 2κ degrees of freedom can be obtained by adding 
squared magnitude of κ complex Gaussian random variables. 
In other words, if κ=1, then σ  may  be generated as 
σ=w1

2+w2
2, where wi’s are IID Gaussian random variables, 

each with zero mean and σ/2 variance. The magnitude of 
the in-phase component u (u=w1) has a PDF g iven by 

2
1

1 1 1
1

1( ) ( ) exp
2 22u w

wu du w dw dw withpp σα
απα

 
= = − ∆  

 

(6) 

The substitution of Eq.(6) into Eq.(4) y ields 
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If we let the average signal-to-noise ratio (SNR) α/ψ=S 
and after performing the specified integration, Eq.(7) takes 
the form: 
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         (8) 

For the sake of simplicity, the above equation can be put in  
another clarified form as 
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The PDF of the output of the ith test tap is given by the 
Laplace inverse of Eq.(9), after making some minor 
modifications. If the ith test tap contains noise alone, we let 
S=0, that is the average noise power at the receiver input is 
"ψ". If the ith range cell contains a return from the primary 
target, Eq,(9) rests as it is where S represents the strength of 
the target return at the receiver input. On the other hand, if 
the ith test cell is corrupted by interfering target return, S 
must be changed to I, where I denotes the 
interference-to-noise (INR) at the receiver input. Finally, if 
the ith cell is immersed in clutter, S is altered to C where C 
denotes clutter-to-noise ratio (CNR).  

Implementing the generalized  likelihood ratio test, the 
system decides the absence or the presence of a radar target 
according to whether 

absence

f

presence

TZν <
>

      

(10) 

where ν denotes the content of the cell under test, Zf 
represents the final noise level estimate, and T is a constant 
scale factor used to achieve the required rate of false alarm.  

Our approach in analysing a CFAR processor is to 
evaluate its probability of detection which is defined as 

{ } { }1 1Pr Prf fd T Z Z TP H Hν ν∆ 〉 = 〈 (11) 

In terms of the PDF of ν and Zf, Eq.(11) can be formulated 
as 
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Fzf represents the cumulat ive distribution function (CDF) 



101  American Journal of Signal Processing 2012, 2(5): 98-112  
 

 

of Zf. By taking the Laplace inverse of Eq.(9) and 
substituting it in the previous formula, one obtains 
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ΨZ (.) denotes the Laplace transformat ion of the CDF of 
the random variable Zf. The result of this analysis reveals 
that the Laplace transformation of the CDF of the final noise 
level estimate is the backbone of the CFAR performance 
evaluation. In terms of the CF of Zf, ΨZ (.) can be calculated 
as 

( )
( )Z f

Z f

C ω
ω

ω
=Ψ             (14) 

Therefore, it  is required  now to  derive the CF of the final 
noise level estimate for each one of the modified versions in 
order to analytically evaluate its performance either in the 
absence or in the presence of outliers. Finally, as S tends to 
zero (S → 0), Eq ,(13) leads to false alarm probability (Pd →  
Pfa) 

3. Performance of CFAR Detectors in 
ideal Situations 

The statistical model with un iform clutter background 
describes the classical signal situation with stationary noise 
in the reference window. In this model, two signal cases are 
of interest: (a) one target in  the test cell in  front of an 
otherwise uniform background, (b) uniform no ise situation 
throughout the reference window. In both cases, the noise in 
neighbourhood samples has a uniform statistic, i.e., the 
random variab les Y1, Y2 , …...., YN  in the reference window 
are assumed to be statistically independent and identically 
distributed. In the absence of the target case, the random 
variable ν of the tested cell is assumed to be statistically 
independent of the neighbourhood and subject to the same 
distribution as the random variables Yi’s. 

The essence of CFAR is to  compare the decision statistic ν 
with an  adaptive threshold TZf. The threshold coefficient T is 
a constant scale factor used to achieve the desired false alarm 
rate for a given window size N when the background noise is 
homogeneous. The statistic Zf is a random variable whose 
distribution depends upon the particular CFAR scheme and 
the underlying distribution of each of the reference range 
samples.  

As shown in the previous section, the characteristic 
function of the noise power level estimate ‘Zf’ is the 
fundamental parameter that determines the processor 
performance either in homogeneous or non-homogeneous 
background environments. Therefore, our scope in the 
following subsections is to calculate this important 
parameter for the CFAR algorithms under consideration. 

