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Abstract  In this paper, we tackle a new variant of the Vehicle Routing Problem (VRP) which combines two known 
variants namely the Profitable VRP and the VRP with Mult iple Trips. The resulting problem may be called the Profitable 
Vehicle Routing Problem with Multiple Trips. The main purpose is to cover and solve a more complex realistic situation of 
the distribution transportation. The profitability concept arises when only a subset of customers can be served due to the 
lack of means or for insufficiency of the offer. In  this case, each customer is associated to an economical profit  which will 
be integrated to the objective function. The latter contains at hand the total collected profit minus the transportation costs. 
Each vehicle is allowed to perform several routes under a strict workday duration limit. This problem has a very practical 
interest especially for daily distribution schedules with limited vehicle fleets and short course transportation networks. We 
point out a new discursive approach for p rofits quantificat ion which is more significant than those existing in the literature. 
We propose four equivalent mathematical formulations for the problem which are tested and compared using CPLEX 
solver on small-size instances. Optimal solutions are identified. For large-size instance, two constructive heuristics are 
proposed and enhanced using Hill Climbing and Variable Neighborhood Descent algorithm based on a specific 
three-arrays-based coding structure. Finally, extensive computational experiments are performed including randomly 
generated instances and an extended and adapted benchmark from literature showing very satisfactory results. 
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1. Introduction 
Nowadays, effective management of the supply chain is 

recognized as a determinant key o f compet it iveness and 
success for manufactu ring and d istribution organ izations. 
The problems of routing goods from depots to consumers or 
between  d ifferent  log ist ical s ites  are very  important . 
Drawing adequate plans may produce significant savings for 
many distribution systems. Therefore, the Vehicle Routing 
Prob lem ( VRP ) is  a  well-known prob lem stud ied  in 
Operat ional Research. It deals with find ing the opt imal 
delivery routes configuration from one or several depots to a 
number of customers using a fleet of capacitated vehicles, 
while satisfying some constraints. The solution of a VRP is a 
set of min imum cost routes which  fu lfill the customers’ 
requirements. In the classical version of the problem, only 
one depot is considered with an unlimited fleet of vehicles 
where each vehicle performs exact ly one circu it. Several 
operational constraints can be considered in more practical  
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applications of the VRP. 
In this research, we focus on two variants of the VRP: the 

Profitable VRP and the VRP with Mult iple Trips, which we 
combine to obtain a new variant not addressed in the 
literature to our knowledge and involving a new challenge 
in term of solving approaches. This problem which  can be 
named the Profitable Vehicle Routing Problem with 
Multiple Trips (PVRPMT) calls for the determination of a 
set of routes for a given heterogeneous set of vehicles 
visiting a selective subset of customers such that: i) it is 
difficult, if not impossible, to visit all customers for a lack 
of logistical means or for insufficiency of the offer; ii) each 
visited customer p rovides a fixed profit that is recognized in 
the objective function to maximize. The latter is the 
difference between the total profit  generated by the all v isits 
and the resulting total transportation cost; iii) each vehicle 
may  perform several routes in the same planning  period but 
does not exceed  a strict durat ion limit (temporal capacity); 
iv) for each route, the total load does not exceed the vehicle 
capacity (physical capacity). The motivation to study this 
problem come not only from its theoretical interest but also 
from its practical relevance. For example, the size of the 
vehicle fleet  indicates the capital invested in logistics 
resources. That the reduction of this size is naturally more 
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desirable, the problem counts as a strategic choice in the 
problem reading to guide the optimization towards reducing 
both capital and operating (scheduling) costs. In this 
situation, there might be a trade-off between higher 
scheduling costs and lower vehicle ownership-based costs 
(and eventually associated driver salaries-based costs). 
Otherwise, this problem is very practical where daily drivers’ 
schedules must be achieved with a limited vehicle fleet and 
short-distance distribution networks. Furthermore, when we 
are unable to respond to all costumer requests, the problem 
reading should be different. A subtle selection of costumers 
to be served is required. It should be based on a clear and 
measurable criterion. It  is therefore important to define a 
significantly manner to classify customers according to their 
importance, behavior and costs implications, and to translate 
this into a global criterion that can be optimized as the total 
cost associated with the transportation program. This issue of 
profitability will be raised when the instances are to be 
conceived and tested, because most companies do not have a 
carefully designed evaluation of each costumer’s profit. The 
latter should not only be related to  the volume of its current 
request but must take into account other considerations, 
related to the future potentials of this costumer. And the 
value must also be reasonably projected on a coherent scale 
with the transportation costs that appear in the objective 
function in order to ensure significant aggregation-based 
assessments for the computed solutions. 

The addressed problem concerns the PVRPMT as a new 
variant of pract ical VRP. Note that this kind of problems 
would be attractive in particu lar for p lanning mechanisms of 
ERP software which must integrate a miscellaneous range of 
situations of management and control. For a more devoted 
emphasis mainly to the operational context, our objective is 
multip le with this problem combining at hand: the 
maximization of the total collected profit, the min imization 
of the total routing costs and indirectly the maximization of 
the use of resources (vehicles and drivers). The issue of 
different mathematical models for this problem is to be 
addressed and used to seek solution optimality for s mall-size 
instances. Giving the complexity of the problem which is 
NP-hard, two  constructive polynomial heuristics with two 
different greedy-based constructions will be proposed as a 
first approach to solve the large-size instances. Their 
effectiveness is tested and then enhanced, in a second solving 
approach, with an iterative amelio rative procedure using 
successive local searches with multiple and sequential 
neighborhood structures. For instances generation, we point 
out a new and quick discursive approach for profits 
quantification which is more significant than those existing 
in the literature. 

The remainder o f this paper is organized as fo llows. 
Section 2 reviews the related research literature. In section 3, 
we formally present the optimizat ion problem PVRPMT 
with a detailed theoretical graph description and we 
introduce the corresponding proprieties and notations. 
Furthermore, we determine this problem complexity. In 
Section 4, based on two strategies of sub-tours elimination 

constraints, we provide four mathemat ical models of the 
problem including MILP and 0-1 ILP. Section 5 describes 
two constructive heuristics and an enhancement procedure 
based on the Variable neighborhood Descent algorithm 
(VND). The computational experiment is presented in 
Section 6 to obtain insights about the different 
performances of the optimizing proposed algorithms. This 
section begins with a new precision about the evaluation of 
profitability indices to be incorporated into the numerical 
instances’ files and subsequently into the computation of 
the objective functions in adequacy with the measures 
adopted for the transportation costs. We draw conclusions 
and discuss future research directions in Section 7. 

