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Abstract  Several scalarizing techniques are used for solving multi-objective optimization (MOO) problems. Most of 
these scalarizing techniques were found inefficient in obtaining an appropriate solution of MOO problems. The study 
proposed improved scalarizing techniques for solving multi-objective optimization (MOO) problems. The improved 
scalarizing techniques using mean, harmonic mean and geometric mean have been applied for solving two MOO problems 
and generated satisfactory solutions. 
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1. Introduction 
The scalarizing technique was first introduced in year 

1983 [1] for solving MOO problems. The technique has been 
successfully used for resource use planning in agriculture for 
increasing farm income, increasing farm employment with 
lesser use of fertilizer, irrigation etc. [2] [3]..[10]. Several 
new averaging techniques [11] [12]… [27] using mean, 
harmonic mean and geometric mean have been proposed 
during last three decades. Most of these scalarizing 
techniques have been found inefficient in generating the 
acceptable MOO solutions [28] [29]. The improved 
scalarizing techniques are proposed for generating 
compromising and acceptable solutions of MOO problems. 

2. Multi-Objective Optimization 
Problem 

For optimizing ‘n’ objective functions with maximization 
of ‘r’ objective functions and minimization of remaining ‘n-r’ 
objective functions. The MOO problem is formulated as 
described below: 

Optimize Z = [Max.Z1,Z2…….Zr, Min. Zr+1,……..Zn] 
Where, 
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Z1= ∑ Cj𝑛𝑛
𝑗𝑗 Xj 

. 

. 

. 
Zn= ∑ Cj𝑛𝑛

𝑗𝑗 Xj 

Subject To: 
AX = b and X ≥ 0 

2.1. Existing Scalarizing Techniques 

There are many scalarizing techniques for solving MOO 
problems. The scalarizing techniques using mean, geometric 
mean and harmonic mean have been explained with an 
example. The multi-objective function is constructed by 
scalarizing each objective function by the mean, geometric 
and harmonic mean of optimal values of objective functions 
as described below:   

Maximize Z =
∑ 𝑍𝑍j𝑟𝑟
𝑗𝑗=1

│θ1│
−

∑ 𝑍𝑍j𝑠𝑠
𝑗𝑗=𝑟𝑟+1

│θ2│
 

Subject to: 
AX = b and X≥ 0 
θj ≠ 0         for J=1, 2..........s. 
Where,  
│θ1│= Mean, Geometric Mean and Harmonic Mean of 

optimal values of maximization objective functions.  
│θ2│= Mean, Geometric Mean and Harmonic Mean of 

optimal values of Minimization Objective functions. 
Note: The estimation of θ1 and θ2 is not logical when 

objective functions are of different dimensions. 

2.2. Improved Scalarizing Techniques 

The multi-objective function is constructed as explained 
below: 
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Max. Z = ∑ 𝑍𝑍𝑍𝑍
│𝐶𝐶1│𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 /𝐻𝐻𝐻𝐻/𝐺𝐺𝐺𝐺

𝑟𝑟
𝑗𝑗=1 − ∑ 𝑍𝑍𝑍𝑍

│𝐶𝐶2│𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 /𝐻𝐻𝐻𝐻/𝐺𝐺𝐺𝐺
𝑛𝑛
𝑟𝑟=1  

Where, 
│C1│ = Mean, Harmonic mean (Hm) or Geometric mean 

(Gm) of Cj values of Maximization objective functions 
│C2│ = Mean, Harmonic mean (Hm) or Geometric mean 

(Gm) of Cj values of Minimization objective functions 
Note: The multi-objective function is free from the 

problem of multi dimensions aggregation. 

3. Solving MOO Problem 
Example  

The following example for achieving four objective 
functions has been solved using both existing and improved 
scalarizing techniques. 