3.1. Cell-Averaging (CA) Detector 

A simple approach to achieve the CFAR condition is to set 

the detection threshold on the basis of the average noise 
power in a given number of reference cells where each of 
these cells is assumed to contain no targets. Such a scheme is 
denoted as cell-averaging (CA) CFAR processor. This 
detector is specifically  tailored to provide good estimates of 
the noise power in the exponential PDF. Such estimation of 
the noise power is a sufficient statistic for the unknown noise 
power ψ  under the assumption of exponentially d istributed 
homogeneous background. In other words, the noise power 
is estimated as  

1

1 N

CA i
iN YZ
=

∆ ∑           (15) 

Under the assumption that the surrounding range cells 
contain independent Gaussian noise samples with the same 
variance, ZCA is the maximum likelihood estimate of the 
common variance. In the absence of the radar target, each 
cell of the reference window has a CF of the same form as 
that of ν with the exception that A must be set to zero. 
Therefore, eliminating A in Eq.(9) leads to 
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N

CA

NwithZC θω θ
ω θ ψ

 
= ∆ +      

(16) 

The rationale for the CA type of CFAR schemes is that by 
choosing the mean, the optimum CFAR processor in a 
homogeneous background when the reference cells contain 
IID observations governed by exponential d istribution is 
achieved. As the size of the reference window increases, its 
detection performance approaches that of the optimum 
processor which is an algorithm based in its operation on a 
fixed threshold. 

It is obviously of value to have some idea about the loss of 
detection power for a proposed CFAR scheme relative to the 
optimum processor for a homogeneous noise background. 
The simplest and more efficient method is that based on the 
average detection threshold (ADT) since the threshold and 
detection probability are closely related to each other. It  is 
well known that as the threshold increases, the detection 
probability decreases accordingly and vice versa. Therefore, 
we use the concept of ADT to compare different CFAR 
processing techniques. Mathematically, this ADT is defined 
as[9] 

( ){ } 0Z
T d

d CADT ϖ
ωψ ω

−
=

∆         (17) 

The substitution of Eq.(16) into Eq.(17) gives 
CA TADT =                   (18) 

3.2. Ordered-Statistic (OS) Detector  

The performance of CA-CFAR detector degrades rapidly 
in non-ideal conditions caused by multiple targets and 
nonuniform clutter. The ordered-statistic (OS) CFAR is an 
alternative to the CA processor. It trades a small loss in 
detection performance, relat ive to the CA scheme, in  ideal 
situations for much less performance degradation in 
nonhomogeneous background environments. 

Order statistics characterize amplitude informat ion by 
ranking observations in which differently ranked outputs can 
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estimate different statistical properties of the distribution 
from which they stem. The order statistic corresponding to a 
rank K is found by taking the set of N observations Y1, 
Y2, ……., YN and ordering them with respect to increasing 
magnitude in such a way that  

(1) (2) ( 1) ( ) ( 1) ( )... ...K K K NY Y Y Y Y Y− +≤ ≤ ≤ ≤ ≤ ≤ ≤   (19) 

Y(K) represents the Kth order statistic. The central idea of 
OS-CFAR procedure is to select one certain value from the 
above sequence and to use it as an estimate ZOS for the 
average clutter power as observed in the reference window. 
Thus, 

{ }( ) , 1, 2,3, ...,OS K K NZ Y= ∈
     

(20) 

We will denote by OS(K) the OS scheme with parameter 
K. The value of K is generally chosen in such a way that the 
detection of radar target in homogeneous background 
environment is maximized. 

In order to analyse the processor detection performance in  
uniform clutter background, the CF of the random variab le 
ZOS is required. To evaluate this quantity, we start with the 
homogeneous representation of the CDF of the noise 
estimate which has a formula given by[12] 
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By substituting Eq.(22) into Eq.(21) and taking the 
Laplace transformat ion, one obtains 
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By using Eq.(14) and Eq.(23) in the definition of ADT, we 
have 
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The processor detection performance is easily evaluated 
once the CF of the noise level estimate ZOS is obtained. 
Finally, a desirable CFAR scheme would of course be one 
that is insensitive to changes in the total no ise power within 
the cells of the reference window so that a constant false 
alarm rate is maintained. This is actually  the case of all 
architectures under consideration. 

3.3. Modified Versions 
Excessive numbers of false alarms in the CA processor at 

clutter edges and degradation of its detection performance in 
multip le target environments are the p rime mot ivations for 
exploring other CFAR schemes. Since CA technique is the 
optimum CFAR processor given that the background is 
homogeneous and the reference cells contain independent 
and identically d istributed observations governed by an 
exponential distribution, it is intuitive to use this identity in 
developing new versions. Additionally, the OS scheme has 
its immunity to the presence of interfering target returns 

amongst the contents of the reference window used for noise 
level estimat ion. For this important property of OS, it is of 
interest to include its basics in the development of the new 
CFAR schemes. Here, we are interesting in analysing three 
of such modified versions; namely; Mean-Level (ML), 
Maximum (MX) and Minimum (MN) operators.  

