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Abstract  Queuing systems consist of one or more servers that provide some sort of services to arriving customers. Almost 
everyone has some experience of tedious time being in a queue during several daily life activities. It is reasonable to accept 
that service should be provided to the one who arrives first in the queue. But this rule always may not work. Sometimes the 
last comer or the customer in the high priority gets service earlier than the one who is waiting in the queue for a long time. All 
these characteristics are the interesting areas of research in the queueing theory. In this paper, we present some of the previous 
works of various researchers with brief explanations. We then carry out some of the mathematical expressions which 
represent the different queueing behaviors. In almost all the literatures, these queueing behaviors are examined with the help 
of mathematical simulations. Based on the previous contributions of researchers, our specific point of attraction is to study the 
finite capacity queueing models in which limited number of customers are served by a single or multiple number of servers 
and the batch queueing models where arrival or service or both occur in a bulk. Furthermore, we present some performance 
measure equations of some queueing models together with necessary components used in the queueing theory. Finally, we 
report some applications of queueing systems in supply chain management pointing out some areas of research as further 
works.  
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1. Introduction 
Queueing theory is one of the branches of applied 

mathematics which studies and models the waiting lines. 
Danish mathematician A. K. Erlang (1878–1929), who 
published his first paper entitled “The Theory of Probability 
and Conversations” in 1909 [1], is considered as the father 
of queueing theory. Further going back to the history, it can 
be observed that a viable queueing theory was developed by 
French Mathematician S. D. Poisson (1781–1840), who 
created a probability distribution function for the total 
outcomes of independent trials. He used statistical approach 
for these distributions which can be applied to the situations 
where excessive demands are to be fulfilled on a limited 
resource. During the late 1800s, all telephone calls used to 
be switched manually to the recipient by an operator. Each 
customer used to call the operator first and the operator 
used to fix the call for the customer. In this process, 
telephone companies were facing problem to appoint more 
operators. Callers who were unable to reach to an operator 
may simply  hung up for  several minutes with  frustration  
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and might think that it was a busy time for the operators. On 
the other hand, some would be waiting their turn to talk to 
the operator. And some others would call repeatedly 
thinking that the operator would be sufficiently annoyed by 
repeated calls to serve them next. These type of behaviour 
of the customers caused problems for traffic engineers 
because they affected the level of demand for service from 
an operator. A call which was not reached to the operator 
could be lost and could be effectively out of the system. To 
overcome this situation and to reduce the number of 
switchboards in an area, the most important application of 
queuing theory was developed. Those callers who 
repeatedly try for the operator increased demands on the 
system by appearing several requests. Poisson's formula 
was meant only for the repeated callers. Kendell [2] 
presented a paper that opened a general review of some 
points in congestion theory to enhance the study for a single 
server queue where input is Poisson and service time is 
generally distributed. In [3], he further extended the study 
of the stochastic processes for the theory of queues and their 
analysis by the method of the imbedded Markov chain. The 
study was carried out first reviewing on single-server 
queues and using the similar technique to the analysis of 
many server queuing system.  

Stochastic process is a key factor to specify in queueing 
systems because it describes the arrival pattern as well as 
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the structure and the discipline of the service facility. 
Queueing system deals with queue length and waiting times. 
The concept of queue is applied not only in the waiting 
system by the human beings but also in modern technology 
of computer and other service providers by the devices. In 
general, it is not necessary that service will be immediately 
available to address the demand of all the customers, so that 
they are forced to line up. In the queueing system, the one 
who demands the service is referred as customer, which 
may be a person, a task or a commodity. The other element 
of the queueing system is the one who provides the service 
with some defined discipline, called the server. It may be 
people, machine or objects. Some of the service disciplines 
are first come first served (FCFS), last come first served 
(LCFS), service in random order (SIRO), priority, processor 
sharing (PS), round-robin (RR). We study performance 
measures of a queueing system where only the limited 
number of customers are served and arrival or service or 
both occur in a batch. If any of the customers come after the 
prescribed quota has already been served, the server does 
not provide the service to the new comer. 

The main goal of this study is to present and analyse 
measures of performance effectiveness for some specific 
queuing models. The models we investigate have important 
applications in the study of machine repair problem, 
tele-traffic, computer and flexible manufacturing systems, 
production processes, transportation, monitoring, 
controlling and managing complex engineering systems that 
have finite buffer system. Transient study makes the 
problem more realistic. The situations considered are also 
applicable to various day-to-day activities. It has been 
attracting the attention of mathematicians and operations 
research scientists in the field of social and liberal 
globalization of economy. The study provides a prospect to 
the development of research and design in related fields.  

Rest of the paper is organized as follows: Section 2 
presents the state of arts of the queueing system and 
associated theories developed by various researchers. 
Section 3 describes the different components of queueing 
system along with the standard notations used in queueing 
models. Some of the mathematical formulae for different 
queueing models and the derivation of simple Markovian 
queue are explained in Section 4. Section 5 includes Little’s 
law with its use for the calculation of performance measures 
in queueing systems. Some applications of queueing models 
in supply chain management are observed in Section 6. 
Finally, Section 7 concludes the paper.  

2. Literature Review 
In many practical situations, customers arrive following a 

Poisson stream which is an exponential inter-arrival times. 
Customers perform different nature coming alone or in a 
batch. Some are silent and wait in the queue for a long time 
whereas some are impatient and do not bother to leave after a 
while. We have noticed in our daily life also that customers 

wait even for a long time in the call centres until an operator 
is available. In spite of the different nature of customers, 
there are some common features on which a queue depends, 
namely service times, service discipline and the number of 
servers. These are the key factors to determine a queue. In 
many cases, we assume that there is an independent service 
time which is identically distributed with the provision of 
independent inter-arrival times. Among different types of 
queueing system, our focus is mainly on the finite capacity 
and batch queueing system. In finite capacity queueing 
system, a fixed number of customers are served and in batch 
queueing system, arrival and service can take place in a bulk. 
On top of this, we report some of the literatures in the 
following. 

