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Abstract  In this paper, an EOQ model for perishable items for queued customers is developed in which shortages are 
allowed and partially backlogged. The backlogging rate is taken to be inversely proportional to the wait ing time for the next 
replenishment. Demand follows power pattern on time t. The model is fairly general due to dynamic nature of demand. When 
fresh and new items arrive in stock they begin to decay after a fixed time interval called the life period of items. The total cost 
function is constructed and subjected to the optimization which in turn gives us the non linear equation. Further, a computing 
algorithm is proposed to find the solution of the system by using the N-R method. We compute the optimal inventory period 
and total optimal average cost as most important performance measures for the model. Finally, numerical examples are 
provided to illustrate the problem and sensitivity analysis has been carried out.  
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1. Introduction 
Kaleidoscopic pattern of inventory control system with 

deterioration is much more difficult to be investigated by the 
researchers engaged in the field. In  its investigative design 
and framework, mathematical ideas have exceedingly shown 
well for dwelling upon the concern of inventory control 
system with aforesaid pattern of inventory. Deterioration of 
inventory encompasses commodit ies such as such as foods, 
vegetable, drugs, pharmaceuticals, medicine, gasoline, blood 
and radioactive substances deterioration takes place during 
the normal storage period of the units. As a result, while 
determining the optimal inventory policy of that type of 
products, the loss due to deterioration cannot be ignored.  

In the literatu re of inventory theory, the deterio rat ing 
inventory models have been continually modified so as to 
accumulate more practical features o f the real inventory 
systems. A number of authors have d iscussed inventory 
models for non  deteriorat ing items . However, there are 
certain substances in which deteriorat ion plays an important 
role and items cannot be stored for a long time. When the 
items of the commodity are kept in stock as an inventory for 
fulfilling the future demand, there may be the deterioration  
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of items in the inventory system. Various types of inventory 
models for items deteriorating at a constant rate were 
discussed by[1],[2],[3] and[4] etc. 

In practice it can be observed that constant rate of 
deterioration occurs rarely. Most of the items deteriorate fast 
as the time passes. Therefore, it is much more realistic to 
consider the variable deterioration rate. In a realistic product 
life cycle, demand is increasing with time during the growth 
phase.[5] investigated an inventory system with power 
demand pattern for items with variable rate of deteriorat ion. 
[6] studied the inventory system with two-parameter 
exponential distributed hazardous items in which production 
and demand rate were constant.[7] considered an EOQ 
model in which inventory is depleted not only by demand, 
but also by deterioration at a Weibull distributed rate, 
assuming the demand rate with a ramp type function of time.  

[8] developed an inventory model for a deteriorat ing item 
having an instantaneous supply, a quadratic time-varying 
demand and shortages in inventory. They had taken a 
two-parameter Weibull d istribution to represent the time to 
deterioration.[9] considered an inventory model for 
deteriorating items in which demand increases with respect 
to time, deteriorat ion rate, inventory holding cost and 
ordering cost are all continuous functions of time. Shortages 
are completely backlogged. The planning horizon is finite.  

[10] formulated an order-level lot-size inventory model 
for a time-dependent deterioration and exponentially 
declining demand.[11] reviewed the recent studies about the 
deteriorating items inventory management research status. 
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They provided a comprehensive introduction, compared  with 
the extant reviews and proposed some key factors which 
should be considered in the deteriorating inventory studies. 
This survey provides a clear overview of the deteriorating 
inventory study field, which can be used as a starting point 
for further study.  

A key assumption of the basic EOQ model is that stock 
outs are not permitted. Relaxing the basic EOQ that stock 
outs are not permitted led to the development of EOQ model 
for the two basic stock out cases: backorders and lost sales. 
What took longer to develop was a model that recognized 
that, while some customers are willing to wait for delivery, 
others are not. Either these customers will cancel their orders 
or the supplier will have to fill them within the normal 
delivery time by using more expensive supply methods. 
While there have been a number of models developed for the 
EOQ model with partial backordering, most of them 
incorporate considerably more complicated assumption sets 
than the classic EOQ model do. Furthermore, when the 
shortage occurs, some customers are willing to wait for back 
order and others would turn to buy from other sellers.  

[12] developed economic order quantity models that 
focused on deteriorating items having a deterministic 
demand pattern with a linear trend and shortages. They 
assumed that the inventory deteriorates over time at a 
constant rate. The inventory replenishment policy was 
considered over a finite time-horizon.[13] considered an 
inventory model for items with Weibull d istributed 
deterioration. They assumed that the demand rate is a power 
function of time and allowed for shortages.[14] considered 
the variable lead-t ime EPQ model with shortages. He 
presented a new approach, without reference to the use of 
derivatives but with algebraic derivation, to solve the 
deterministic EOQ models with/without shortages.  

[15] developed an inventory model with ramp type 
demand, starting with shortage and three – parameter 
Weibull d istribution deterioration.[16] developed an 
inventory model with linear demand rate. Shortages in the 
inventory are allowed and were completely backlogged. 
They had assumed that the production rate is finite and 
proportional to the demand rate.[17] developing an inventory 
model with time dependent Weibull demand rate where 
shortages are allowed and are completely backlogged. The 
production rate is assumed to be finite and proportional to the 
demand rate.  