3.3.1. Mean-Level (ML)-CFAR  

The contents of the N reference samples feed two signal 
processors simultaneously. The first one of them estimates 
the unknown noise power employing the CA technique while 
the other does the same thing using OS basis. The two 
estimates are combined through the meal-level operation to 
estimate the final noise power level. Thus,  

( ),ML CA OSmeanZ Z Z∆           (25) 

Where ZCA and ZOS are as previously given in Eqs.(15, 20),  
respectively. The ω-domain representation of Zf, which is 
ZML in this case, is characterized by a CF of the form 

( ) ( ) ( ) ( ) ( )OSML CA OS CAZ Z Z ZC C C Cω ω ω ω ω ω= = Ψ (26) 

All the parameters of the above equation are previously 
evaluated as shown in Eqs,(14, 16, 23) . Therefore, the 
processor detection performance is completely determined 
as Eq.(13) demonstrates. Finally, the ADT of this version of 
CFAR schemes can be easily computed and the result takes 
the form 

ML CA OSADT ADT ADT= +           
(27) 

3.3.2. Maximum (MX)-CFAR  

This version was specifically aimed at reducing the 
number of excessive false alarms at clutter edges. The final 
noise power is estimated from the larger o f the two  separate 
noise level estimates computed for the CA and OS schemes. 
For this procedure of CFAR, we have  

( )max ,MAX CA OSZ Z Z∆             (28) 

In this case, Zf has a CDF given by[10] 
( ) ( ) ( )

MAX CA OS
z z zZ Z ZF F F=         (29) 

In order to analyse this version, the Laplace 
transformation of the above formula must be computed. To 
carry out this task, we start with Eq.(21) and use it in Eq.(28) 
which becomes  
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By taking the Laplace transformat ion of Eq.(30), one 
obtains 
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The substitution of Eq,(31) into the definit ion of Pd yields 
to the evaluation of the performance of the CFAR under 
investigation. On the other hand, the ADT of the underlined 
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scheme is 
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3.3.3. Minimum (MN)-CFAR 

In order to prevent the suppression of closely spaced 
targets, the minimum version has been introduced. While 
testing for target presence at a particular range, the processor 
must not be influenced by the outlying target echoes. In 
MN-CFAR scheme, the noise power estimate is achieved by 
taking the smaller of ZCA and ZOS as depicted in[5]. That is, 

( )min ,MIN CA OSZ Z Z∆          (33) 

In this case, the final noise level estimate has a CDF given 
by[12] 

( ) ( ) ( ) ( )
M I N CA OS MAX

z z z zZ Z Z ZF F F F
  

= + −
    

(34) 

It is obvious from the above formula that there is a  direct 
relation between the detection performance of MX-CFAR 

and that of MN-CFAR. This means that once the 
performance of MX operat ion is calculated, the performance 
of MN version is easily obtained. In ω-domain, Eq.(34) takes 
the form 

( ) ( ) ( ) ( )MIN CA OS MAXω ω ω ω= + −Ψ Ψ Ψ Ψ    (35) 

Consequently, the ADT has a similar formula as that given 
by Eq.(35). Thus, it is formulated as 

MIN CA OS MAXADT ADT ADT ADT= + −  
(36) 

3.4. Processor Performance Assessment 

In this section, we give some representative numerical 
results, which will give an indication o f the t ightness of our 
previous analytical expressions. Since the performance of 
OS-CFAR is strongly dependent on the ranking parameter K, 
we choose the value that corresponds to the optimum 
detection performance in uniform noise background which is 
21 for N=24[9].  

 
Figure 2.  Thresholding constant as a function of the ordering parameter of CFAR algorithms when N=24 

 
Figure 3.  Average detection threshold (ADT)of CFAR processors as a function of ranking parameter K when N=24 
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Figure 4.  Receiver operating characteristic (ROC) of CFAR processors in an ideal environment when N=24 

 
Figure 5.  Single pulse detection performance of CFAR schemes in homogeneous situation for N=24 

 
Figure 6.  Single pulse detection performance of CFAR schemes with fixed value for the ranking order parameter “K” and operating in homogeneous 
environment when N-24 
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Figure 7.  Single pulse detection performance of CFAR schemes with fixed “K” and operating in an ideal environment when N=24 and K=10 

The actual probability of detection achieved by the 
modified versions of CFAR detectors in an ideal 
environment has been evaluated by means of computer 
simulation, where their derived analytical formulas are 
transferred into a sequence of programs using C++ scientific 
language. The detection performances of the underlined 
detectors are also compared with that of CA- and OS-CFAR 
detectors to see to what extent the performance of the new 
versions improves.  