2. Literature Review 
The problem we focus on is a  combination of the two  

known variants such that: the vehicle routing problem with 
multip le trips or with multip le uses of vehicles (noted by 
VRPMT or VRPM) and the profitable vehicle routing 
problem (PVRP). To the best of our knowledge, these 
problems are studied separately in literature, excepting some 
special recent works[2, 3, 5], but with time windows 
considerations. For the latters, the concept of Multiple Trips 
is obtained indirectly by imposing a duration limit on each 
tour and not on the workday duration. Thus, the problem may 
look like a Capacitated VRP, where the multip le uses of 
vehicle is a  consequence since the tours duration limit  is 
fixed sufficiently small. So, the tours could be seen as 
parallel tours conducted by several vehicles. However, the 
integration of time windows constraint into the same 
problem gives the importance to the tours’ order and 
consequently gives a special (restricted) Multiple Trips 
consideration. In this section, we devote two sub-sections to 
review the literature of the VRPMT and the PVRP.  

2.1. The Vehicle Routing Problem with Multiple Trips  

The VRPMT is an extension of the classical VRP in  
which the same vehicle may perform several routes in the 
same planning period (workday). In this case, the fleet 
includes a fixed  number of available vehicles. However, the 
duration of a vehicle workday which is made o f a set of 
successive routes does not exceed a certain limit . 

This problem has a very practical importance. For 
example, in the home delivery of perishable goods like food, 
routes are of short duration and must be combined to form a 
complete workday[1]. Some real-world cases dealing with 
this kind o f problem appear in  applicat ive research 
publications. For instances, note the paper of Brandao et al. 
1997[6] which studies  the VRP in Burton’s Biscuit Ltd; 
and the case study of the logistical act ivities of Santa Fe 
Indonesia (precisely in  the office o f Jakarta, a  company 
specialized on relocation services to individuals as well as 
companies) which is considered in[7]. Derigs et al. 2011[8] 
study some real cases dealing with this problem from a 
consultancy company in the air cargo transportation field 
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(air cargo road feeder services). Planned and ad-hoc tasks, 
different resources and environment constraints are taken 
into account, such as driving time with breaks, working 
time with min imum requirements in relat ion to the health 
and the safety of persons performing mobile road transport 
activities. These problems deals with different applicat ions, 
such as: the transportation of live animals to a 
slaughterhouse, the transportation of the meals or the flight 
food from a central kitchen to the aircraft, the transportation 
of goods from suppliers to retailers using one or more 
cross-docks. More additional constraints, such as time 
windows, split delivery, heterogeneous fleet, are considered 
respectively in[9, 10, 11and 12]. Grünert et al. 1999[13] 
develop a decision support system (DSS) which is designed 
in order to assist planners of the German postal service at 
the Deutsche Post AG. The main goal is to reduce the costs 
of the letter-mail transportation. In[14], a vehicle routing 
problem including multip le trips in  a health care 
organization which  operates about 240 buildings of medical 
offices in Southern California is treated. Finally, we 
mention Hernandez et al. 2009[15] which present a 
VRPMT applied in a context of optimizing the agronomic 
performance and its impact on the environment.  

In the academic literature, the papers treating the 
VRPMT consider in general addit ional constraints main ly 
the time windows. Azi et al. 2007[1] study this problem with 
time windows consideration and a single vehicle’s use. The 
extension for multi-vehicle version is tackled by Azi et  al.  
[2, 3, 4] and Macedo et al. 2011[5]. Other works include also 
both multip le trips and time windows such as[6, 7, 8, 11, 12, 
14, 15, 16, 17, 18, 19 and 20]. The overtime constraint is 
incorporated to the VRPMT in[14, 16, 21, 22, 23 and 24]. 
Heterogeneous fleet is considered with this problem in   
[7, 10, 12, 16 and 27]. Some VRPMT are studied by 
including a products compatibility constraint which 
forbidden to gather in a same vehicle route two or more 
different categories of goods[7, 8, 16, 24, and 27]. The 
multip le trips constraint is used in VRP with backhaul in   
[7 and 12], combined with allowed split delivery case in[12], 
with location problem in [25 and 26], with a planning horizon 
of several days in[14 and 27], with mult iple depots in[28], 
with meal breaks during the driv ing time in[11]. The 
problem is studied in a dynamic environment in[4 and 8].  

In term of solving methods, few papers develop exact 
approaches for the VRPMT, because of the problem’s 
complexity, such as[1, 2, 5, 15 and 17] using MILPs, 
column generation with branch-and-price algorithm and 
network flow-based models. Note that solving the VRPMT 
may consist on solving a routing and packing problem. In 
this level, different heuristics and metaheuristics are 
developed. For the routing phase, we can d istinguish some 
constructive heuristics used to obtain an initial solution, such 
insertion heuristics used in[3, 4, 10, 14, 20, 22, 27 and 29], 
the Clark and Wight algorithm[24, 25 and 31], the modified 
Clark and Wight algorithm[25 and 31], the nearest 
neighborhood method[25 and 29], clustering algorithms  
[7, 19 and 24], the sweep-based algorithm[20, 21, 28 and 

32], set covering-based approaches[7 and 32] and the petal 
method[32]. The init ial obtained solutions are enhanced by 
different methods: we find the tabu search in[6, 13, 14, 18, 
19, 20, 21, 23, 25, 27, 28 and 29], the simulated annealing 
in[3, 25, 26 and 31], neighborhood search based on 
insertion moves in[10, 18, 22, 24, 25,  29 and 31], on swap 
moves in[22, 24, 25, 26, 29 and 31], on 2-opt in[18 and 25], 
on adaptive memory in[21 and 30]. Other specific 
neighborhood search algorithms are proposed such as large 
neighborhood search in[3 and 4], guided neighborhood 
search in[8]. In[8], we find also a decomposition approach. 
In[18], a filter and fan procedure is developed. For the 
packing phase, some well-known heuristics for bin packing 
problems are used, specially the best fit decreasing in   
[16, 22, 24, 25 and 30]. In[8], a g reedy packing procedure is 
used and a fuzzy theory-based method is proposed in[33]. 