[18] developed an order level inventory system for t ime 
dependent linearly deteriorating items with decreasing 
demand rate. They assumed that the demand rate is time 
dependent and developed two EOQ models for without 
shortage case and with shortage case.[19] considered the 
production inventory problem in which  the deteriorat ion is 
Weibull distribution, production and demand are quadratic 
function of time. Shortages of cycle are allowed in the 
inventory system.  

Researchers such as[20],[21] and[22] considered the 
constant partial backlogging rates during the shortage period 
in their inventory models. In many cases customers are 

conditioned to a shipping delay and may be willing to wait 
for a short time in order to get their first choice. In some 
inventory systems, such as fashionable commodities, the 
length of the wait ing time for the next  rep lenishment would 
determine whether the backlogging will be accepted or not. 
Therefore, the backlogging rate should be variab le and 
dependent on the length of the waiting time for the next 
replenishment. When a stock out situation occurs, only a 
fraction of demand occurring at a g iven time is backordered. 
And that fraction is a  decreasing function of the waiting t ime. 
The approach given is revenue based and does not require 
specifying the backorder cost or lost sale cost which is very 
difficult to estimate in reality.  

[23] investigated optimal lot sizing for an EOQ model 
under conditions of perishability allowing shortage and 
partial backlogging. He modelled the backlogging 
phenomenon using a new approach in which customers are 
considered impatient.[24] suggested a continuous review 
inventory model over a fin ite-planning horizon with 
deterministic varying demand and constant deterioration rate. 
The model allows for shortages, which are partially 
backlogged at a rate which varies exponentially with t ime. 
They established an optimal replenishment policy.[25] 
developed the deterministic EPQ model with partial 
backordering when a percentage of stock outs will be 
backordered. 

Many researchers have modified inventory policies for 
deteriorating items by considering the time proportional 
partial backlogging rate such as[26],[27],[28],[29],[30],[31], 
[32] and so on.[33] extended model of[13] by p roposing a 
general class time-proportional backlogging rate to make the 
theory more complete and provided the necessary condition 
to find the optimal solution.[34] proposed an EOQ inventory 
mathematical model for deteriorating items with 
exponentially decreasing demand. In the model, the 
shortages are allowed  and partially  backordered. They show 
that the min imized objective cost function is jointly convex 
and derive the optimal solution.  

[35] described an EOQ model with t ime-vary ing 
deterioration, partial backlogging which depends on the 
length of the waiting time for the next replen ishment, 
linearly t ime-vary ing demand function over a fin ite time 
horizon and variable replen ishment cycle.[36] developed a 
deterministic inventory model for infinite time-horizon 
incorporating partial backlogging and decrease in demand. 
Demand at any instant depends linearly on the on-hand 
inventory level at that instant. Deterioration of items begins 
after a certain time from the instant of their arrival in 
stock.[37] studied a determin istic inventory model for 
deteriorating items under time-dependent partial 
backlogging and proved that the optimal rep lenishment 
solution not only exists but is also unique.  

[38] considered an EOQ model for deteriorat ing items 
with exponential t ime varying demand. They assumed that 
the backlogging rate is dependent on the length of the 
wait ing time for the next replen ishment.[39] presented an 
optimization framework to derive optimal rep lenishment 
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policy for perishable items with stock dependent demand 
rate. The demand rate is assumed to be a function of current 
level inventory and the inventory deteriorates per unit time 
with variab le deterioration rate. The shortages are allowed 
and partially backlogged with a variab le rate, which depends 
on the duration of wait ing time up  to arrival of next  lot.[40]  
developed a single item perishable inventory model 
assuming that the demand is time dependent accelerated 
growth-effect of accelerated growth-steady type. The 
deterioration of inventory starts after a certain time. 
Shortages are allowed and are part ially backlogged.  

[41] considered a deterministic  inventory model in  which 
items are subject to constant deterioration and shortages are 
allowed. The unsatisfied demand  is backlogged which  is a 
function of time.[42] considered an order level inventory 
model for seasonable/fashionable products subject to ramp 
type demand rate. The unsatisfied demand is partially 
backlogged with a time dependent backlogging rate. In 
addition, the product deteriorates with a time dependent 
deterioration rate.[43] developed a deterministic inventory 
model for deterio rating items in which shortages are allowed 
and partially backlogged. Recently, authors[44],[45] and[46] 
have attempted computational approach to various inventory 
models and discussed their applicat ions.  

[47] developed a partial backlogging inventory model. 
They proposed the prediction method and algorithms for 
ordering period as well as for minimum total cost.[48] 
presented Economic Production Lot Size model with 
constant deterioration. Shortages are permitted in inventory 
with part ial backlogging.[49] described an EOQ model for a 
deteriorating item considering general time-dependent 
demand, time-dependent partial backlogging over a finite 
time horizon and variab le rep lenishment cycle.[50] 
developed an inventory model with time dependent 
two-parameter Weibull demand rate whose deterioration rate 
increases with time. Each cycle has shortages, which have 
been partially backlogged. 

There are a number of situations in which a customers or 
vendors of some sort are assumed to receive the demand in 
bulk of inventory are subject to put in queue at a service 
facility. The goal of queuing is essentially to trade-off the 
cost of providing a level of service capacity and the 
customers waiting for service. 