Since the constant scale factor T represents the 
fundamental quantity in the evaluation of the processor 
performance, we start our presentation by running the 
program that concerns with the determination of T given that 
the false alarm probability is held fixed and the operating 
environment is free o f interferers. The results of this program 
are depicted in  Fig.(2) which illustrates the thresholding 
constant T as a function of the ranking order parameter K for 
CA, OS, and their modified  versions. Two values for Pfa (10-8 
& 10-4) are simulated. Since CA estimates its noise power by 
averaging the candidates of the reference set, the constant 
scale factor that this estimat ion must be multip lied, to 
achieve a prescribed rate of false alarm, becomes 
independent of K. This is actually the case of our 
presentation. It is of importance to note that as Pfa decreases, 
the detection threshold increases, given that the size o f the 
reference set is held unchanged. The displayed results 
demonstrate this property for all the CFAR processors 
considered here. The behaviour of T for OS technique is as 
previously shown in the literature[9]. Since the MX version 
selects the maximum of the CA and OS noise level estimates, 
its noise power estimate equals that of OS for K=N, and 
consequently its scaling factor T coincides with that of OS at 
this value of K. As K goes in the reverse direct ion (K<N), 
there is a  difference between the behaviour o f T in the 
current case and that of OS state and this difference increases 

as K becomes smaller. At the limit, the thresholding constant 
T matches that of CA scheme. On the other hand, since the 
MN operation chooses the minimum of the two noise level 
estimates, its constant scale factor T approaches to that of 
CA technique for K=N. As K decreases, the T behaviour 
leaves that of CA and tends to be of OS scheme. Finally, the 
ML procedure sets its noise level estimate by summing that 
of CA and that of OS. Th is behaviour leads to increase the 
noise power estimate and consequently the scaling factor T 
becomes smaller than the two original noise level estimates. 
As K moves towards the smaller values, T approaches to that 
of CA processor. In the limit, it coincides with the curve of 
CA scheme since K becomes negligib le in  comparison with 
the ensemble average of the reference window. To  illustrate 
this further, the ADT versus K at fixed Pfa is plotted in Fig.(3) 
for the processing schemes under investigation. It is obvious 
that ADT=T for the CA technique and hence it rests 
unchanged as K varies. On the other hand, the behaviour of 
ADT for the OS technique is as well known in the 
literature[12]. Since there is a d irect proportionality between 
the ADT and T, the average detection threshold behaves as T 
with minor changes and this is common for all the CFAR 
presented in this paper. 

Let us turn our attention to the receiver operating 
characteristics (ROC's) of the p rocessors under consideration. 
This behaviour describes the variation of the detection 
probability as a function of the false alarm probability given 
that the SNR is held constant. Fig,(4) d isplays the results of 
these characteristics for the considered schemes for two 
values for the primary target  SNR (5 & 10dB). The d isplayed 
results show that the processor detection performance 
improves, in a logarithmic linear fashion, as the rate of false 
alarm decreases and this is common for all the CFAR 
processors. It is well-known that the CA scheme is the 
optimum processor that has the highest detection 
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performance in homogeneous situation. However, the 
performance of the modified versions outweighs that of the 
CA detector for some values for the ranking order parameter 
K as noted from the results of the figure under examination. 
The degree of superiority varies from one modified version 
to another. The ML operation has the top and the MN 
procedure has the lowest and this classificat ion is verified for 
the two chosen values of SNR. To confirm this property, the 
detection probability as a function of SNR is drawn in  Fig.(5) 
for CA, OS, and their modified versions for two fixed values 
of false alarm rate. It can be seen that the ML-CFAR 
achieves the highest detection performance and the 
MN-CFAR has the lowest degree of improvement. A ll the 
modified techniques give detection performance better than 
that of CA- and OS-CFAR schemes. Finally, we conclude 
that, the performance of the ML-CFAR is the best one 
among the five detectors, with MX-CFAR comes next to it, 
then MN-CFAR, after that CA-CFAR, and OS-CFAR g ives 
the worst homogeneous detection performance in the 
selected group. This classification is obtained taking into 
account that each detector selects its ranking order parameter 
K that achieves its highest detection performance.  