The VRP with mult iple trips, but no other additional 
constraints, is addressed through heuristics in Brandao and 
Mercier 1998[7], Taillard et al. 1996[23], Olivera and Viera 
2007[21], Petch and Salh i 2004[22].  

2.2. The Vehicle Routing Problem with Profit  

VRP with profits are a generalization of the vehicle 
routing problems. Given a fixed-size fleet of vehicles, it 
might not be possible to serve all customers. Thus, a known 
profit is associated with each demand node and the 
customers must be chosen based on their associated profit 
minus the travelling cost to reach them in the solution. The 
idea to associate a known profit at each customer is made 
by Dell’Amico et al. 1995[35]. The constraint to visit all the 
customers is relaxed, but for each unvisited customer a 
given penalty has to be paid. The objective function is to 
find a balance between these penalties and the cost of the 
tour. Profits are exp licitly  considered both in the Vehicle 
Routing Problem (PVRP) and the Traveling Sales man 
Problem with Profits (TSPP), as stated by Feillet et al. 
2005[34] in an excellent comprehensive survey. The TSPP 
can be formulated as a d iscrete bi-criteria optimization 
problem where the two goals are referred: maximizing the 
profit and min imizing the traveling cost. It is also possible 
to use one of the goals as the objective function and the 
other as a constraint. These problems can be div ided into 
three categories according to Feillet  et al. 2005[34]: a) the 
Profit Tour Prob lem (PTP), b) the Selective TSP (STSP), 
and c) the Prize–Collecting TSP (PCTSP).  

For the first problem (PTP), the objective is to maximize 
the difference between the total collected profit and the 
traveling cost. Feillet et al. 2005[34] survey lists various 
modeling approaches to TSPP and exact methods as well as 
heuristic solution methods. Archetti et al. 2009[36] study 
the capacitated version of the PTP and propose exact and 
heuristic procedures for it. More recently, the authors[37] 
develop an exact approach based on a branch-and-price 
algorithm. A restricted master heuristic is applied at each 
node of the branch-and-bound tree in order to  obtain primal 
bound values.  

For the second problem which is known through three 
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equivalent names in the literature: the Orienteering Problem 
(OP), the Select ive TSP (STSP), or the Maximum 
Collection Problem (MCP), the objective is to maximize  
the collected profit such that the total traveling cost or 
distance does not exceed a certain upper bound. The 
multi-vehicles version of the OP is very similar to the VRP, 
except that vehicles are assumed to be with unlimited 
capacity and there is a time constraint on each tour. This 
problem is called  the Team Orienteering Problem (TOP). 
Recently, Vansteenwegen et al. 2011[43] provides a survey 
of the existing OP and TOP. In this paper, the applications 
and the solving approaches about the two problems is 
reviewed listing various modeling approaches and exact as 
well as heuristic solution methods. In addition, many 
relevant variants of these problems are formally presented.  

For the third problem which is named the Prize– 
Collecting TSP or also known as the Quota TSP concerns 
the determination of a tour with the minimum total traveling 
cost where the collected profit or prize is greater than a 
lower bound. 

Note that the PVRP is also a kind of PTP when 
considering comparing to TSPP that vehicles have physical 
loading capacities. In[38], The PVRP is applied in the 
reverse logistics where a firm aims to collect cores from its 
dealers. The problem is an extension of the classical 
multi-depots vehicle routing problem (MDVRP) in which 
each visit to a dealer is associated with a gross profit and an 
acquisition price to be paid to take the cores back. First, two 
mixed-integer linear p rogramming (MILP) are presented. 
Then, a Tabu Search-based heuristic is proposed to solve 
medium and large-sized instances. In[39], the research deals 
with a VRP in which the total profit is to be maximized 
subject to market competit ion. The PTP in a dynamic 
environment is considered in[40]. In this problem, the 
rewards (profits) are unknown for the customers which are 
not yet served. Indeed, the rewards depend on competitors’ 
prices and auctions. In another extension of the problem, 
the profit is associated to each edge non to vertices. The 
problem is then called the Profitable Arc Routing Problem 
(PARP). Archetti et al. 2010[41] study the capacitated 
undirected version (UCARPP) and develop a branch-and- 
price algorithm, several heuristics based on Variab le 
Neighborhood Search (VNS) and two Tabu Search 
heuristics. Zachariadis et al. 2011[42] propose another local 
search approach for the UCARPP. Two solution 
neighborhoods are considered and the overall search is 
coordinated by the use of the promises concept. 

The problem studied in this paper is a new extension 
which combines the two previous variants.  

3. Problem Definition and Notation 
3.1. Problem Description and Notation 

We consider a complete undirected graph G = (V, E), 
where V= {0… n} is a set of vert ices and E is a set of edges. 

Vertex 0 represents the depot and a fleet of vehicles k  = 
{1… m} is based. Each vehicle has a limited capacity Q (or 
Qk if with heterogeneous fleet) and a maximum number of 
trips L. Note that, the parameter L is defined to facilitate the 
problem formulat ion and can be used as a real constraint, i.e. 
as a limit to be respected. However, the best value of L can 
be experimentally  identified. An edge (i,j)∈E represents 
the possibility to travel from customer i to customer j. A 
non-negative demand qi, profit pi, and time service Si, are 
associated with each customer i (with setting p0=q0=0). A 
travel time tij and cost cij are associated with each edge 
(i,j)∈E. Each vehicle starts and ends its tour at vertex 0, 
and can visit any subset of customers with a total demand 
that does not exceed the used vehicle capacity Q. In 
addition, there exists a time horizon denoted by the duration 
limit Tmax which establishes the duration of a workday. It is 
assumed that all parameters are nonnegative integers and 
the environment is determin istic.  

This problem named the PVRPMT consists on 
determining a set of routes and to assign each route to one 
vehicle, such that the same vehicle can be used by several 
routes while respecting the time horizon capacity. The 
objective is to maximize the difference between the total 
collected profit and the cost of the total traveled distance. 
Note that the following properties: 

• The optimal solution may be composed by a subset of 
customers. 