With this motivation, in the present paper an attempt is 
made to formulate a partial backlogging inventory model by 
incorporating the deterioration effect  and time-dependent 
power pattern demand rate. Deterio ration of items begins 
after a  certain t ime from the instant of their arrival in  stock, 
we name it as life time of items, and deterioration rate is a 
quadratic function of time. Unsatisfied demand is partially 
backlogged with a variab le rate. To suit present day 
competition in the market, the backlogging rate is inversely 
proportional to the duration of waiting time up to arrival of 
next lot. The d ifferential equations are derived and the 
instantaneous state of inventory is obtained analytically. The 

total cost function, which  consists of setup cost, holding cost, 
backordering cost, lost sale cost, deterioration cost, waiting 
cost and procurement cost is constructed and subjected to the 
optimization which in turn g ives us the system of non linear 
equations. Further, a computing algorithm is proposed to 
find the solution of the system by using the N-R method. We 
compute the optimal inventory period and total optimal 
average cost as most important performance measures for the 
model. Numerical demonstration and sensitivity analysis 
have been carried out for the model to identify the most 
sensibilit ies of various parameters involved in the system 
leading to interesting observations which seem to be 
consistent with its economic insights. This model is much 
useful for analysing the planning of the seasonal and 
fashionable products with the notion of decay or obsolete. 

2. Assumptions and Notations 
In this paper we have made the following notations and 

assumptions in the formulat ion of proposed mathematical 
model of the inventory system.  

2.1. Notations 

I (t)  : the inventory level at any time t, t ≥ 0. 
S    : the in itial inventory level. 
μ     : the life time of items. 

    : the average arrival rate. 
    : the average service rate. 

LS    : the number of customers wait ing for inventory. 
CO    : the set up cost for each replen ishment. 
CH      : inventory holding cost per unit time. 
CD    : deterioration cost per unit. 
CS     : shortage cost for backlogged items. 
CL       : the unit cost of lost sales. 
CW      : wait ing cost per customer per unit t ime. 
CP     : p rocurement cost. 
T      : the planning horizon. 
TAC (t1) : the total average cost. 

2.2. Assumptions 

I. A single item is considered over the fixed period T units 
of time.  

II. Customers are wait ing in line fo r getting inventory 
items. They arrive on a precise schedule (determin istic) of 
evenly spaced intervals and service process is well 
scheduled. 

III.  and are assumed to be constant and are related 

by LS = . 

IV. Deteriorat ion of the items takes place after the life 
time of items. 

V. The variab le deteriorat ion rate θ(t) is time dependent 
quadratic function such that θ(t) = θt2, 0<θ<<1. 

λ
δ

λ δ

λδ
λ
−
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Figure 1.  Deterioration-time relationship 

VI. There is no replenishment or repair of deterio rated 
items during a given cycle. 

VII. The replenishment occurs instantaneously at an 
infinite rate. 
VIII. Lead time is negligible. 
IX. The demand rate is D(t) at any time t such that

, where d  is the fixed  quantity, n is the 

parameter of power demand pattern, the value of n may be 
any positive number.  

X. Shortages are allowed and backlogging rate is 

, when inventory is in shortage. The 

backlogging parameter k is positive constant and 0<k<<1. 
XI. All of the cost parameters are positive constants. 

3. Mathematical Model 
3.1. Model Formulation and Solution  

Let us assume that Q be the total amount of inventory 
produced or purchased at the beginning of each cycle. After 
fulfilling the backorders let  we get an amount S  (>0) as init ial 
inventory. During the period (0, μ) the inventory level 
gradually decreases due to market demand only. After life 
time deteriorat ion can take place, therefore during the period 
(μ, t1) the inventory level gradually abates due to market 
demand and deterioration of items and falls to zero at time t1. 
Shortages take place in the periods (t1, T) which are partially 
backlogged. The depletion of inventory level is shown in the 
following figure. 

The differential equations governing the inventory level 
 at any time t during the cycle (0, T ) are g iven as 

following, 

        (3.1) 

 

 (3.2) 

 
Figure 2.  Partial Backlogging Inventory Model 
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 and  

    (3.3) 

The solution of equation (3.1) is 

         (3.4) 

Taking the first two terms of the exponential series and 
then integrating we get the solution of equation (3.2) as 

                           (3.5) 
Now taking the first two  terms of the exponential series 

and neglecting the term containing α2  the equation (3.5) 
becomes 

(3.6) 

Similarly the solution of equation (5.3) is 

 (3.7) 

From equation (3.5) and (3.6), we have  

 

So that, the value of init ial inventory level (S) is given by 

 (3.8) 

Using equation (3.8) in equation (3.5) we get 

, 

(3.9) 

During period (0, T ) total number of units holding IH is 

 

Using equation (3.9) and equation (3.6) we get 

 

 

Calculating further we get  

 (3.10) 

Total amount of deteriorated items ID, during the period (0, 
T ) is 

 

 

Integrating this, neglecting the term containing θ2 or 
higher degree of it as  

0 < θ <<1, we get 

  (3.11) 

Total amount of shortage units IS during the period (0,T ) is 
given as 

 