Now, let us show the influence of the ranking order 
parameter K on the homogeneous performance of the 
detectors under consideration. Figs.(6-7) demonstrate the 
effect of fixing K for all the schemes. In the first plot, K is 
taken as that corresponding to the maximum performance of 
OS (K=21), while in  the other figure, K is randomly chosen 
(K=10). The variation of the curves of Fig.(6) indicates that 
the ML version is still the king of the g roup and the processor 
OS has the worst detection performance. The behaviour of 
MN developing detector acts as the conventional CA scheme 
while the MX procedure gives lower perfo rmance than CA 
but still higher than that of OS processor. On the other hand, 
the results of Fig.(7) behave as those of the previous figure 
except that the gap between the family of CA and the family 
of OS becomes larger. The candidates of CA family include 
ML and MX modified versions, while the family of OS 
incorporates MN only. Additionally, it is obvious that as the 
false alarm decreases, the width of the gap between these 
families increases. Moreover, the MX developed processor 
gives higher detection performance than CA for this value of 
the ranking order parameter K (K=10).  

4. Performance of CFAR Schemes in 
Non-homogeneous Environments 

The CFAR algorithms were originally developed using a 
statistical model of uniform background noise. However, 
this is not representative of real situations. It is impossible to 
describe all radar working conditions by a single model, yet 
consideration of a larger number of different situations might 
be confusing. For these reasons, three different signal 
situations are selected: uniform clutter, clutter edges and 
multip le targets. The performance of the CFAR algorithms 

for uniform clutter model was completely evaluated in the 
previous section. Clutter edges, on the other hand, are used to 
describe transition areas between regions with very different 
noise characteristics[8]. This situation occurs when the total 
noise power received within a single reference window 
changes abruptly. The presence of such a clutter edge may 
result in severe performance degradation in an adaptive 
threshold scheme leading to  excessive false alarms  or serious 
target masking depending upon whether the cell under test is 
a sample from clutter background or from relatively clear 
background with target return, respectively. On the other 
hand, multip le target situations occur occasionally in radar 
signal processing when two or more targets are at a  very 
similar range. The consequent masking of one target by the 
others is called suppression. These interferers can arise from 
either real object returns or pulsed noise jamming. From a 
statistical point of v iew, this implies that the reference 
samples, although still independent of one another, are no 
longer identically distributed.  

4.1. Cell-Averaging (CA) Detector  

In order to analyse the CFAR detection performance when 
the candidates of the reference window no longer contain 
radar returns from a homogeneous background, as in the case 
of clutter edges, the assumption of statistical independence 
of the reference cells is retained. Let us assume that the 
reference set contains R cells from clutter background with 
noise power ψ(1+C), with C denotes the clutter-to-thermal 
noise ratio (CNR), and N-R cells from clear background with 
noise power "ψ". Thus, the estimated total noise power level 
is obtained from 

1 1

1 R N

CA C c
RN Y YZ Z Zλ

λ += =

 
= + ∆ + 

 
∑ ∑



    
(37) 

The random variable ZC representing the clutter return and 
that denoting the clear background Zc have CF's given by a 
similar form as that indicated in Eq.(16) after minor 
changing of its parameters. Since the candidates of each type 
are assumed to be statistically independent, we have  

( ) ( )

( )

( )
1

&

1
C c

R N RN N
C

Z ZN N
C

C C
ψ ψω

ω ω
ψ ψ

ω

−   
   +   
   + +  +   

= =

   

(38) 

Since ZC and Zc are statistically independent, the CF of 
ZCA is simply the product of the individual CF's of ZC and Zc. 
Therefore, assuming that the cell under investigation is from 
clear background, the false alarm probability has a formula 
given by 

( ) ( ) ( ) ( )1&
C cfa CA CA

T
T Z ZC CP ω ω ω ω

ωψ ω
ψ

= =
=Ψ Ψ

(39) 

As the window sweeps over the range cells, more cells 
from clutter background enter into the reference window. 
When the cell under test comes from clutter background, the 
probability of false alarm takes the form;  
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CAf a
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C C
P ω ωψ ψ

 
=

=+
+

Ψ
         (40) 

Another situation of non-homogeneity is the case of 
multip le targets. In  our analysis and study of this situation for 
which the reference cells don’t follow a single common PDF, 
we are concerned with increases in the value of ψ for some 
isolated reference cells due to the presence of secondary 
targets. The amplitudes of all the targets present amongst the 
candidates of the reference window are assumed to be of the 
same strength and to fluctuate in accordance with SWII 
fluctuation model as the primary target. The 
interference-to-noise ratio (INR) for each of the spurious 
targets is taken as a common parameter and is denoted by I. 
Thus, for reference cells containing extraneous target returns, 
the total background noise power is ψ(1+I), while the 
remain ing reference cells have identical noise power of ψ 
value. The determination of the detection probability is 
similar to the one presented above for the clutter power 
transitions with some changes in the definition of the 
parameters. R will now represent the number of outlying 
target returns amongst the contents of the reference set. 