• Each route starts and ends at the depot, 
• The total customers’ demand in the same route does not 

exceed the physical capacity of used vehicle, 
• The duration of routes assigned to the same vehicle does 

not exceed Tmax. 
• The profit associated at each customer is fixed and can 

be collected by any vehicle.  

3.2. Problem Complexi ty 

Olivera and Viera[21] proved that the VRPMT is NP-hard  
as well as the PVRP[34]. The studied problem represents the 
combination of these two NP-hard problems. This makes it 
also NP-hard. In addition, PVRPMT is a generalization of 
the classical VRP. There are instances of PVRPMT in which 
there exist enough vehicles in the fleet able to optimally visit 
during the workday all customers using one vehicle for each 
tour. These cases are naturally reduced to a classical VRP. 
As the VRP is an NP-hard[22], the PVRPMT is also 
NP-hard. 

4. Mathematical Models for the 
PVRPMT 

The design of the VRP solution stands against the 
presence of the sub-tours. For that, different sub-tours 
elimination constraints are proposed. The most classical 
constraint and the most used in the literature can be written in 
this way:  
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This formulation is exponential and influences strongly 
the resolution time.  

In this section, we propose four mathemat ical 
formulat ions for the PVRPMT. The difference between them 
is based on the strategy used to eliminate the sub-tours and 
the decision variables defin itions. The different indices, 
parameters and decision variables are g iven in Table 1. 

Table 1.  Nomenclature 

Indices 
i , j  : customer index 
k : vehicle index 
l : trip index 
t: order index 
Variables 

 

 

 

Ui :  variable associated to customer i used to reformulate the 
sub-tour elimination constraints 
Parameters 
cij : cost associated with the edge (i , j) 
tij: t ime to traverse edge (i , j)  
Q : capacity of the vehicle  
m : number of available vehicles  
L: maximum number of  trips can be made by one vehicle 
n: number of vertices 
Tmax: working day time limitation 
qi: demand of customer i 
pi: profit collected at customer i 
Si: service time at customer i 
M : a big positive number 

4.1. Modeling with 0-1 Integer Linear Programming  

We start with the idea to specify for each assigned 
customer his order in the trip. This idea has been applied in 
the scheduling problem. For each job, we determine the 
position of the job in the sequence. We use the visit order of 
customer i in the trip in order to eliminate the invalid tours. 
Accordingly, we eliminate the subset S and the associated 
constraints. We consider the following binary decision 
variables: 

 

 
A new decision variable 𝑦𝑦𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘  is added and informs about 

the visit order of customer i in the trip l.  
Based on the choice of the principal variable in the 

formulation, we can distinguish two different mathematical 

models. 
• First formulation: 0-1ILP1 with 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 as principal 

variables.   
Here, the second variable 𝑦𝑦𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘  is used just to make the 

connection between the edge and the vertices. The resulting 
formulat ion is the following: 
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In this formulat ion, the objective is to maximize the 
overall collected profit  minus the transportation cost. The 
constraints (3-5) guarantee that each customer is visited at 
most once. In (6), if the route l exists, it should start and 
fin ish in the depot. (7) represents the capacity constraint. The 
limit duration on a workday is restricted by (8). (9) 
represents the flow conservation constraint. The constraint 
(10) establish the relation between the edg (i,j) and the 
relevant position of i and j. (11) represents the initialization 
of the counter and (12) stands against the addition of a 
customer if the route is closed. In (13), each constructed trip 
should start in the depot. (14) represent the integrity 
constraints. 

• Second formulation : 0-1 ILP2 with 𝑦𝑦𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 as principal 
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variables  
In this model, we conserve the constraints which establish 

the relation between 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 and 𝑦𝑦𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘  such in ILP1. When it is 
possible, we integrate the variable 𝑦𝑦𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘  in the objective 
function and in the constraints. The objective is to test the 
influence of this transformation on the upper bound and to 
know which expression can conserve much more 
informat ion if the integrity constraints are relaxed. The 
resulting model is as follow:   
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4.2. Modeling with Mixed Integer Linear Programming  

To overcome the limitation of the classical sub-tours 
elimination  constraint, Miller et al. 1960[44] p ropose a new 
ones which are corrected by Kara et al. 2004[45]. In this 
level, we propose an adaptation of these constraints to our 
problem. For that, we remove the decision variable 𝑦𝑦𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘 and 
we define Ui. as an associated variable to customer i used to 
reformulate the sub-tour elimination constraints; 

Firstly, we present the ordinary model. Then an extension 
of this model with some proposed cuts. 

• Third formulation: MILP1 (without cuts) 
The formulat ion is the following:  

          (28) 

     (29) 

 (30) 

 (31) 

0 0
0 0,..., ; 1,..., ; 1,...,

n n
kl kl
ih hj

i j
i h j h

x x h n k m l L
= =
≠ ≠

− = ∀ = = =∑ ∑  (32) 

      (33) 
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ijx i j t n k m l L∈ ∀ = = =   (35) 

The constraint (29) guaranties that the customer i is 
visited at most once during the workday. (30) represents the 
capacity constraint. The workday duration limit  is respected 
in (31). (32) represents the flow conservation constraint. 
The adaptation of Miller et al. sub-tours elimination 
constraints, as it is modified by Kara, for our p roblem is 
given by (33) and (34). (35) represents the integrity 
constraint. 

• Forth formulation : MILP2 ( with cuts) 
For the previous mathemat ical model (MILP1 without 

cuts), we add an optional variab le δkl  which informs about 
the used vehicle. So, the correspondent constraints which 
establish the relation between the two decision variables 
will be adjo ined.  

 
The formulat ion becomes: 
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   (45) 

(46) 

     (47) 

To integrate the new decision variable, three additional 
constraints which establish the relation between the two 
decision variables are adjoined. (43) means that if the route l 
exists, it should start and fin ish in the depot. (44) guaranties 
that if the edge (i,j) is assigned to the trip l, this latter should 
be constructed. The opposite case is presented by (45). This 
constraint prohibits the construction of empty route, i.e . if the 
route l is constructed, at least one edge must be assigned at 
this trip. 