 

0)( 1 =tIwith

Ttt
tTk

tD
dt

tdI
≤≤

−+
−

= 1,
)(1

)()(

µ≤≤−= t
T

dtStI
n

n
0,)( 1

1

3

1 13 3
11 1

3
11( ) ,

3 9

n n

t
n n

n

t t
dI t t t e

n
T

θ
θ

+ +

−

  
 −     = − +    +  
 
 

1t tµ ≤ ≤

1 13 3
11 1

3
1 11( ) 1 ,

3 3 9

n n

n n

n

t t
dI t t t t t t

n
T

θ
θ µ

+ +  
 −       = − − + ≤ ≤     +   
 
 

( )

1 11 1
11 1

1 11( ) 1 ,
1

n n

n n

n

k t t
dI t t t k T t t T

n
T

+ +  
 −     = − − + ≤ ≤    +  
 
 

1 13 3
1 11 1

3
11 1( ) 1

3 3 9

n n
n

n n

n n

t
d dI S t

n
T T

θ µ
µ θµ µ µ

+ +  
 −       = − = − − +     +   
 
 

1 13 3
1 11 1

3
11 1 1

3 3 9

n n
n

n n

n n

t
d dS t

n
T T

θ µ
µ θµ µ

+ +  
 −       ⇒ = + − − +     +   
 
 

1 13 3
111 1 1

3
11( ) 1 ,

3 3 9

n n

nn n n

n

t
dI t t t

n
T

θ µ
θµ µ µ

+ +  
 −       = − + − − +     +   
 
 

0 t µ≤ ≤

1 13 3
11 11 13

1 11( ) ,0
3 3 9

n n

n nn n

n

t
dI t t t t t

n
T

θ µ
θ µ µ µ

+ +  
 −     = − − − + ≤ ≤    +  
 
 

∫ ∫+=
µ

µ0

1

)()(
t

H dttIdttII

∫




















+









−

+





 −








−+−=

++

µ
µθ

µθµµ
0

3131

1
3

11

1

11

1 933
1 dt

n

t
tt

T

dI

nn

nnnn

n
H

1

1 13 3
11 1

3
11 1

3 3 9

n n
t

n n

n

t t
d t t t dt

n
Tµ

θ
θ

+ +  
 −       + − − +     +   
 
 

∫

( )

( )

( )
11 1 1 44 14

11 1
1

5 9 3 9
1 4 1 33 9 4

nn n n

H
n

n t nt tdI
n nnT n

θ µ θθ µ
++ +

 
 + +
 = − + +

+  + +    

∫=
1

)()(
t

D dttItI
µ

θ

1

1 13 3
11 1

2 3
11 1

3 3 9

n n
t

n n

n

t t
dt t t t dt

n
Tµ

θ
θθ

+ +  
 −       = − − +     +   
 
 

∫

,
33193

3
1

1

3131

1
1
















−

+
+

+
=

++
µθµθθ nnn

n
D

t
n

n
n

t

T

dI

∫−=
T

t
S dttII

1

)(

( )∫




















+









−

+−







−−=

++

T

t

nn

nn

n

dt
n

ttk
Tktt

T

d

1
1

1

1111

111

11



18 Mishra S S et al.:  Partial Backlogging EOQ Model for Queued Customers with Power Demand and  
Quadratic Deterioration:Computational Approach 

 

 (3.12) 

Total amount of lost sales IL during the period (0, T ) is 
given by 

 

          (3.13) 

3.2. Cost Analysis and Optimization 
The total waiting cost for the customers in the system

. 

Total average cost of the system per unit time is given by 
 

 

 

 

        (3.14) 

To minimize total average cost per unit time  
the optimal value of t1 can be obtained by solving the 
following equation 

 

 

             (3.15) 
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Equation (3.16) is a  non-linear equation in t1 and its value 
is obtained by using N-R method and following algorithm by 
using C++ prov ided total cost is minimum and its second 
derivative is positive for being t1 optimal. The following 
value of second derivative in (3.17) is tested true after 
required parameters are computed  
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Figure 3.  Computing Algorithm 

After substituting the optimal value of t1  in the 
expressions of initial inventory level (3.8) and minimum 

total average cost per unit time  are computed 
finally as optimal. 

3.3. Computing Algorithm 

Following computing algorithm is developed to find out 
the optimal inventory period and total optimal average cost 
of the inventory system. 

4. Sensitivity Analysis 
4.1. Numerical Example 

We have considered the following parameter values to 
illustrate the model numerically. =1000 units, =Rs. 
500 per order, =5, =4, =Rs. 35 per unit per year, 

=100 per unit, =Rs. 80 per unit per year, =Rs. 20 
per unit, =1 year, =4 units, =10, =8, =0.01 
unit, =0.3 year, =0.15 unit. Then to min imize the total 
average cost, optimal values of the decision variables are 
obtained as =0.766271 year, =1000.108444 units, 

=Rs. 6933.95 per year.   

4.2. Tables, Graphics and Observations 

The aim of the sensitivity analysis is to demonstrate the 
variability of the model based on the simulat ions or the 
hypothetical data-input. In this chapter, we prefer the 
hypothetical data-input to run the search program of the 
system. It  is the process of varying model parameters over a 
reasonable range and observing the relative changes in the 
model response. Remarkable are the observed changes in the 
optimal cycle t ime and total optimal average cost of the 
system. 