Kovalenko [4] studied rare events during busy periods 
along with some useful rare event theorems and singular 
state aggregation theorems presenting some analysis and 
numerical methods. Cohen and Boxma [5] gathered the 
information of queuing theory from its origin up to the 
maturity as a branch of mathematics in the field of 
Operations Research to calculate the performance measures. 
Hui [6] investigated a survey in china for five main areas 
namely transient behaviour, classical problems, 
approximation theory, model structure and applications. 
Fomundam and Herrmann [7] reported a survey of queuing 
theory application in healthcare focusing on the area of 
waiting time and utilization analysis, system design, and 
appointment systems. Lade et al. [8] used simulation of 
queueing system in hospitals to predict the parameters like 
total waiting time, average waiting time of patients, average 
queue length and to decrease the waiting time of patients. 
Shanthikumar et al. [9] carried out a survey paper on 
queueing theory which is applicable for semiconductor 
manufacturing systems. They put their efforts to improve the 
model assumptions and model input, mainly in averages and 
the variations of products. Jackson and Adelson [10] dealt 
with the calculation of customer characteristics in some 
simple cases to explain the literature for complex and 
practical queueing systems.  

Jouini and Dallery [11] considered Markovian 
multi-server queue with a finite waiting line in which a 
customer may decide to give up for service if waiting time in 
queue exceeds its random deadline. They focused on the 
performance measures in terms of the probability of being 
served under both transient and stationary behaviours. 
Karaesmen et al. [12] examined a finite buffered queue in 
which the queue length is controlled by low and high service 
rates with higher operating cost for faster service rate. 
Moreover, holding cost for waiting customers to proceed and 
setup costs for the change in service rate were included along 
with some numerical examples for the validity of the model. 
Laxmi and Suchitra [13] studied finite buffer N-policy 
GI/M(n)/1 queue with Bernoulli-schedule vacation 
interruption, where server takes a vacation and works with a 
slower rate if there are less than N customers waiting for 
service. They used supplementary variable technique and 
recursive method to obtain the steady state system length 



 American Journal of Operational Research 2017, 7(1): 1-14 3 
 

 

distributions at pre-arrival and arbitrary epochs. Kwon [14] 
dealt queueing network model for the performance analysis 
of a flexible manufacturing system composed of 
workstations with limited buffers. Performance measures 
were developed and numerical examples were presented to 
verify the effectiveness of the approximation algorithm used 
in the model. Chakravarthy [15] illustrated numerical 
examples using matrix-analytic method of multi-server 
queueing model in which one sever is considered as the main 
server. The main server is connected to the other servers to 
provide the consultation on the FCFS basis. Ghimire and 
Basnet [16] studied finite capacity queueing system under 
the provision of vacation and service breakdown for the 
calculation of queue length and waiting time distributions. 
Yang and Wu [17] considered M/M/1/N queue with server 
subject to breakdowns and repairs during the time of 
operation where server works at a lower service rate even at 
the failure times. They computed transient state probabilities 
and some system performance measures using fourth-order 
Runge–Kutta method. Kaczynski et al. [18] put their effort to 
study M/M/s queue with initially presented k customers for 
the exact distribution of nth customer’s sojourn time. 
Algorithms for computing the covariance between sojourn 
times for an M/M/1 queue with k customers present at time 
zero was developed using maple computer code.  

Queuing system is used to optimization model as well for 
different service stations and in the production systems to 
minimize the cost and to maximize the profit using the 
limited resources. To this end, Smith [19] proposed an 
optimization model for the probability distribution and 
performance measures of M/G/1/k queueing system using 
flexible and practical transform-free approach. Cruz and 
Woensel [20] overviewed performance evaluation and 
optimization of queueing models of a joint manufacturing 
and product engineering using an advanced queueing 
network analyser called the generalized expansion method. 
Yadin and Naor [21] studied single server queueing system 
with constant Poisson input and calculated queueing time 
and average queue length. A relationship between priority 
queue and storage model was calculated by superimposing 
the cost structure on the system and optimization procedures. 
Schrage [22] investigated pre-emptive-resume priority 
queueing network specifying their setup time in an arbitrary 
fashion. He obtained expressions for the steady-state 
expected time in the system allowing some set up time for a 
job interruption. Akyildiz and Lui [23] observed 
optimization of performance measures under server’s 
break-down and investigated repair for cost minimization, 
response time minimization and throughput maximization. 
Krivulin [24] studied optimization of queueing system using 
recursive method for arrival and departure times of 
customers together with simulation based analysis for the 
model application. Bertsimas and O-Mora [25] focused in 
server changeover times to minimize steady-state mean job 
holding cost to address the problem of scheduling a 
multi-station multiclass queueing network (MQNET). Their 
contributions included a flow conservation interpretation and 

closed formulae for the constraints including new work 
decomposition laws for MQNET. Mishra and Yadav [26] 
used computing algorithms to calculate total expected cost, 
total expected revenue and the total optimal profit in a finite 
capacity optimization model of a loss queueing system. Brito 
et al. [27] presented a multi-objective algorithm to optimize 
the total number of buffers, the overall service rate and the 
throughput of a general-service finite queueing network. 
They used a multi-objective genetic algorithm to produce 
solutions for more than one objectives. Pesu and Knottenbelt 
[28] studied fork-join and split-merge queueing systems in 
which tasks are divided into N subtasks and are served by 
heterogeneous servers. They proposed a new policy for 
computing optimal subtask delays in split-merge and 
fork-join systems. 