4.2. Ordered-Statistic (OS) Detector  

In order to analyse the processor performance in  
non-homogeneous background, we follow the same steps as 
those presented for CA technique. Consider the same 
previously stated situation where there are R reference 
samples contaminated by clutter returns, each with power 
level ψ(1+C), and the remaining N-R reference cells contain 
thermal noise only with power level ψ. Under these 
assumptions, the Kth ordered sample, which represents the 
noise power level estimate in the OS detector, has a CDF 
given by[13] 

{ } { }

min( , )

max(0, )
( ) 1 ( )

( ) 1 ( ) ( )

OS

i N RN N R j
c

i K j i R

j i jR i j
c C C

N R R
z zZ j i j

z z z

F F

F F F

  − − −

−

−− +

= =

−    = −    −  

                     − 

∑ ∑ (41) 

Fc(.) denotes the CDF of the reference cell that contains a 
clear background and FC(.) denotes the same thing for the 
reference cell that belongs to clutter. Mathematically, these 
functions can be formulated as: 

( ) ( ) ( )
1 exp & 1 exp

1c C
z zz z

CF Fψ ψ
  

= − − = − −    +   

 (42) 

By substituting Eq.(42) into Eq.(41) and taking the 
Laplace transformat ion of its resulting formula, one obtains 

( )

( )

min( , )

ma x(0, ) 0

1

0
( 1) ( 1)

1

i N R jN

OS
i K j i R

i j

N R R j
j i j

i j N R j R i j
C

λ

λ

ω
λ

λω
ψ ψ

 

 

−

−

−−

= = =

=

−    
=     −    

 −  − − + − + +
− − + +    +   

∑ ∑ ∑Ψ

∑ 







(43) 

Once the ω-domain representation of the CDF of the noise 
power level estimate is calculated, the processor 
performance evaluation becomes an easy task, as we have 
previously shown, where the false alarm and detection 

probabilit ies are completely dependent on this 
transformation.  

In the presence of interferers, the OS-CFAR processor 
performance is highly  dependent upon the value of K. For 
example, if a single extraneous target appears in the 
reference window of appreciable magnitude, it occupies the 
highest ranked cell with high probability. If K is chosen to be 
N, the estimate will almost always set the threshold based on 
the value of interfering target. This increases the overall 
threshold and may lead to a target miss. If, on the other hand, 
K is chosen to be less than the maximum value, the 
OS-CFAR scheme will be influenced only slightly for up to 
N-K spurious targets. 

4.3. Modified Versions 

4.3.1. Mean-Level (ML)-CFAR  

In this type of modified versions, the noise level estimate 
employing CA technique and that using OS procedure are 
combined through the mean-level operation to obtain the 
final noise power level estimate. The purpose of this 
processing is to improve the processor performance in the 
absence as well as in the presence of outlying targets. In the 
case where the operating environment has a clutter edge, the 
evaluation of the processor false alarm rate follows the same 
procedure as in CA and OS cases. Using Eqs.( 39,14,43) in 
Eq.(26), the Lap lace transformation of the CDF of the noise 
level estimate of this processor can be computed and 
consequently, the evaluation of false alarm rate in clutter 
edges and the detection performance in multip le-target 
situations are completely determined. 

4.3.2. Maximum (MX)-CFAR  

As previously stated, for MX-CFAR, the content of the 
cell under test must be greater than both the CA-CFAR 
threshold and the OS-CFAR threshold to declare the 
presence of a target, which is equivalent to choosing the 
maximum value of the CA-CFAR and the OS-CFAR 
thresholds and compare it with the target cell (cell under 
investigation). For the processor performance to be 
evaluated, let us go to calculate the Laplace transformation 
of the CDF of the final noise power level estimate of the 
underlined detector. By substituting Eq.(41) in Eq .(29) and 
transferring it to the ω-domain representation, we have 
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(44) 

Again, once the Laplace transformation of the CDF of the 
noise level estimate is achieved, the false alarm rate 
performance in the presence of clutter edges and the 
detection probability in the presence of spurious targets are 
completely known since ΨMX(ω) represents the backbone of 
their evaluation. 
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4.3.3. Minimum (MN)-CFAR 

As the case of MN-CFAR, the content of the target cell 
should be greater than the CA-CFAR threshold or the 
OS-CFAR threshold to declare a target present, which is 
equivalent to choosing the min imum value of the CA-CFAR 
and the OS-CFAR thresholds and compare it with the 
primary target return to indicate its presence. As Eq.(35) 
demonstrates, there is a d irect relation between the 

performance evaluation of this processor and that of the 
MX-CFAR scheme. Th is means that once the false alarm 
rate probability in clutter edges situation and the detection 
probability in mult iple target environments are calculated for 
the MX-CFAR version, their evaluations in the case of 
MN-CFAR detector are automatically known given that the 
performances of the original processors (CA and OS) are 
completely determined. This is actually the case of our 
treatment.  