We wrote a program in C++ to apply a one-variable 
version of N-R method to compute the optimal cycle time 
and consequently the total optimal average cost of the system 
is also computed. In sensitivity analysis, variational effect of 
parameters on the total optimal average cost is presented. 

Table 1.  Demand Coefficient d Vs. Optimal Total Average Cost (TAC*)

 

Demand 
Coefficient 

(d)  

% 
Change 

Inventory 
Period 
(t1*)  

Initial 
Inventory 
Level (S) 

Optimal 
Total 

Average 
Cost (TAC*) 

500 -50 0.766271 500.05 3704.48 
700 -30 0.766271 700.08 4996.25 
900 -10 0.766271 900.10 6288.06 

1000 0 0.766271 1000.11 6933.95 
1100 10 0.766271 1100.12 7579.85 
1300 30 0.766271 1300.14 8871.64 
1500 50 0.766271 1500.16 10163.42 

*
1 )(tTAC

d OC

WC PC HC

DC SC LC
T n λ δ θ

µ k

1t S
TAC

( 500, 5, 4, 35, 100, 80,O W D SC C Cp Ch C C= = = = = =

20, 1, 4, 10, 8, 0.01, 0.3, 0.15)LC T n kλ δ θ µ= = = = = = = =

   Start 

Input CO, CW, CP, CH, CD, CS, CL  
 

Define fn, fn
′, t1n & t1n ~ t10 

Input initial guess t10 

Compute fn, fn
′, t1n & t1n ~ t10 

 

t10← t1n 

          Is 
t1n~ t10<0.0001 

Output t1n 

 

Define TAC* 

    End 

Output TAC* 
 

Compute TAC* 

Enter data in TAC* 
 

Input d, T, n, λ, δ, θ, μ, k 
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Figure 4.  Demand Coefficient d Vs. Optimal Total Average Cost 

In Table and Figure 4, we observe that as demand 
coefficient increases, the optimal inventory period shows a 
negligible increment, while optimal in itial inventory level as 
well as optimal total average cost shows significant 
increment. In fact, about 10% increase in demand coefficient 
amounts to approx. 0.04%, 10% and 9.32% increase in 
optimal inventory period, optimal init ial inventory level and 
optimal total average cost respectively. Moreover, demand 
coefficient shows a positive correlation with optimal 
inventory period, optimal init ial inventory level and optimal 
total average cost.  

Table 2.  Setup Cost  Vs. Optimal Total Average Cost (TAC*)

 

Setup 
Cost 
(CO)  

% 
Change 

Inventory 
Period 
(t1*)   

Initial 
Inventory 
Level (S) 

Optimal 
Total 

Average Cost 
(TAC*) 

200 -60 0.766271 1000.108444 6633.95 
300 -40 0.766271 1000.108444 6733.95 
400 -20 0.766271 1000.108444 6833.95 
500 0 0.766271 1000.108444 6933.95 
600 20 0.766271 1000.108444 7033.95 
700 40 0.766271 1000.108444 7133.95 
800 60 0.766271 1000.108444 7233.95 

In Table and Figure 5, we find that as setup cost increases, 
almost the optimal inventory period and optimal init ial 
inventory level show non-significant increase whereas 
optimal total average cost increases significantly. 
Numerically, about 20% increase in setup cost causes about 
approx. 0.02%, 0.03% and 1.44% increase in  optimal 
inventory period, optimal init ial inventory level and optimal 
total average cost respectively. Thus, setup cost shows a 
positive correlation with optimal inventory period, optimal 
initial inventory level and optimal total average cost.  

 

Figure 5.   Setup Cost  Vs. Optimal Total Average Cost (TAC*) 

Table 3.  Waiting Cost Vs. Optimal Total Average Cost (TAC*)

 

Waiting  
Cost 

(CW)  

% 
Change 

Inventory 
Period 
(t1*)   

Initial 
Inventory 
Level (S) 

Optimal 
Total 

Average 
Cost (TAC*) 

2 -60 0.766271 1000.108444 6948.95 
3 -40 0.766271 1000.108444 6943.95 
4 -20 0.766271 1000.108444 6938.95 
5 0 0.766271 1000.108444 6933.95 
6 20 0.766271 1000.108444 6928.95 
7 40 0.766271 1000.108444 6923.95 
8 60 0.766271 1000.108444 6918.95 

 
Figure 6.  Waiting Cost Vs. Optimal Total Average Cost (TAC*) 

In Table and Figure 6, we find that as waiting cost 
increases, the optimal total average cost decreases. 
Numerically about 20% increase in wait ing cost creates 
about % increase in optimal total average cost. Moreover, 
wait ing cost shows a negative correlat ion with optimal total 
average cost.  
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Table 4.  Procurement Cost (Cp) Vs. Optimal Total Average Cost (TAC*)

 

Procurement 
Cost (Cp)  

% 
Change 

Inventory 
Period 
(t1*)   

Initial 
Inventory 
Level (S) 

Optimal 
Total 

Average 
Cost 

(TAC*) 
2 -50 0.766271 1000.108444 4933.73 
3 -25 0.766271 1000.108444 5933.84 
4 0 0.766271 1000.108444 6933.95 
5 25 0.766271 1000.108444 7934.06 
6 50 0.766271 1000.108444 8934.17 
7 75 0.766271 1000.108444 9934.28 
8 100 0.766271 1000.108444 10934.38 

 
Figure 7.  Procurement Cost (Cp) Vs. Optimal Total Average Cost (TAC*) 

In Table and Figure 7, we find that as the Procurement 
Cost increases, the optimal total average cost also increases. 
Further, an increase of 20% in  procurement cost creates 
about % increase in optimal total average cost. Thus there 
exists a positive correlation  between procurement cost and 
optimal total average cost.  