Some researchers have studied and proposed some 
mathematical models for the nature of customers as well. 
Shin and Choo [29] considered an M/M/s queue in which 
balking and reneging customers join the virtual pool of 
customers called orbit. Probabilities of joining the orbit by 
balking and reneging customers was determined by the 
number of customers in the service facility. Some numerical 
examples were also presented to validate the results. 
Al-Seedy et al. [30] applied generating function technique 
for transient solution of system in an M/M/c queue having 
fixed probability for balking customers and a negative 
exponential distribution for reneging customers. Ayyappan 
et al. [31] studied single server batch service of size k 
considering Poisson arrival rate λ, exponential service 
distribution µ and Poisson catastrophe rate v to calculate the 
mean and variance of all the parameters described in the 
model. Choudhury and Medhi [32] analysed reneging 
behaviour where each customer is assumed to follow 
identical distribution of patience time ignoring the real life 
situations. They attempted to model a reneging property 
along with balking behaviour. Ghimire and Ghimire [33] 
dealt M/M/1 queue with heterogeneous arrival and departure 
with the provision of server vacations and breakdowns to 
evaluate some performance measures using generating 
function method. Atencia and Moreno [34] analysed a 
discrete-time Geo/G/1 retrial and without retrial queue to 
calculate the measure of the proximity between the system 
size and marginal distributions when the server is idle, busy 
or down. Ammar [35] obtained explicit solution of 
multi-server transient queue with balking and reneging 
behaviour of customers using similar technique of [30] along 
with the calculation of steady-state probabilities and some 
important performance measures. Gong and Li [36] 
developed a maximum system utility optimization model 
considering customer’s psychology to study the impact on 
their patience and rejection behaviour in a queue. They used 
a probability function to describe the change of customer’s 
psychology and rejection behaviour. Li and Cheng [37] dealt 
with infinite capacity queueing systems with two parallel 
servers having generally distributed service times where 
customer joined the shortest queue in the Poisson fashion. 
For both the queues of equal length, new arrival could join 
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any of them with equal probability without jockeying. 
Shanmugasundaram and Banumathi [38] analysed 
multi-server queueing system using Monte-Carlo simulation 
to find the future behaviour of railways to reduce the queue 
length and system length, queue time and system time with 
some numerical examples.   

There are some queues for which arrival and service 
depend on time. Those queues are known as transient queues. 
Singla and Garg [39] studied a feedback queueing system 
with correlated transient departures and calculated the 
transient-state queue length probabilities using Laplace 
Transform of the generating function. Zeng et al. [40] 
investigated transient M/Ek/n queuing model for the 
evaluation of queue length and the average waiting time of 
the railway container terminal gate system, as well as the 
optimal number of service channels during the different time 
period. Chan et al. [41] applied iterative and Crank–Nicolson 
pre-conditioner method to solve the system of linear 
equations for the transient solutions of M/M/2 queueing 
systems with two heterogeneous servers under a variant 
vacation policy. Jiang et al. [42] proposed free flow, slow 
flow and jam flow vehicle velocities in which the transitions 
between slow and jam flow are controlled by the duration of 
slow flow queues. They revealed the fact that convective 
instability of queueing model could generate oscillation 
features. Ghimire et al. [43] calculated the performance 
evaluations of multi-server M(t)/M(t)/n/n queuing system 
subject to breakdowns under transient frame work without 
accepting the queue of the waiting customers and verified the 
results using simulation. Tan et al. [44] studied transient 
arrival finite capacity queue where arrival rate slowly varies 
with time for the large capacity K. Probability of n number 
of customers and mean number of customers in the system at 
time t  was calculated using asymptotic approximations 
approach. Kempa [45] derived explicit formulae for the 
queue size distribution of a finite-buffer GI/M/1/N transient 
queueing model. He calculated transient queue-size 
distribution convergence rate to the stationary distribution 
for the constant value given explicitly. Malligarjunan [46] 
evaluated performance measures and total expected cost rate 
for a single server queueing system under transient 
behaviour and entropy measures on an inventory system with 
two demand classes. Selinka et al. [47] developed a 
stationary backlog-carryover approach to compare the 
numerical results with simulations applicability in an 
analytical solution for a time-dependent performance 
evaluation of truck handling operations at an air cargo 
terminal. Ausina et al. [48] chose a single server queueing 
system in which Bayesian inference for the transient 
behaviour and duration of a busy period with general, 
unknown distributions for the inter-arrival and service times 
has been investigated.  

Batch or bulk arrival and service facility is the another 
area of research in queueing theory. Chang and Choi [49] 
studied finite-buffer discrete-time GeoX/GY/1/K+B queue 
with multiple vacations that has a wide range of applications 
including high-speed digital telecommunication system and 

various related areas presenting some performance analysis. 
Goswami and Laxmi [50] dealt a single server infinite or 
finite buffer bulk-service queues considering arbitrary 
inter-arrival and exponential service time distribution. The 
customers were served by a single server in accessible or 
non-accessible batches of maximum size ‘b’ with a 
minimum threshold value ‘a’. Ghimire et al. [51] established 
a bulk queueing model with the fixed batch size ‘b’ and 
obtained the expressions for mean waiting time in the queue, 
mean time spent in the system, mean number of 
customers/work pieces in the queue and in the system by 
using generating function method. Singh et al. [52] 
investigated retrial queue with bulk arrivals and unreliable 
servers providing m-optional services to observe the validity 
of performance measures and the effect of parameters for the 
queue size distribution. Banergee et al. [53] studied a single 
server bulk service finite capacity queue for the calculation 
of joint distribution of the random variables at various 
epochs in which service times depend on the batch size 
customers following Markovian arrival process. Luo et al. 
[54] dealt with a finite buffer GeoX/G//1/N queue for the 
observation of queue-length distributions at departure, 
arbitrary, pre-arrival epochs with single working vacation 
and different input rates combining two techniques of 
supplementary variable and embedded Markov chain 
method. Claeys et al. [55] analysed a versatile batch-service 
queueing model with correlation in the arrival process along 
with some performance evaluation and buffer management. 

3. Components of Queueing System 
If any customer is willing to get a service, s/he should 

check whether a server is idle or not. If the server is vacant, 
customer gets the service immediately. However, if at least 
one customer is waiting for the service in front of each of the 
servers, then the new arrival should line up. Figure 1 
represents the basic queueing model where the procedure of 
a simple queueing system is shown. 