4.3. The Heterogeneous Fleet Case 

In this subsection, we proposed a formulation extension to 
solve the special case of PVRPMT with heterogeneous fleet. 
So, each vehicle k  has its own capacity 𝑄𝑄𝑘𝑘 . Then, some 
modifications on MILP2 are done. The constraint (4.3) is 
replaced by (5.3). The constraints (4.6) and (4.7) are replaced 
respectively by (5.6) and (5.7): 

 (48) 

      (49) 
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5. Solving Algorithms 
The present section is devoted to the description of the 

main steps of the implemented algorithms. We start by 
explaining the solution coding scheme. Then, constructive 
heuristics used to build init ial feasib le solutions to the 
problem are described. Finally, improvement procedures 

based on Hill Climbing and Variable Neighborhood Descent 
(VND) are proposed. 

5.1. Solution Coding Scheme 

To further speed up the computation, we use tree-array 
data structure to represent a solution. The information 
concerning the customer is stored into the first array (V1[j]). 
So, its size is equal to  the number of customers n (we 
eliminate the deposit from the solution representation). First, 
the visited customers are stored adjacently in the order of 
visit. Then, the unvisited customers are inserted in the end of 
the array. It is important to know the start and the end of each 
trip. This information is done by the second array (V2[j]). 
This latter is a  b inary vector. Finally, the third  array  (V3[j]) 
informs about the index of the used vehicle to visit the 
correspondent customer. Using this structure, the lecture of 
the solution is clear and easy, and changes can be performed 
very quickly and in a constant time. The solution is coded as 
follows: 

Let the matrix V[i][j] with i ϵ  {1, 2, 3}and j ϵ {1, 2,…n} be 
the following: 

j 1, 2, 3………………......……….n 

V1[j] 1, 2, 3………………......……….n 

V2[j] Binary vector ( 0, 0, 1, 0, 0, 1, 0, 0, ) 

V3[j] 1, 2, 3…….……..m, -1, -1, -1, -1, -1 

 

 

 

Figure 1 represents an illustrative example with 5 short 
routes, 18 customers and 3 vehicles and table 4 represents the 
relative solution code. 

 
Figure 1.  Illustrative Example 
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Table 2.  Coding Solution of the illustrative example 

j 1 2 3 4 5 6 7 8 9 10 

V1[j] 1 2 3 5 7 12 10 11 14 15 

V2[j] 0 0 1 0 0 1 0 1 0 1 

V3[j] 1 1 1 2 2 2 3 3 3 3 

 
j 11 12 13 14 15 16 17 18 

V1[j] 17 18 4 6 8 9 13 16 

V2[j] 0 1 0 0 0 0 0 0 

V3[j] 1 1 -1 -1 -1 -1 -1 -1 

5.2. Constructive Heuristics for the PVRPMT 

The goal of this subsection is to construct good feasible 
solutions for the problem. We propose two greedy 
constructive heuristics. These heuristics use some local 
optimalit ies in certains steps of the algorithm. 

5.2.1. Heuristic H1 

The insertion heuristic is used to build an init ial feasible 
solution. In every iteration, the procedure evaluates all 
feasible insertions of unvisited nodes and selects the node 
representing the best insertion. An insertion is evaluated with 
the following criterion. Let i be some node in a tour and let j 
be a node candidate for the insertion. Let Chgact and Tmact 
denote the actual charge and the traveled time for the current 
used vehicle respectively. The insertion of j is feasible if the 
capacity constraint and the constraint of time duration are 
verified (i.e . (51) and (52) are verified):  

             (51) 

          (52) 
Then, the best insertion is determined by the pair (i, j) for 

which pij is maximum: 
              (53) 

Where Pij the profit generates by the insertion of the 
customer j after the customer i, pj the profit associated with 
customer j and cij the cost transportation between i and j. The 
route is considered as completed if the vehicle can not 
receive any more other costumers due to its physical capacity. 
The vehicle returns to the depot and a new trip starts with the 
same used vehicle in the last iteration. The vehicle is 
changed only if the daily time horizon Tmax will be violated 
by the addition of a new trip with the same vehicle. In this 
case, the next trip is done by the next vehicle (see Figure 2). 

Remarq 1: in the case of a heterogeneous fleet, the 
vehicles are sorted in the decreasing order of their physical 
capacities. This order is used as a priority rule for the vehicle 
choices.  

5.2.2. Heuristic H2 

This heuristic H2 is almost identical with heuristic H1 
with the following basic difference : to construct the trip, we 
use the same prev ious procedure, but the used vehicle is not 
necessary kept in prior for the next trip. At each iteration, we 

choose the vehicle which has the longest remaining time 
service by breaking ties with the largest capacity order  (see 
Figure 3). 

 

Figure 2.  Constructive Heuristic 1 
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Figure 3.  Constructive Heuristic 2 

Remarq 2: in the case of heterogeneous fleet, we use the 
same priority rule for choices used in H1.  

5.3. Improvement Scheme 

For the PVRPMT, it is essential to have a neighborhood 
that changes the visit combinations for customers. Three 
kinds of moves including insertion move, swapping move 
and Cross exchange operator move are used to define a set of 
neighborhoods that allow the exp loration o f increasingly 
distant solutions from the incumbent to overcome local 
optimality and strive for global optimality.  

Our improvement phase consists on first developping 
three Hill Climbing algorithm (HCi, HCs, HCc) using the 
three neighborhood structures, then we test the influence of 

combin ing the three last algorithms in a Variab le 
Neighborhood Descent procedure. 

5.3.1. Hill Climbing Procedure 

The local search algorithms show its performance to solve 
various variants of routing problems. Here we use the Hill 
Climbing heuristic which belongs to the family of local 
search methods which often built on neighborhood moves 
that make small changes to the current solution.  

The insert move consists of removing one customer from 
a current position j (origin position) and putting him into 
another new position k . The destination route (i.e. the route 
that contains the new position) can  be an existing route or a 
new one. To take into account all the possible moves, a new 
decision variable α is defined. 

 

All depends on the positions of  j and k  and the variable δ, 
we can distinguish different possible moves. 