Table 5.  Holding Cost  Vs. Optimal Total Average Cost (TAC*)

 

Holding 
Cost 
(CH)  

% 
Change 

Inventory 
Period 
(t1*)   

Initial 
Inventory 
Level (S) 

Optimal 
Total 

Average 
Cost 

(TAC*) 
25 -50 0.852457 1000.151914 7076.74 
30 -40 0.806937 1000.127804 7000.06 
40 -20 0.729722 1000.092711 6878.45 
50 0 0.666704 1000.069063 6796.76 
60 20 0.614296 1000.052516 6748.27 
70 40 0.570028 1000.040569 6726.13 
80 60 0.532140 1000.031717 6724.59 

 
Figure 8.  Holding Cost  Vs. Optimal Total Average Cost (TAC*) 

In Table and Figure 8, we find that as holding cost 
increases, the optimal inventory period, optimal init ial 
inventory level as well as optimal total average cost 
decreases. Moreover, about 20% increase in holding cost 
causes about 7.86%, 0.002% and 0.71% decrease in optimal 
inventory period, optimal init ial inventory level and optimal 
total average cost respectively, which indicates that holding 
cost has negative correlation with optimal inventory period, 
optimal in itial inventory level and optimal total average cost.  

Table 6.  Deterioration Cost (CD) Vs. Optimal Total Average Cost (TAC*)

 

Deterioration 
Cost (CD)  

% 
Change 

Inventory 
Period 
(t1*)   

Initial 
Inventory 
Level (S) 

Optimal 
Total 

Average 
Cost 

(TAC*) 
40 -60 0.763809 1000.107336 6871.06 
60 -40 0.764636 1000.107707 6892.15 
80 -20 0.765457 1000.108077 6913.11 
100 0 0.766271 1000.108444 6933.95 
120 20 0.767079 1000.108810 6954.66 
140 40 0.767881 1000.109173 6975.25 
160 60 0.768676 1000.109534 6995.73 

 
Figure 9.  Deterioration Cost (CD) Vs. Optimal Total Average Cost (TAC*) 
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In Table and Figure 9, we observe that as the deterioration 
cost increases, the optimal inventory period, optimal init ial 
inventory level and optimal total average cost also increase. 
Numerically, an increase of 20% in deterioration cost 
amounts to about 0.11%, 0.0001% and 0.30% increase in 
optimal inventory period, optimal init ial inventory level and 
optimal total average cost respectively. Here deterioration 
cost shows a positive correlat ion with optimal inventory 
period, optimal init ial inventory level and optimal total 
average cost.  

Table 7.  Shortage Cost (Cs) Vs. Optimal Total Average Cost (TAC*)

 

Shortage 
Cost 
(Cs) 

% 
Change 

Inventory 
Period 
(t1*) 

Initial 
Inventory 
Level (S) 

Optimal 
Total 

Average 
Cost 

(TAC*) 
56 -30 0.672614 1000.071102 6149.32 

64 -20 0.707900 1000.084037 6400.12 

72 -10 0.738871 1000.096506 6662.44 

80 0 0.766271 1000.108444 6933.95 
88 10 0.790685 1000.119826 7212.81 

96 20 0.812576 1000.130648 7497.59 

104 30 0.832315 1000.140919 7787.12 

 
Figure 10.  Shortage Cost (Cs) Vs. Optimal Total Average Cost (TAC*) 

In Table and Figure 10, we find that as the shortage cost 
increases, the optimal inventory period, optimal init ial 
inventory level and optimal total average cost also increase. 
More exactly, an increase of 30% in shortage cost amounts 
to about 8.62%, 0.003% and 12.30% increase in optimal 
inventory period, optimal init ial inventory level and optimal 
total average cost respectively. Here shortage cost shows a 
positive correlation  with optimal inventory period, optimal 
initial inventory level and optimal total average cost.  

Table 8.  Lost Sales Cost (CL) Vs. Optimal Total Average Cost (TAC*)

 

Lost 
Sales 
Cost 
(CL)  

% 
Change 

Inventor
y Period 

(t1*)  

Initial 
Inventory 
Level (S) 

Optimal 
Total 

Average 
Cost (TAC*) 

10 -50 0.762606 1000.106797 6921.18 
12 -40 0.763348 1000.107129 6923.75 
16 -20 0.764818 1000.107790 6928.87 
20 0 0.766271 1000.108444 6933.95 
24 20 0.767706 1000.109093 6938.99 
28 40 0.769123 1000.109737 6943.99 
30 50 0.769825 1000.110057 6946.47 

 
Figure 11.  Lost Sales Cost (CL) Vs. Optimal Total Average Cost (TAC*) 

In Table and Figure 11, we find that as lost sales cost 
increases, the optimal inventory period, optimal init ial 
inventory level as well as optimal total average cost also 
increases. Moreover, about 40% increase in lost sales cost 
causes about 0.37%, 0.0001% and 0.15% increase in optimal 
inventory period, optimal init ial inventory level and optimal 
total average cost respectively, which indicates that lost sales 
cost has a positive correlation with optimal inventory period, 
optimal in itial inventory level and optimal total average cost.  