 

Figure 1.  General queueing system 

From the time someone starts standing in a queue until 
getting served, there are certain steps to follow. These steps 
are called the components of a queue which are characterized 
by the arrival process of customers, behaviour of customers, 
service times, service discipline and service capacity. These 
components are briefly described in the followings. 

Population of Customers 

Arrival 

Queue 
 

Service 

Output 
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3.1. The Arrival Process of Customers 

The inter-arrival times are assumed to be independent 
having a common distribution. In many practical situations, 
customers arrive according to a Poisson stream (i.e. 
exponential inter-arrival times). Customers may arrive one 
by one or in batches. An example of batch arrivals is the 
customs office at the border where travel documents of 
passengers are to be checked. 

3.2. The Behaviour of Customers 

Customers may be patient and willing to wait for the 
service after some times or may be impatient and leave after 
a while. The behaviour of customers who leave the queue 
realizing that they have to wait longer than they have 
expected is called balking. There are some customers who 
leave the queue feeling that they are tired of waiting in the 
queue. This type of customers’ behaviour is called reneging. 
There is another behaviour of customers who re-join the 
queue which they had left earlier either by balking or by 
reneging, is called jockeying.  

3.3. The Service Times 

When a customer joins a queue, server takes a certain time 
to serve the customers. This time is called the service time 
which can be deterministic or exponentially distributed. It 
can also occur that service times are dependent of the queue 
length. For example, the processing rates of the machines in 
a production system can be increased once the number of 
jobs waiting to be processed becomes larger. 

3.4. The Service Discipline 

Customers can be served one by one or in batches. There 
are many possibilities for the order in which they enter to the 
service venue. Some of the service facilities are as follows:  

First Come First Served (FCFS): In this process, service 
is provided in the order of arrival. First comer gets the 
service first. Generally, this method is applied in the 
supermarket, billing counters and many other queuing 
systems. It is called First In First Out (FIFO) as well.  

Service In Random Order (SIRO): This is the method in 
which service is provided without any fixed rule. People can 
be observed randomly in security checkpoints. Service 
provider collects data randomly for statistical studies. 

Last Come First Served (LCFS): It is the another 
method of providing service to the customers in which the 
last arrival gets service at first. This method is applied in the 
production line where the products are kept one over the 
other. While selling these products, the item kept at the top is 
sold at first though it is placed there at last. 

Priorities: There can be some customers who need the 
service immediately for many reasons. Those customers 
could be in a rush or may take shorter processing time. Some 
emergency cases could also be there in the doctor’s clinic 
and some would be ready to pay more for the quicker service.  

Processor Sharing: Concept of processor sharing is 
specially applied in the communication system where 

computers divide their processing power equally over all the 
other computers. Number of customers can get access to the 
internet from a single router.  

Round Robin (RR): This method can be seen mainly in 
cyclic queueing system in which either server or the 
customers move in a cycle. We have experienced a revolving 
dining table where customers are stationary but the server 
moves carrying different menu on the table.   

3.5. The Service Capacity 

There may be a single server or group of servers to help 
arrivals having limitations with respect to the number of 
customers. For example, in a data communication network, 
only finitely many cells can be buffered in a switch. The 
determination of good buffer size is an important issue in the 
design of these networks. 

3.6. Kendall’s Notations 

To represent the behaviours discussed above, there is a 
standard method, called Kendall’s notation to classify 
different queueing systems. This is the method proposed by 
an English statistician D. G. Kendall (1918-2007) and is 
denoted by 

a/b/c:d/e/f 
where 'a' denotes inter-arrival time distribution, 'b' is the 
service time distribution, 'c'  represents the number of 
servers and 'd' denotes the maximum number of jobs that 
can be occupied in the system (waiting and in service) with 
infinite number of waiting positions for default. Likewise, 'e' 
indicates queueing discipline (FCFS, LCFS, SIRO, RR etc.) 
having FCFS for default, and the last notation 'f '  is for 
population size from which customers rush to the system. 

For a single server queueing system, ρ denotes the traffic 
intensity [56] which is defined by 

ρ =
mean service time

mean inter-arrival times
 

Assuming an infinite population system with arrival 
intensity λ, which is reciprocal of the mean inter-arrival time, 
let the mean service time be denoted by 1/µ, then we have 

ρ = arrival intensity × mean service time = 
λ
µ

 

If ρ >1, then the system is overloaded since the requests 
arrive faster than they are served. It shows that more servers 
are needed. Let χ(A) denotes the characteristic function of 
the event A, that is 

χ (A) = �10                  if A occurs
if A does not

� 

Furthermore, let N(t) = 0 denotes the event that at time T 
the server is idle having no customers in the system. 
Therefore, utilization of the server during time T is defined 
by 

1
T∫ χ(N(t) ≠ 0) dt T

0 , 

where T is a long interval of time. As T → ∞, we get the 
utilization of the server denoted by Us and the following 
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𝜇𝜇1 𝜇𝜇2 𝜇𝜇𝑁𝑁 𝜇𝜇𝑁𝑁+1 

relations holds with probability 1 

Us= lim
T→∞

1
T
� χ(N(t) ≠ 0)dt = 1 - P0 = 

Eδ
Eδ + Ei

T

0
 

where P0 is the steady-state probability that the server is idle. 
Eδ  and Ei  denote the mean busy period and mean idle 
period of the server respectively. 

Theorem 1 [56]: Let X(t) be an ergodic Markov chain 
and A is a subset of its state space. Pi denotes the ergodic 
(stationary, steady-state distribution) of X(t). Then with 
probability 1 

lim
T→∞

�
1
T
� χ(X(t)∈A)dt

T

0
�=�Pi = 

m(A)
m(A) + m(A�)

i∈A

 

where m(A)  and m(A�)  respectively denote the mean 
sojourn times of the chain in A and A� during a cycle.  