 
Figure 8.  False alarm rate performance of CFAR schemes in the presence of clutter edges with ONR=10dB for N=24, and design Pfa=1.0E-6 

 
Figure 9.  False alarm rate performance of CFAR schemes operating in clutter edge environment with CNR=15dB for N=24,K=21,and design 
Pfa=1.0E-6 
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4.4. Processor Performance Assessment  

Here, we provide a variety of numerical results for the 
performance of CA- and OS-CFAR processors as well as 
their modified versions in the case where the operating 
environment contains either clutter edge or a number of 
outlying targets. Since the optimum value of K, for a 
reference window of size 24, is 21, we have assumed that 
there are three interfering target returns amongst the contents 
of the estimat ion cells. This value of ext raneous target 
returns is the maximum allowable value before the OS 
performance degradation occurs. Our results are obtained for 
a possible pract ical situation where the primary and the 
secondary interfering targets fluctuate in accordance SWII 
model and of equal target return strength (INR=SNR). The 
design probability of false alarm is maintained at its previous 
value (Pfa=10-6). The false alarm performance of the 
underlined CFAR processors when the reference window 
contains a clutter edge is numerically evaluated. Fig.(8) 
illustrates the actual value of false alarm rate in the presence 

of clutter edge when there are R cells immersed in clutter. 
The result in this figure is obtained for a clutter to noise ratio 
(CNR) of 10 dB and for the design value of the ranking order 
parameter K for each scheme. The displayed results show 
that the OS(21) has the lowest false alarm rate at clutter edge 
and is followed by CA, MN(18), MX(15), and ML(17) 
comes the last one in the concerned group. In other words, 
OS(21) has the best performance among all the underlined 
CFAR processors in the presence of non-uniform clutter. To 
show the effect of changing K on the processor performance, 
Fig.(9) illustrates the same thing as the previous figure 
except that K is held fixed (K=21) for all the schemes and the 
CNR is changed to 15dB. In this situation, the MX version 
gives the best false alarm rate and the OS comes next. The 
CA and MN have the worst rate of false alarm under these 
circumstances. Therefore, the selection of the ranking order 
parameter K plays an important rule in the reaction of the 
processor to the environmental conditions.  

 
Figure 10.  Single pulse multiple target detection performance of CFAR schemes for CFAR schemes for N=24,and R=3             
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Figure 11.  Single pulse detection performance of CFAR processors for N=24, K=21, R=3, and Pfa=1.1E-6 

 
Figure 12.  Multiple target detection performance of CFAR processors with fixed value for the ranking order parameter “K” when N=24, M=1, K=18, 
and R=5 

 
Figure 13.  Actual false alarm rate performance of CFAR schemes in target multiplicity environment for N=24, and R=3 
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Figure 14.  Required SNR to achieve an operating point (1.0E-6, Pd) of CFAR schemes operating in multiple target environment with R=3,and N=24 

The presence of multip le targets is another case in 
studying the non-homogeneous performance of the modified 
versions. Since the maximum allowable value for the 
interfering target returns that may exist amongst the 
candidates of the reference window is 3 (R ≤ N-K), the 
results in Fig.(10) depict the detection performance of the 
CFAR schemes under consideration for this situation of 
operating conditions. The displayed curves are obtained for a 
possible practical application of equal strengths for the 
outlying as well as the primary target. Two values for the 
design false alarm rate are taken into account to show the 
influence of this rate on the behaviour of the CFAR scheme 
in detecting the radar target. From the variations of the 
underlined curves, it  is obvious that the CA algorithm has the 
worst multip le target detection performance and all the 
developed versions give much better performance than it. 
However, the ML and MX versions have lower values for the 
detection probability than the OS procedure. Additionally, 
the MN detector is the only one that has a multip le-target 
detection performance higher than that of the OS scheme. 
Moreover, the shown results reckoned the well-known 
identity of the CFAR signal processing that the processor 
detection performance improves as its design false alarm rate 
increases. In order to compare the reaction of the CFAR 
processor to the ideal environment against its behaviour in 
non-homogeneous situation, Fig.(11) illustrates the detection 
performance of the under investigated processors in the 
absence as well as in the presence of interferers for a fixed 
value of K. As a reference for this comparison, the 
performance of the optimum detector is also included in that 
figure. The OS(21) has the worst homogeneous performance 
and the ML version has the highest one, while MN gives the 
same performance as the CA technique. The MX version has 
a performance that is higher than the OS scheme but less than 
the CA processor. On the other hand, the OS g ives the 
highest detection performance when operating in an 
environment contaminated with three interfering target 