＊ If j=k , three scenarios can be distingushed : 
• k  is the position of the first visited customer in the 

current trip (i.e . V2[k-1]=1) 
- if α=prec the customer i will be inserted in the last trip 

(i.e . V2[k-1]=0,V2 [k]=1 and V3[k]= V2[k-1]) 
- if α=suiv no change in the initial solution 
• k  is the last visited customer in the current trip (V2[k]=1) 
- if α=prec no change in the initial solution 
- if α=suiv the customer i will be inserted in the next trip  

(i.e . V2[k-1]=1,V2 [k]=0 and V3[k]= V3[k+1]). 
• Otherwise : there is no change  

＊ If j≠k, accord ing to the value of V2[k] two different 
cases can appear : 

• If, in the init ial solution, (V2[k]=1) : two insert moves 
are presented 

- α=prec: i will be the last visited customer who belongs 
to the current trip (V2[i]=1 and (V3[i]= V3[k] )  . 

- α=suiv : i  will be the first visited customer in the next  
trip (V2 [i]=0 and (V3 [i]= V3[k+1]). 

• if (V2[k]=0), the new solution will be presented as 
follows: V1[k] =V1[j], V2[k] =0 and V3[k] =V3[k-1]. 

the swap move consists on exchanging two  customers. In  
the new solution just the position of the two selected 
customers will be exchanged (V1[k] =V1[j]).  

The cross-exchange operator consists on interchanging 
non-consecutive customer segments between the same or 
two different routes with the restrict ion that the orientation 
of them be maintained. 

Remarq 3: Note that , to elliminate the neglected move, for 
the two first neighborhoods (insertion and swap), at least one 
from the two selected customers should represent a visited 
customer in the initail solution. For the cross-exchange 
operator, the two selected customers should be visited in the 
initail solution. 

5.3.2. Variable Neighborhood Descent Algorithm 

The second idea is to test the influence of combining the 
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three neighborhood structures in the same algorithm. So, we 
develop a variable neighborhood decent algorithm (VND). 

The VND is the simplest variant of the variable 
neighborhood search heuristic (VNS) which performs 
several descents with different neighborhoods until a local 
optimum for all considered neighborhoods is reached. Let 
N1, N2, … , Nk  denote a set of K  neighborhood structures 
(i.e ., Ni (S) contains the solution that can be obtained by 
performing a local change on s according to the ith  type). 
The VND works as follows:  

Step 1. Choose an initial solution s in S. 
Step 2. Set 𝑖𝑖 ∶=  1 and 𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ∶= 𝑠𝑠 . 
Step 3. Perform a descent form s, using neighborhood 
𝑁𝑁𝑖𝑖 . Let 𝑠𝑠′ be the resulting solution. If 𝑓𝑓(𝑠𝑠′) < 𝑓𝑓(𝑠𝑠) then 

set 𝑠𝑠 ∶= 𝑠𝑠′. Set 𝑖𝑖 ∶= 𝑖𝑖 + 1. If  𝑖𝑖 ≤ 𝐾𝐾 then repeat Step 3. 
Step 4. If 𝑓𝑓(𝑠𝑠) < 𝑓𝑓(𝑠𝑠𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 ) then go to Step 2; else stop.[46]  

6. Computational Results 
In the following, obtained results concernening the 

performance of the different proposed mothods are reported. 
First, the test instances construction, the parameters choice 
and the profit quantification are presented. Then, the 
performance of the equivalent presented models are tested 
and compared. Finally, the last subsection is devoted to the 
heuristics procedures performance (contructive, Hill 
Climbing, VND). The MILPs and solving algorithms was 
tested on a Intel Core 2 Duo CPU 2.20 GHZ and 4.00 Go 
RAM. The codes are written in C++, using CPLEX lib rairies 
for the first part. A ll the algorithms were stopped before a 
computational time of one hour at atmost.  

6.1. Test Instances and Parameters Choice  

The tests will be applied first on our own benchmark 
devoted for small-size instances and then on the benchmarks 
of Taillard et al. 1996[23] taken from the VRP lib rary with 
adaptations and some extended data. In our benchmark, 
twenty small-size instances are generated randomly. A 
certain setting is used to obtain interesting instance values 
according to the practice and real-case situations. For each 
instance, we indicate the number of vertices 𝑛𝑛 which ranges 
from 6 to 20. The customers are randomly distributed in 
two-dimension area, and the depot is set at point (0, 0). the 
fleet of vehicles 𝑚𝑚 accounts for 2 or 3 vehicles. The vehicle 
physical capacity limit 𝑄𝑄  ranges from 1000 to 3000 kgs. 
The horizon t ime limit 𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚  for all the s mall size instances 
is equal to 480 minutes (i.e. 8 hours of workday).  

Note that in the litterature according to[36], the profit 𝑝𝑝𝑖𝑖  
of customer 𝑖𝑖 depends on the three parameters namely: cons, 
h and the customer’s demand 𝑞𝑞𝑖𝑖 , where h is a random rat io 
number uniformly  generated in the interval[0,1] and cons is a 
constant factor that measures the profit according to a sale 
turnover. In[36], the authers consider pi = (cons + h)qi and 
suppose that cons=0.5 indifferently  with the level of 
greatness of the other values used for the instances data. This 

implies a lack of guarantee of a necessary coherence between 
the different values while the choices of the units and the 
level of greatness of the four used data  are unambiguous: 
costomers’ demands qi , distances  dij , transportation times 
tij and transportation costs cij. 

In our opinion, it is important to obtain meaningful and 
significant proportions of the profits according to the 
transportation costs. In our case, they are assimilated to dij . 
Concerning the profit calculation, we take as reference a 
general realistic model where the logistical cost represents 
between 5 and 10 per cent of the sale turnover, and the gross 
benefit may represent  between 20 and 50 per cent of the 
sale turnover. So, it is possible to have a g lobal profit   which 
ranges almost between 3 and 5 times the gobal transportation 
cost. The distribution of this global profit on customers may 
respect the demand quantity qi of each customer i. Let qmax 
and qmin be respectively the greatest and the smallest value of 
all demand quantities. qmax and qmin can be associated 
respectively to αmax =5 and αmin =3 factors. We use a pro jetion 
to calculate the factor αi  of the customer i according to his 
demand qi .  