In an m-server system, the mean number of arrivals to a 
given server during time T is λT/m, provided that the 
arrivals are uniformly distributed over the servers. Thus the 
utilization of a given server is 

Us = 
λ

mμ
 

The other important measure of the system is the 
throughput of the system which is defined as the mean 
number of requests serviced during a time unit. In an 
m-server system, the mean number of completed services is 
mρµ and thus 

throughput = mUsμ 
However, if we consider a tagged customer, the waiting 

and response times are more important than the measures 
defined above. Let Wj  and Tj  denote waiting time and 
response time of the jth customer respectively. Clearly, the 
waiting time is the time a customer spends in the queue 
waiting for service and response time is the time a customer 
spends in the system, that is 

Tj = Wj + Sj 
where Sj  denotes service time; Wj  and Tj  are random 
variables and their means denoted by W� j  and T�j , are 
appropriate for measuring the efficiency of the system. It is 
not easy in general to obtain their distribution function. 

Other characteristics of the system are the queue length 
and the number of customers in the system. Let the random 
variables Q(t) and N(t) are the number of customers in the 
queue and in the system at time t respectively. Clearly, in an 
m-server system we have 

Q(t)max{0; N(t)- m} 
The primary aim is to get their distributions which always 

may not be possible. In many of the situations, we have only 
their mean values or their generating function. 

4. Formulation of Queueing Models 
The important and challenging phenomena for the 

proposed queueing models is to express into mathematical 
formulation. There are different notations used to denote the 

queueing models. Each of the models has its specific 
characteristics following specific queueing discipline. For 
each of the queueing disciplines, there are different formulas 
to calculate the performance measures. Here, we describe 
some of the queuing disciplines with some of the formulas 
for their performance measures. Besides the usual notations 
of arrival rate 𝜆𝜆  and the service rate µ, there are some 
standard notations and symbols used in the queuing 
equations which are as follows:  

C = Number of service channels  
M = Random arrival/service 
D = Deterministic service rate (constant rate) 
With these, we describe some of the queueing models with 

their respective formulae in the following subsections. 

4.1. Birth-Death Process 

A Birth-Death process is a Markov process in which states 
are numbered by an integer and transitions are only 
permitted between two neighbouring states. Births are the 
cases when state variables are increased by one and deaths 
are the cases when state variables are decreased by one. 
When birth occurs, the state N moves to state N + 1 and 
when the death occurs, state N changes to state N - 1. 
 

 
 
 
 

            
 
 

Figure 2.  Birth-death process 

Figure 2 shows the simple birth-death process with which 
we can establish the balance equations as follows:  

State     Rate in = Rate out 
0:     μ1P1 = λ0P0 
1:     λ0P0 + µ2P2 = (λ1 + µ1)P1 
2:     λ1P1 + µ3P3 = (λ2 + µ2)P2 
...   ...  ... 
...   ...  ...    
N - 1:    λN - 2PN - 2 + µNPN = (λN - 1+ µN - 1)PN - 1 

N:       λN - 1 PN - 1 + µN + 1PN + 1 = (λN + µN)PN   

All the above balanced equations can be expressed in 
terms of P0 as follows: 

0:    P1 = λ0
μ1

P0 

1:     P2 = λ1
μ2

P1 + (μ1P1 - λ0P0)
μ2

 

     = λ1
μ2

P1 + (μ1P1 - μ1P1)
μ2

 

    = λ1
μ2

λ0
μ1

P
0
 

N+1 N 2 1 0 
… 

λ0 λ1 λ2 λ𝑁𝑁 

… 
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Continuing this way  

N - 1:  PN = 
λN - 1

μN
PN - 1 + 

(μN - 1PN - 1 - λN - 2PN - 2)

μN
  

      =
λN - 1

μN
PN - 1 + 

(μN - 1PN - 1 - μN - 1PN - 1)

μN
 

     = 
λN - 1

μN
PN - 1 

N:   PN + 1 = λN
μN + 1

PN + 
(μNPN - λN - 1PN - 1)

μN + 1
 

      = λN
μN+1

PN+ (μNPN-μNPN)
μN+1

 

                 = λN
μN+1

PN 

            =
λNλN-1…λ0

μN+1μN…μ1
P0 

If CN =  
λN-1λN-2…λ0

μNμN-1…μ1
, then PN=CNP0 

4.2. M/M/1 Queue 

The queueing system M/M/1 is the simplest non-trivial 
queue where the customers arrive according to a Poisson 
process with rate λ , that is, the inter-arrival times are 
independent, exponentially distributed random variables 
with parameter λ . The service times are assumed to be 
independent and exponentially distributed with parameter µ. 
Furthermore, all the involved random variables are supposed 
to be independent of each other. 

Let ρ = λ
μ

 < 1, then CN = �λ
μ
�

N
= ρN for N = 1, 2, 3,… 

Therefore, PN = CNP0. Now, the normalizing condition is 

� PN = 1
∞

N = 0

 

⇒      �1 + � CN

∞

N = 1

�P0 = 1 

⇒      P0 = 
1

(1 + ∑ CN
∞
N = 1 ) 

⇒      P0 = 
1

(1 + ∑ ρN∞
N = 1 ) 

⇒      P0 = 
1

(ρ0 + ∑ ρN∞
N = 1 ) 

⇒      P0 = 
1

(ρ0 + ∑ ρN∞
N = 1 ) 

⇒      P0 = 
1

∑ ρN∞
N = 0

 

⇒      P0 = �� ρN
∞

N = 0

�
-1

 

⇒      P0 = �
1

1 - ρ
�

-1

 

⇒     P0 = 1 - ρ 

Thus,  PN = �1 - ρ�ρN,  for N = 0, 1, 2,… 
Consequently, average number of customers in the system 

is 

Ls = � NPN
∞

N = 0

 

⇒          Ls = � N(1 - ρ)ρN
∞

N = 0

 

⇒          Ls = ρ(1 - ρ) �
d

dρ
ρN

∞

N = 0

 

⇒          Ls = ρ(1 - ρ)
d

dρ
�� ρN

∞

N = 0

� 

⇒          Ls = ρ(1 - ρ)
d

dρ
�

1
1 - ρ

� 

⇒          Ls = ρ(1 - ρ)
1

(1 - ρ)2 

⇒          Ls = 
ρ

1 - ρ
 = 

λ
μ - λ

 