Table 9.  Cycle Time  Vs. Optimal Total Average Cost (TAC*)

 

Cycle 
Time 
(T)  

% 
Change 

Inventory 
Period 
(t1*)   

Initial 
Inventory 
Level (S) 

Optimal 
Total 

Average 
Cost (TAC*) 

0.5 -50 0.384319 1000.007632 10823.61 
0.6 -40 0.458336 1000.017765 9319.84 
0.7 -30 0.533458 1000.032003 8322.55 
0.8 -20 0.609763 1000.051209 7651.19 
0.9 -10 0.687336 1000.076338 7207.34 
1.0 0 0.766271 1000.108444 6933.95 
1.1 10 0.846672 1000.148702 6796.85 
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Figure 12.  Cycle T ime  Vs. Optimal Total Average Cost (TAC*) 

In Table and Figure 12, we see that as cycle time increases, 
the optimal inventory period and optimal initial inventory 
level show an increasing trend whereas optimal total average 
cost shows a diminishing trend. In fact, about 10% increase 
in cycle time amounts to approx. 10.49% and 0.004% 
increase in optimal inventory period and optimal init ial 
inventory level respectively but 1.98% decrease in  optimal 
total average cost. Thus, cycle time is positively correlated 
with optimal inventory period and optimal initial inventory 
level whereas it is negatively correlated with optimal total 
average cost.  

Table 10.  Demand Parameter (n) Vs. Optimal Total Average Cost (TAC*)

 

Demand 
Parameter 

(n)  

% 
Change 

Inventory 
Period 
(t1*)   

Initial 
Inventory 
Level (S) 

Optimal 
Total 

Average 
Cost 

(TAC*) 
2 50 0.766271 1000.201396 8270.73 

3 -25 0.766271 1000.140977 7441.61 

4 0 0.766271 1000.108444 6933.95 

5 25 0.766271 1000.088111 6591.56 

6 50 0.766271 1000.074199 6345.14 

7 75 0.766271 1000.064081 6159.36 

8 100 0.766271 1000.056391 6014.29 

In Table and Figure 13, we see that as demand parameter 
increases, the optimal inventory period remains unaffected 
whereas optimal in itial inventory level as well as optimal 
total average cost show dimin ishing trend. Further, an 
increase of 50% in demand parameter creates about 0.003% 
and 8.49% decrease in optimal in itial inventory level and 
optimal total average cost respectively, which indicates that 
demand parameter is negatively correlated with optimal 
initial inventory level and optimal total average cost.  
 

 
Figure 13.  Demand Parameter (n) Vs. Optimal Total Average Cost (TAC*) 

Table 11.  Average Arrival Rate(λ) Vs. Optimal Total Average Cost (TAC*)

 

Average 
Arrival 

Rate(λ)  

% 
Change 

Inventory 
Period 
(t1*)   

Initial 
Inventory 
Level (S) 

Optimal 
Total 

Average 
Cost 

(TAC*) 
19 -13.62 0.766271 1000.108444 6863.95 

20 -9.08 0.766271 1000.108444 6908.95 

21 -4.54 0.766271 1000.108444 6923.95 

22 0.00 0.766271 1000.108444 6933.95 

23 4.54 0.766271 1000.108444 6938.95 

25 13.62 0.766271 1000.108444 6943.95 

28 27.24 0.766271 1000.108444 6948.95 

 
Figure 14.  Average Arrival Rate(λ) Vs. Optimal Total Average Cost 
(TAC*) 

In Table and Figure 14, we observe that as average arrival 
rate increases, the optimal total average cost also increases. 
In fact, about 27.24% increase in average arrival rate 
amounts to approx. 0.22% increase in optimal total average 
cost. Moreover, average arrival rate shows a positive 
correlation with optimal total average cost.  
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Table 12.  Average Service Rate (δ) Vs. Optimal Total Average Cost (TAC*)

 

Average 
Service 
Rate (δ)  

% 
Change 

Inventory 
Period 
(t1*)   

Initial 
Inventory 
Level (S) 

Optimal 
Total 

Average 
Cost 

(TAC*) 
18 -14.29 0.766271 1000.108444 6943.95 
19 -9.52 0.766271 1000.108444 6938.95 
20 -4.76 0.766271 1000.108444 6933.95 
21 0.00 0.766271 1000.108444 6928.95 
22 4.76 0.766271 1000.108444 6918.95 
23 9.52 0.766271 1000.108444 6898.95 
24 14.29 0.766271 1000.108444 6833.95 

 

Figure 15.  Average Service Rate (δ) Vs. Optimal Total Average Cost 
(TAC*) 

In Table and Figure 15, we find that as average service rate 
increases, the optimal total average cost decreases. 
Numerically, about 14.29% increase in average service rate 
amounts to approx. 1.37% decrease in optimal total average 
cost. Moreover, average service rate shows a negative 
correlation with optimal total average cost.  