returns. As expected, the CA has the worst performance. For 
the modified detectors, the MN version has a multip le target 
performance which  is close to that of OS, the MX g ives the 
worst, relative to its candidates, and the ML lies in between. 
These concluded remarks are associated with  the steady-state 
behaviour of the underlined processors. Fig.(12) deals with 
the detection performance of CA and OS techniques along 
with their extended versions in the presence of spurious 
targets when there are five contaminated samples. Two 
design values for the false alarm rate are assumed and the 
ranking order parameter is held constant at 18 (K=18). The 
examination of the curves of this figure leads to the same 
concluded observations as the previous results with minor 
degradation.  

It is of interesting to see to what extent the presence of 
interferers affect the rate of false alarm of the adaptive 
scheme of detection. Fig.(13) displays the actual false alarm 
probability of the underlined processor as a function of the 
strength of interference when the design rate of false alarm 
takes the values of 10-8 and 10-4. The results of this figure 
show that the false alarm rate performance of the CA, MX, 
and ML processors degrades as the strength of the interfering 
target return (INR) increases. On the other hand, the OS and 
MN schemes are the only ones that are capable of 
maintaining  the rate o f false alarm constant, especially, when 
the INR becomes stronger. This result is expected since the 
largest interfering  target returns occupy the top ranked cells 
and therefore they are not incorporated in the estimat ion of 
the background noise power level. In  other words, the noise 
estimate is free of ext raneous target returns and therefore it 
represents the homogeneous background environment. 
Finally, the value of the SNR, that is required to satisfy a 
pre-assigned value for the detection probability when the rate 
of false alarm is held constant, is plotted in Fig.(14). The 
operating environment is assumed to be free of any interferer 
as well as in the case where the environment is contaminated 
with three interferers of the same strength as the target under 
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test. In homogeneous situation, the ML(17) requires the 
minimum SNR to achieve an indicated value for the 
detection probability. MX(15) comes in the second class and 
followed by MN(18). CA processor comes next and the 
conventional OS technique requires the highest SNR to 
achieve the same operating point. On the other hand, the 
MN(18) achieves the specified value of detection probability 
with the min imum SNR when the operating environment is 
of mult iple-targets. In this situation, the OS scheme behaves 
like MN(18) but with higher values of SNR. The ML(17) 
achieves only some values for Pd and unable to achieve the 
others since its multip le target detection performance is 
asymptotically constant at some value which  is less than the 
required ones. The same remark can be said about the 
behaviour of MX(15) and CA procedures.  

5. Conclusions 
In this paper, the detection probability of a radar system 

that utilizes new versions of adaptive detectors in deciding 
the presence or absence of fluctuating target in either ideal or 
non-ideal operating environments was analysed. Three 
versions of such techniques are processed and closed form 
expressions are derived for their detection performance. 
These processors include ML, MX, and MN operations on 
two separately noise power estimates from a reference set of 
N cells: one of them employs CA technique and the other 
uses OS basis. The analytical results have been used to 
develop a complete set of performance curves including 
thresholding constant, ROC’s, false alarm rate in clutter 
edges, detection probability in  homogeneous and multip le 
target situations, required  SNR to  achieve a prescribed 
values of Pfa and Pd, and the variation of false alarm rate with 
the strength of interfering targets that may exist amongst the 
contents of the estimation  set. As expected, the detection 
performance of the modified versions outweighs that of CA 
scheme, either in homogeneous or in multiple target 
environments, for some selected values for the ranking order 
parameter. From the interference point of view, the 
considered detectors are partit ioned into two families: the 
CA family and the OS one. The family of CA incorporates 
ML and MX while that of OS includes MN only. The 
performance of OS family outweighs that of CA family in 
non-homogeneous situations. In addition, this family is 
capable of maintain ing a constant rate of false alarm, 
irrespective to the interference level, in the case where the 
spurious target returns occupy the top ranked cells and they 
are within their allowable values. As a final conclusion, the 
detection performance of the modified versions is related to 
the ranking order parameter, the target model, the average 
power of the target, and the environmental operating 
conditions.  
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