Summarizing the results, we have following conclusions: 
i. The probability of having zero customers in the system 

P0 = 1- ρ 
ii. The probability of having N customers in the system 

PN = ρNP0 
iii. Average number of customers in system 

Ls = 
ρ

 (1- ρ) 
 

iv. Average number of customers in the queue 

Lq = 
ρ2

 (1- ρ) 
 

v. Average waiting time in the system 

Ws = 
ρ

λ (1- ρ) 
 

vi. Average waiting time in the queue   

Wq = 
ρ

μ (1- ρ) 
 

4.3. M/M/c Queue �ρ
c

<1� 

The queuing system M/M/c is the queueing discipline 
where c service channels are ready for the arriving customers 
following Poisson process. λ  and µ  have the usual 
meanings with all the random variables independent as 
described in the subsection 4.2. Followings are some of the 
formulae to for the performance measures of this model. 

i. The probability of having zero customers in the system 

P0 = ��
ρN

N!
 +

ρc

c! �1 - ρ
c�

c - 1

N = 0

�

 -1
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ii. Probability of having N customers in the system 

PN = P0
ρN

N!
           for N < c 

PN = P0
ρN

cN - cc!
        for N > c 

iii. Average number of customers in the queue 

Lq = P0
ρc + 1

c.c!
1

�1 - ρ
c�

2 

iv. Average number of customers in system  
Ls =  Lq + ρ 

v. Average waiting time in the system 

Ws = 
Ls

λ
 

vi. Average waiting time in the queue  

Wq = 
Lq

λ
 

4.4. M/M/c/k Queue  

In this model, customers arrive according to a Poisson 
process describing independent and exponentially 
distributed inter-arrival times. The service times are also 
assumed to be independent and exponentially distributed. 
The difference of this model with the previous models is the 
only k customers who can get the service by fixed number 
of c servers. Followings are the formulae for some of the 
performance measures of this queueing system. 

i. The probability of having zero customers in the system 

P0 = ��
ρN

N!
 + �

ρN

c!cN - c

k

N = c

c - 1

N = 0

�

 -1

 

ii. Probability of having N customers in the system 

PN = 
1

N!
ρNP0                 for 0 ≤ N ≤ c 

PN = �
1

cN - cc!
� ρNP0      for c ≤ N ≤ k 

iii. Average number of customers in the system 

Ls = � N.PN + � N.PN

k

N = c

c - 1

N = 0

 

      = 
P0

c!
�� N.ρN + � N.

ρN

cN - c

k

N = c

c - 1

N = 0

� 

iv. Average number of customers in queue  
Lq = Ls- ρ 

v. Average waiting time in the system 

Ws = 
Ls

λ
 

vi. Average waiting time in the queue  

Wq = 
Lq

λ
 

4.5. M/D/1 Queue  

This system represents the single server queue, where 
arrivals are determined by a Poisson process and service 
times are deterministic. Some of the performance measures 
formulae are listed as follows: 

i. Average number of customers in the system 

Ls = 
(2ρ - ρ2)
2(1 - ρ)

 

ii. Average number of customers in queue  

Lq = 
ρ2

2(1 - ρ)
 

iii. Average waiting time in the system 

Ws = 
(2 - ρ)

2μ (1 - ρ)
 

iv. Average waiting time in the queue  

Wq = 
ρ

2μ(1 - ρ) 

5. Performance Measures in Queueing 
System 

Each of the proposed modes should have some kind of 
applications in the real life. It is important to verify those 
results by means of some established tools. These results are 
called the performance measures and are calculated by using 
different techniques. One of the methods to calculate these 
performance measures is the Little’s Law. In this Section, we 
briefly describe about the performance measures and the 
Little’s Law. 

5.1. Performance Measures 

Performance measures refer to the service quality as seen 
by the customers. There are different nature and design of the 
queueing models and so are the measures the performance. 
The main objective of proposing a queueing model is to 
provide the better service in minimum cost and minimum 
waiting time. Validity of these performances can be checked 
by means of simulation. There are some performance 
measures in the analysis of queueing models as follows: 

(i) Distribution of the waiting and the sojourn times: 
Time spent by a customer in a queue is calculated in two 
categories. The first is the waiting time before starting to 
receive the service and the second is the sojourn time which 
includes the waiting time plus the service time. 

(ii) Distribution of the number of customers: In a single 
server queueing system, there will be one customer receiving 
the service whereas in multiple server queueing system, 
there could be the customers equal to the number of servers 
receiving the service. Number of customers in a queueing 
system refers to the customers including or excluding the one 
or all the service.  
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(iii) Distribution of amount of work: It is the sum of 
service times of the waiting customers and the residual 
service time of the customers in service. Residual service 
time signifies the time that a new arrival waits until being 
served in a non-empty queue.  

(iv) Distribution of busy period: When customers arrive 
to the server for the service, the server becomes busy. Busy 
period of a server is the time during which server is working 
continuously. While calculating the performance measures, 
we are interested in mean performance like the mean waiting 
time and the mean queue length.   

5.2. Little’s Law 

Little’s law states that the average number of customers in 
the system is equal to the average arrival rate of customer to 
the system multiplied by the average system time per 
customer [57]. This can be expressed as  

L = λW 
where W denotes mean response time, the mean time spent 
in the queue and at the server, not just simply as the mean 
time spent waiting to be served; L refers to the average 
number of customers in the system and λ stands for mean 
arrival rate as usual. Little’s law can be applied when we 
relate L to the average number of customers waiting to 
receive service denoted by Lq  and W to the mean time 
spent waiting for service denoted by Wq. In this sense, the 
other well-known form of Little’s law is 

Lq = λWq 

It may be applied to separate parts of much larger 
queueing systems, such as subsystems in a queueing network. 
In such a case, L should be defined with respect to the 
number of customers in a subsystem and W with respect to 
the total time in that subsystem. Little’s law may also refer to 
a specific class of customer in a queueing system or to 
subgroups of customers, and so on. Its range of applicability 
is very wide indeed.  