In order to estimate the transportation cost, we calcu late 
firstly the average distance, identify and αi and pi such as: 

                        (54) 

𝛼𝛼𝑖𝑖−𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚
𝑞𝑞𝑖𝑖−𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚

= 𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚 −𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚
𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚 −𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚

         (55) 

pi =                 (56) 
Note that tij are also assimilated to dij and the level of 

greatness of the vertices coordinates values is chosen 
adequately to obtain significant tij values suitable with Tmax. 

In addition, we point out that L, which is used in MILP  
formulat ions, represents the total number of trips which can 
be made by a vehicle during Tmax . Its value can be estimated 
as : 

 

For the original instances of Taillard  et al. 1996, we add all 
previous adaptations and extensions, as well as the service 
time Si and the maximum number of t rip  which can be 
assigned at each vehicle L. 

6.2. Mathematical Models Experimentations 

In order to test the proposed models, we used  the 
commercial solver CEPLEX 10.0. of ILOG ®.  

First, the four mathematical models are teted on the small 
size instances and the results are reported in Table 3.The 
optimal solution obtained by CPLEX is indicated under 
column f . The “_” means that we cannot obtain the optimal 
solution before the time limit. The column UB represents the 
solution of the linear relaxed problem (the upper bound). In 
addition, (%) represents the gap between the optimal 
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solution and the relevant upper bound. (%) = (f-UB)/UB× 
100.  

We observe on Table 3 that the optimal value can be 
obtained within  the time limit just for small size instances for 
the four mathematical models. For the instances where the 
number of vertices is superior to 17, the optimal solution 
cannot be determined. We can show also that 
computationnel time grow strongly with the increase of 
instance size. MILP 2 is ab le to  solve more instances than the 
other proosed models and it  clearly  outperforms them in 
terms of computing time.  

In Table 4, we try to compare the performance of the four 
mathematical models by confronting the obtained upper 
bounds. We choose as reference the upper bound of the first 
mathematical model (UB1) and we calculate the deviation of 
the different upper bounds in comparison with the first. 
(%*)w =(UBw-UB1)/UB1× 100 . 

Different remarks can  be taken  into account. First by 
comparing the two strategies, the 0-1 ILP and the MILP, it is 
very clear that the upper bounds obtained by the mixed 
integer programming are better than those obtained by the 
0-1 integer programming fo r all the tested instances. For the 
0-1ILP, the choice of the principal variable has not great 
influences on the upper bounds quality (for the majority of 
the tested instances the upper bound obtained by the two 
models are equal) but strongly affects the number of 
iterations. For the MILP, the upper bounds of the 
mathematical models with cuts are better than those without 
cuts. That shows the efficiency of these cuts. MILP2 is ab le 
to solve more instances than the other mathemat ical models 
and outperforms them in terms of computing time and the 
upper bound quality. So, we can judge that the additional 
constraints represent valid cuts for our model.  

6.3. Heuristics Procedure Performance 

To test and compare the performance of our heuristics, we 
compute the obtained gaps of the obtained solutions 
comparing to the linear upper bounds. These gaps are given: 
first for the two  constructive heuristics bounds, second for 
the three Hill Climbing based solutions, and finally for 
enhancement by using the Variable Neighborhood Descent 
algorithm. Gaps are also computed comparing to the optimal 
solution for the s mall-size instances. Then, to know the 
contribution generated by the VND algorithm, we calculate 
the gap between the initial solution given by the constructive 
heuristics and the lower bound. As it is previously ment ioned, 
MILP2 represents the best formulation of our problem. So, 
the lower bound given by our heuristic will be compared 
with the upper bound obtained with this formulat ion.  

The test includes our twenty instances generated randomly  
with adequate settings and forty adapted instances selected 
from the benchmarks of Taillard et al. 1996[23]. The results 
are shown in table 5 and 6.  

The column f and UB represent respectively the optimal 
solution and the upper obtained by the linear relaxation of 
MILP2. The init ial solution of our constructive algorithms 
(Constructive heuristic 1 and constructive heuristic 2) is 
given in column H1 and H2. The Hill Climbing improvement 
tested for the three neighborhood structures by the insertion 
move, the swap move and the cross-exchange are showed in 
the column HCi, HCs and HCc respectively. The column 
VND gives the lower bound obtained with the Variable 
Neighborhoods Decent algorithm. The column gap and gap* 
represent respectively the gap between the lower bound (the 
VND solution) and the optimal solution and the upper upper 
respectively. The column gap** calculates the enhancement 
generated by the VND algorithm by mesuring the gap 
between the VND and the initial solution. 

From the first observation and by comparing the three Hill 
Climbing shemes, we can see that these procedures give 
several acceptable results for the most tested instances. 
Howerever, some of them still require further enhancement. 
On the 12 instances for which the optimal solution is 
determined, the VND a lgorithm is managed to find the 
optimal solution in 50% of cases. For the others, the gap is 
generally tiny, except for few exceptional instances, where it 
is quite signeficant reaching for the worst 33%. For the large 
size instances, this gap (gap*) becomes important and grows 
continuously because it is computed compared to the linear 
bound and not to optima. The VND algorithm enhances 
clearly the init ial solution for the total of the tested instances. 
But, for few instances (i.e. instances 7 and 8) the 
improvement is small and the VND converges quickly to local 
maxima. 