Max. Z1 = 12500X1 + 25100X2 + 16700X3 + 23300X4 + 
20200X5 

Max. Z2 = 21X1 + 15X2 +13X3 + 17X4 + 11X5 
Min. Z3 = 370X1 + 280X2 + 350X3 +270X4 + 240X5 
Min. Z4 = 1930X1 + 1790X2 + 1520X3 + 1690X4 + 1720X5 
Subject to: 
X1 + X2 + X3 + X4 + X5 = 4.5 
                    2X1 ≥ 1.0 
                    3X4 ≥ 1.5  
        X1, X2, X3, X4, X5 ≥ 0 
All the objective functions have been optimized 

individually and the solution is presented in Table 1. 
It is very clear that all the four individual optimizations are 

all different and conflicting to each other. The value of first 
objective function is 1, 05,750 which is highest among other 
values of same objective function. Similarly the value of 
second objective function is also highest and values of third 

and fourth objective functions are lowest as desired. This 
conflicting scenario necessitates the need for multi-objective 
optimization. 

The mean, geometric mean and harmonic mean have been 
used for scalarizing the multi-objective function. The mean, 
geometric mean and harmonic mean have been estimated for 
both existing and improved techniques of scalarizing as 
given in Table 2. 

The mean, geometric mean and harmonic mean of 
maximum values of objective functions Z1 and Z2 are 
52921.25, 3127.59 and 184.83 respectively as given in Table 
2. Similarly the mean, geometric mean and harmonic mean 
of minimum values of remaining objective functions 3 and 4  
are 4145, 2875.89 and 1995.3 respectively for existing 
scalarizing techniques. On the other hand, for improved 
scalarizing techniques, the mean, geometric mean and 
harmonic mean have been estimated considering all the four 
(one optimal and three sub optimal) values of each objective 
function as mentioned in Table 2. The multi-objective 
function has been formulated by scalarizing the objective 
functions using mean, geometric mean and harmonic mean 
as explained in equations 2.1 and 2.2. The existing and 
improved scalarized multi-objective functions have been 
optimized and the results are presented in Table 3. 

The Table 3 indicates that all the three scalarized 
multi-objective functions generated unique solution. These 
solutions are same as individual optimum of objective 
function Z1. The existing scalarizing techniques are unable to 
generate the compromising solution. However, the improved 
scalarizing techniques have optimized all the objective 
functions simultaneously. The value of each objective 
function is closer to its individual optimum as given in  
Table 1. The optimal solutions generated by improved 
scalarizing techniques are compromising and acceptable.  

 

Table 1.  Individual Optimization 

Objective 
function 

Individual Optimization 

Max.Z1 Max.Z2 Min.Z3 Min.Z4 

Xi 0.5, 3.5, 0, 0.5, 0 4, 0, 0, 0.5, 0 0.5, 0, 0, 0.5, 3.5 0.5, 0, 3.5, 0.5, 0 

Z1 105750 61650 88600 76350 

Z2 71.5 92.5 57.5 64.5 

Z3 1300 1615 1160 1545 

Z4 8075 8565 7830 7130 

Table 2.  Mean, Geometric Mean and Harmonic Mean 

Objective 
function 

Existing Scalarizing Techniques Improved Scalarizing Techniques 

Mean G. Mean H. Mean Mean G. Mean H. Mean 

Max. Z1 
52921.25 3127.59 184.83 

19560 18984.60 18372.61 

Max. Z2 15.4 15.03 14.67 

Min. Z3 
4145 2875.89 1995.36 

302 297.99 294.09 

Min. Z4 1730 1724.78 1719.51 
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Table 3.  Multi-Objective Optimization   

Item 
Existing Average Techniques Improved Average Techniques 

Mean Geometric Mean Harmonic Mean Mean Geometric Mean Harmonic Mean 

Xi 0.5, 3.5, 0, 0.5, 0 0.5, 3.5, 0, 0.5, 0 0.5, 3.5, 0, 0.5, 0 0.5, 0, 0, 4, 0 0.5, 0, 0, 4, 0 0.5, 0, 0, 4, 0 

Z1 105750 105750 105750 99450 99450 99450 

Z2 71.5 71.5 71.5 78.5 78.5 78.5 

Z3 1300 1300 1300 1265 1265 1265 

Z4 8075 8075 8075 7725 7725 7725 

 
 
4. Conclusions 

There are several scalarizing techniques used for solving 
MOO problems. The mean, geometric mean and harmonic 
mean have been frequently used for scalarizing the objective 
functions. The solutions of MOO problems generated using 
these techniques were not superior. However the improved 
scalarizing techniques using mean, harmonic mean and 
geometric mean are found superior and efficient in solving 
MOO problems for obtaining compromising solutions. 
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