Little’s law seems to be independent of [57] 
•  Specific assumptions regarding the arrival distribution 

A(t) 
•  Specific assumptions regarding the service time 

distribution B(t) 
•  Number of servers 
•  Particular queueing discipline 
Little’s law is important for three reasons [57] 
•  It is widely applicable (it requires only very weak 

assumptions). It will be valuable to us in checking the 
consistency of measurement of data. 

•  It is the main task in the algorithms for evaluating 
several queueing network models. 

•  In studying computer system, we frequently find two of 
the quantities related by Little’s law (the average 
number of requests in a system and the throughput of 
that system) and desire to know the third (the average 
system residence time, in this case). 

 

Applications of Little’s Law [57] 
•  On rainy days, streets and highways are more crowded. 
•  Fast food restaurants need a smaller dining room than 

regular restaurants with the same customer arrival rate. 
•  Large buffering together with large arrival rate cause 

large delays.  
Theorem 2 [58]: In a closed Gordon-Newell network 

with m queues, write N = (N1, N2, …, Nm) for the state of 
network. For a customer in transit to state i, let αi (N - ei) 
denotes the probability that immediately before arrival the 
customer sees the state of the system is 
(N - ei) = (N1, N2,…,Nm).  Then the probability αi (N - ei) 
is same as the steady state probability for state (N - ei) for a 
network of the same type with one customer less. 

In any of the queue, the customers want them to be served 
as quickly as possible. But this may not happen in all the 
situations. One feels quite relaxed whenever her/his turn 
comes for the service. To describe the nature and feeling of 
customers, there are some popular facts about queue. They 
are called Murphy’s Laws and are described as follows [57]: 
•  If a customer changes queue, the one s/he has left will 

start to move faster than the one s/he is in. 
•  Customer feels that her/his queue always goes the 

slowest. 
•  Whatever queue a customer joins, no matter how short 

it looks, will always take the longest for her/him to get 
served. 

6. Applications of Queueing Systems  
Queueing theory is applied in many of the daily life 

activities including computer networks, telecommunication 
systems, traffic flow systems, airport scheduling systems, 
banking and logistic operations and so on. Besides all these, 
queuing system is applied in the manufacturing industries as 
well. Items produced by industries have to be delivered to the 
retailers and then to the customers. If there is the proper 
chain to deliver those items, it can save time and money. 
Products of the industries can be delivered together in 
numbers but one machine can produce only one item at a 
time following a sequential order. Those produced items 
should be supplied to the wholesalers and to the retailers turn 
by turn maintaining a proper queue. In this sense, we can 
observe a close relationship between queuing system and 
supply chain management, which is described in rest of this 
Section.   

Bhaskar and Lallement [59, 60] used the concept of supply 
chain to find the minimum response time for the delivery of 
items to the final destination through different stages of 
network. They identified the appropriate route of the least 
response time and calculated the performance measures like 
average queue lengths, average response times, and average 
waiting times of the jobs in the supply chain. They have 
proposed a model to calculate the mean and variance of the 
number of customers in the system as the follows:  
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E(N) =
1

1 - e - ( 1 - ρ ) 

σN
2  = 

e - ( 1 - ρ )

(1 - e - ( 1 - ρ ) )2 

where, 
ρ = mean service time

mean inter-arrival time
= 2λ

μ (b + a)
   for all a, b > 0 and b > a. 

Likewise, if R denotes the response time and W is the 
waiting time in the queue, then mean response time and the 
mean waiting time has been expressed as  

E(R) = 
1

λ(1 - e - ( 1 - ρ )) 

and 

E(W) = 
μ - λ + λe - � 1 - 2λ

μ ( b + a )�

λμ�1 - e- �1 - 2λ
μ ( b + a )��

 

Average number of jobs found on the server has been 
determined by the formula 

E(N) - E(Q) = 
λμ - μ + λ - λe - ( 1 - ρ )

λμ(1 - e - ( 1 - ρ ))  

Boulaksil [61] proposed a model to determine the safety 
stock levels in supply chain systems which are facing 
demand uncertainty. He reported that supply chain would 
meet a high level of customer service if large portion of the 
safety stocks are placed downstream. Teimoury et al. [62] 
determined holding, back ordering and ordering cost 
function for GI/G/1 queueing model. They proposed an 
inventory model for batch products along with some 
numerical examples of manufacturing supply chain network 
to analyse performance evaluation. Liu et al. [63] evaluated 
the performance of serial manufacturing and supply systems 
with inventory control by developing a multi-stage inventory 
queue model and a job queue decomposition approach. Then 
they presented an efficient procedure to minimize the overall 
inventory in the system maintaining the required service 
level. Sivakumar et al. [64] studied a discrete time inventory 
model to evaluate joint probability distribution of the number 
of customers in the pool and the inventory level where 
demand during stock out periods either enter a pool having 
finite capacity N (< ∞)  or leave the system with a 
predefined probability. Andriansyah et al. [65] used 
generalized expansion method to evaluate the performance 
of the systems in terms of throughput and compared results 
with simulation. Experiments for a large number of settings 
and different network topologies were also presented. They 
derived the formula for the throughput at node i as  

θ = λ�1 - pc� = λ�1 - 
(λ μ⁄ )c

c!

∑ (λ μ⁄ )i

i!
c 
i = 0

� 

where pc is the probability of a customer being blocked for 
M/M/c/c queueing model.  