Table 13.  Deterioration Coefficient (θ)Vs. Optimal Total Average Cost 

(TAC*)

 

Deterioration 
Coefficient 

(θ)  

% 
Change 

Inventory 
Period 
(t1*)   

Initial 
Inventory 
Level (S) 

Optimal 
Total 

Average 
Cost 

(TAC*) 
0.005 -50 0.760886 1000.053014 6614.41 

0.006 -40 0.761977 1000.063909 6677.72 

0.008 -20 0.764138 1000.085987 6805.24 

0.010 0 0.766271 1000.108444 6933.95 

0.012 20 0.768376 1000.131277 7063.85 

0.014 40 0.770455 1000.154482 7194.94 

0.015 50 0.771484 1000.166222 7260.93 

 
Figure 16.  Deterioration Coefficient (θ)Vs. Optimal Total Average Cost 
(TAC*) 

In Table and Figure 16, we observe that as deterioration 
coefficient increases, the optimal inventory period, optimal 
initial inventory level and  optimal total average cost also 
increases. Actually, about 40% increase in deterioration 
coefficient causes about 0.55%, 0.005% and 3.76% increase 
in optimal inventory period, optimal in itial inventory level 
and optimal total average cost respectively, which indicates 
that deterioration coefficient has positive correlation with 
optimal inventory period, optimal init ial inventory level and 
optimal total average cost.  

Table 14.  Life Time (μ) Vs. Optimal Total Average Cost (TAC*)

 

Life 
Time 
(μ)  

% 
Change 

Inventory 
Period 
(t1*)   

Initial 
Inventory 
Level (S) 

Optimal 
Total 

Average 
Cost 

(TAC*) 
0.1 -67 0.765828 1000.114911 6924.45 
0.2 -33 0.765991 1000.113190 6928.00 
0.3 0 0.766271 1000.108444 6933.95 
0.4 33 0.766676 1000.099140 6942.32 
0.5 67 0.767212 1000.083742 6953.17 
0.6 100 0.767887 1000.060714 6966.54 
0.7 133 0.768709 1000.028523 6982.51 

 
Figure 17.  Life Time (μ) Vs. Optimal Total Average Cost (TAC*) 
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In Table and Figure 17, we observe that as life t ime of 
deteriorating items increases, the optimal inventory period 
and optimal total average cost increases whereas optimal 
initial inventory level dimin ishes. Numerically, about 67% 
increase in life time causes about 0.12% and 0.28% increase 
in optimal inventory period and optimal total average cost 
respectively but 0.003% decrease in optimal init ial inventory 
level. Thus life time is positively correlated with optimal 
inventory period and optimal total average cost but it is 
negatively correlated with optimal in itial inventory level.  

Table 15.  Backlogging Coefficient (k)Vs. Optimal Total Average Cost 

(TAC*)

 

Backlogging 
Coefficient 

(k)  

% 
Change 

Inventory 
Period 
(t1*)   

Initial 
Inventory 
Level (S) 

Optimal 
Total 

Average 
Cost 

(TAC*) 
0.06 -60 0.727506 1000.091806 5742.59 

0.09 -40 0.739399 1000.096728 6125.36 

0.12 -20 0.752279 1000.102239 6521.71 

0.15 0 0.766271 1000.108444 6933.95 
0.18 20 0.781528 1000.115473 7364.90 

0.21 40 0.798229 1000.123489 7818.08 

0.24 60 0.816589 1000.132696 8297.89 

 
Figure 18.  Backlogging Coefficient (k)Vs. Optimal Total Average Cost 
(TAC*) 

In Table and Figure 18, we find that as the backlogging 
coefficient increases, the optimal inventory period, optimal 
initial inventory level and  optimal total average cost also 
increase. More exactly, an  increase of 40% in  backlogging 
coefficient amounts to about 4.17%, 0.002% and 12.75% 
increase in optimal inventory period, optimal init ial 
inventory level and optimal total average cost respectively. 
Here backlogging coefficient shows a positive correlation 
with optimal inventory period, optimal in itial inventory level 
and optimal total average cost.  

5. Conclusions 
In the present paper, we have developed an inventory 

model for perishable items with power form t ime dependent 
demand and quadratic deterioration rate. This type of 
demand if occurs, then managers develop a different policy 
other than the conventional policy based on general ramp 
pattern. In cases where large portion of demand occurs at the 
beginning of the period we use n > 1 and if it occurs at the 
end of the period, we use 0 < n < 1. Constant demand rate 
corresponds to n = 1 and n = ∞ corresponds to instantaneous 
demand. Shortages are allowed and the backlogging rate is 
dependent on the duration of waiting time for the next 
replenishment and varies inversely. Shortages are partially 
backlogged in th is model. Behaviours of different 
parameters have been discussed through the numerical 
example and sensitivity analysis. A future study will 
incorporate more realistic assumptions in the proposed 
model such as stochastic nature of demand and deterioration. 
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