Mishra and Yadav [66] considered a clocked queueing 
network with renewal model and used it to develop a 

computational approach for the analysis of cost and profit 
structure in the system. They found its optimality with 
respect to arrival and service parameters of the system. Mary 
and Christina [67] proposed the procedure to find the total 
average cost in terms of crisp values for M(m , N)

X /M/1/BD/M 
with fuzzy parameters considering many other factors with 
some numerical example for the validity of the proposed 
system. Smith [68] used mean value analysis algorithm to 
study the material handling and transportation networks in 
finite buffer closed M/M/1/K queueing system. Babadi et al. 
[69] applied queueing systems in nylon plastic 
manufacturing and recycling centres using Jackson network 
to minimize the average delay to deliver products, total cost 
and transportation cost which was checked by the sensitivity 
analysis by changing the parameters. Vahdani and 
Mohammadi [70] proposed a bi-objective optimization 
model in a closed loop supply chain network in which 
general multi-priority and multi-server queuing system for 
parallel processing execution has been used to minimize the 
cost and maximize the profit. In order to calculate the queue 
waiting time of arrival products into the forward flow to the 
bidirectional facility, following formula has been used 

Wfqb
 (p) ± = 

1
Afb

 ± × Bfb , p - 1
  ±  × Bfb , p

  ±       for all p 

where, 

 Afb
 ±=

⎣
⎢
⎢
⎢
⎡

cb!�cbμfb- λfpb
 ± � �

λfpb
 ±

μfb
�

cb

�

⎩
⎪
⎨

⎪
⎧�

λfpb
  ±

μfb
�

j

j!

⎭
⎪
⎬

⎪
⎫cb – 1

j = 0

+cbμfb

⎦
⎥
⎥
⎥
⎤

  

for all b 
and 

 Bfb, p
 ±  = 1 - 

∑ λfp'b
 ±p

p'= 1

cbμfb
 , with  Bfb, 0 = 1   

The other notations used in the model are described as 
follows: 

Wfqb
 (p) ± =Waiting time in the queue of forward flow of 

product with priority p in bidirectional facility b; 
cb = Number of service provider at bidirectional facility b; 
μfb = Service rate at bidirectional facility b for forward 

products; 
λfpb

  ± =  Arrival rate of forward flow of product p to 
bidirectional facility b. 

Diabat et al. [71] used queueing approach to determine the 
number and location of distribution centres, the assignment 
of retailers to distribution centres and the size and timing of 
orders for each distribution centres providing some 
numerical results. They proposed a model in which  

PK(0)=
λK

λK + QKμ �1 + μ
λK
�

SK
 

Each opened distributions centres orders to the supplier 
when its inventory level is less than S + 1. Then the expected 
amount of recorders (RK) is calculated by 



 American Journal of Operational Research 2017, 7(1): 1-14 11 
 

 

RK = λKP(SK + 1) = μ �1 + 
μ
λK
�

SK
PK(0) 

On the other hand, when the level at distribution centre 
located at site K is equal to zero and arriving demands are 
lost, then the expected amount of lost sales (ΓK) is  

ΓK = λKPK(0) 
And the expected amount of inventory (MIK) has been 

obtained by 

MIK = � jPK(j)

Qk + SK

j = 0

 

where QK and SK are the recorder quantity and recorder 
point at distribution centre K. Wang et al. [72] collected a 
review defining supply chain and discussing literature in the 
areas, namely service supply management, service demand 
management and the coordination of service supply chains to 
observe the state in each area. He [73] derived supply risk 
sharing contracts for the equilibrium between the recycling 
price decision and the remanufacturing quantity decision 
using game theory illustrating some numerical examples for 
managerial results. Zhalechian et al. [74] studied 
environmental impact of sustainable closed-loop location - 
routing -inventory model using a stochastic-probabilistic 
programming approach presenting some real-world 
applications. Sadjadi et al. [75] derived optimization model 
using queuing approach for allocation of the retailers’ 
demands, and inventory replenishment decisions so as to 
minimize the total expected cost of location, transportation 
and inventory. Jin [76] formulated link transmission model 
and link queue model defining demand and supply to present 
queuing models for a point queue and their discrete versions.  

7. Conclusions 
Upon observing the contributions of the researchers in the 

field of queueing theory, it can be noticed that plenty of 
works have been done pointing out many extendable areas. 
Change of one parameter in any of the proposed models 
might cause a huge change in the result of performance 
measures. Small change in the arrival rate may create large 
queue or no queue, and small change in service rate may 
make the customers very happy for the quick service or may 
have to wait for a long time. For any of the queue, time plays 
a vital role. It is very important how long a customer waits in 
the queue to get the service and how fast a server provides 
the service. To make the service more effective, sometimes 
we need to add the servers and increase the efficiency. We 
have seen the proposed queueing models for finite and 
infinite capacities. Some of the queueing models have finite 
capacity and some are ready to serve for any number of 
customers. Some are time dependent studied under transient 
fashion and some are used for the optimization model. We 
have chosen Markovian queuing model with finite number of 
customers for a single or multiple servers. Besides the usual 
and standard mathematical modelling in queueing theory, 

consideration of customers’ behaviours, servers’ breakdown 
or vacation along with the limitation in arrivals can be 
introduced to make the model more realistic and challenging. 
On the other hand, suggesting some mathematical models 
considering those limitations may not always be reliable, so 
verifying those models in the real life situations with the use 
of computer simulation would be a remarkable contribution 
in the study of queueing theory.  

All the studies carried out by the researchers have several 
applications in the real life. These applications are specially 
focused for making the life easier specially by saving time 
and money. In this process, number of models are proposed 
with applications in the different areas. The other motivation 
is to get the maximum profit with the minimum utilization of 
the limited resources, called the constraints. We intend to 
study the conditions for the optimal solution in order to 
maximize the production or the benefits using those limited 
constraints. These basic phenomena can be applied in 
telecommunication, traffic control, employee allocation, 
computer scheduling, supermarket, hospitals and many other 
fields. Variations of arrival and service disciplines in a 
queueing problem is the challenging work to tackle in the 
days to come. In addition, the simultaneous study of 
queueing operations with manufacturing and logistics may 
yield some interesting interlinks. Some of the literatures are 
described in the former Section. Such comparative study can 
be applied in the real problems of the industries to optimize 
production and distribution operations. The detail study of 
the application of queueing theory in supply chain networks 
will be our due course. 
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