To crown all, we can conclude that the MILP2 (with cuts) 
represents the best formulation of our p roblem. The two 
constructive heuristics and the enhancement procedure based 
on the Hill Climbing and the VND algorithm produce 
acceptable solutions close to the optimal ones for s mall size 
instances. For the big size instances, the obtained solutions 
are the best till now. In a future works, we think about 
enhancing more and more the upper bounds with some 
polyhedral techniques to have a clearer idea about the 
performance of our proposed methods for the large size 
instances. To escape from a current local optimum, we 
should think to add, in a third solving phase, some 
perturbation moves to strengthen the search diversification in 
our algorithms. Best performances could be deduced in 
future works after some enhancements.  
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Table 4.  Comparison between the Upper Bounds 

Instance (%* )1 (%* )2 (%* )3 (%* )4 

Inst_6_2_2_1000 0 -0,259 -1,488 -5,164 

Inst_7_2_2_2000 0 0,000 -2,256 -2,256 

Inst_7_2_3_3000 0 -0,019 -0,511 -5,423 

Inst_9_2_2_2000 0 -0,068 -1,564 -2,191 

Inst_9_2_3_2000 0 0,000 -1,460 -1,481 

Inst_10_2_3_2000 0 0,000 -3,156 -4,264 

Inst_11_2_2_2000 0 0,000 -1,282 -1,426 

Inst_12_2_3_3000 0 0,000 -2,784 -2,979 

Inst_13_2_3_1000 0 0,000 -3,372 -3,409 

Inst_13_3_2_2000 0 0,000 -2,880 -2,996 

Inst_14_2_2_3000 0 0,000 -2,171 -3,010 

     

Table 5.  The Performance of the heuristic procedures (small-size benchamark)  

Instance 
Inst_n_Q_m_D1_L f UB H1 H2 HCi HCs HCc VND gap gap* gap** 

Inst_6_Q_1000_m_2_L2 544,78 637,79 533,07 533,O7 533,071 544,787 544,787 544,787 0,00 0,15 0,02 

Inst_7_Q_2000_m_2_L2 844,77 957,59 815,77 815,77 844,779 838,828 838,828 844,779 0,00 0,12 0,03 

Inst_7_Q_3000_m_2_L3 1780,43 2186,67 1420,07 1420,07 1422,865 1460,897 1420,071 1460,99 0,18 0,33 0,03 

Inst_9_Q_2000_m_2_L2 607,73 684,71 593,63 593,63 599,798 599,798 593,632 607,73 0,00 0,11 0,02 

Inst_9_Q_2000_m_2_L3 1932,04 2710,12 1644,4 1473,24 1743,288 1696,424 1644,395 1932,04 0,00 0,29 0,15 

Inst_10_Q_2000_m_2_L3 2123,94 2444,65 2064,21 1906,3 2075,956 2102,914 2064,241 2123,94 0,00 0,13 0,03 

Inst_11_Q_2000_m_2_L2 2310,94 2927,51 1767,09 1775,67 1775,667 1767,088 1767,088 1775,67 0,23 0,39 0,00 

Inst_12_Q_3000_m_2_L3 2226,08 2346,48 2210,68 2162,52 2217,934 2202,656 2150,677 2226,08 0,00 0,05 0,00 

Inst_13_Q_1000_m_2_L3 2979,55 3602,70 2194,54 2194,54 2211,132 2242,851 2194,54 2424,46 0,33 0,33 0,09 

Inst_13_Q_2000_m_3_L2 2781,13 3039,55 2623,57 2730,63 2660,211 2689,486 2526,086 2700,20 0,05 0,05 0,03 

Inst_14_Q_3000_m_2_L2 3546,04 4720,95 3146,87 3141,51 3146,865 3149,766 3146,865 3149,77 0,11 0,33 0,00 

Inst_15_Q_3000_m_3_L2 4623,682 5609,83 3935,41 3552,49 3935,414 3935,414 3960,382 4046,39 0,28 0,28 0,03 

Inst_16_Q_3000_m_2_L3 _ 6060,13 2665,68 2678,24 2665,68 2665,68 2665,68 2678,24 _ 0,56 0,00 

Inst_16_Q_3000_m_3_L3 _ 5531,54 3220,31 3221,31 3305,529 3344,938 3232,182 3966,52 _ 0,28 0,19 

Inst_17_Q_2000_m_3_L2 _ 3160,23 2711,65 2586,85 2740,154 2753,153 2598,295 2795,56 _ 0,12 0,03 

Inst_13_Q_2000_m_3_L2 _ 6741,72 4236,92 4478,07 4236,919 4266,928 4266,928 4266,93 _ 0,37 0,01 

Inst_18_Q_3000_m_3_L3 _ 2686,73 3483,28 3473,86 3548,689 3573,86 3510,165 3777,69 _ 0,03 0,08 

Inst_19_Q_2000_m_3_L2 _ 2686,73 2296,54 2318,93 2443,338 2367,516 2464,153 2511,30 _ 0,07 0,09 

Inst_20_Q_3000_m_2_L3 _ 3258,2 2222,072 2255,93 2247,616 2298,96 2222,072 2533,85 _ 0,22 0,12 

Inst_20_Q_3000_m_2_L2 _ 4347,68 2812,74 2812,74 2828,015 2846,575 2812,736 3063,55 _ 0,30 0,08 
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Table 6.  The Performance of the heuristic procedures (large-size benchamark)  

Instance 
CMT_n_Q_m_D1_L f UB H1 H2 HcI HcS HcC VND gap gap* gap** 

CMT_51_Q_160_m_1_D1_L2 _ 3113,45 2206,59 2206,59 2455,032 2277,637 2206,588 2842,89 _ 0,09 0,22 

CMT_51_Q_160_m_2_D1_L2 _ 3736,64 2081,34 2183,8 2350,804 2130,816 2225,08 2461,25 _ 0,34 0,15 

CMT_51_Q_160_m_3_D1_L2 _ 3748,72 2334,57 2334,57 2464,253 2371,068 2334,567 2487,91 _ 0,34 0,06 

CMT_51_Q_160_m_4_D1_L2 _ 3748,72 2230,98 2230,98 2343,928 2130,042 2099,984 2467,35 _ 0,34 0,10 

CMT_76_Q_140_m_1_D1_L2 _ 3032,45 3524,05 2064,26 3769,024 3562,532 3524,05 4008,00 _ 0,45 0,12 

CMT_76_Q_140_m_2_D1_L2 _ 5007,04 3498,02 3636,66 3879,421 3556,819 3612,512 4192,05 _ 0,16 0,17 

CMT_76_Q_140_m_3_D1_L2 _ 6286,68 3397,44 3275,17 3646,122 3501,368 3398,561 4306,36 _ 0,32 0,21 

CMT_76_Q_140_m_4_D1_L2 _ 6731,73 3358,93 3395,48 3523,918 3427,507 3359,549 3740,66 _ 0,44 0,10 

CMT_76_Q_140_m_5_D1_L2 _ 6725,33 3325,81 3325,81 3328,465 3365,189 3325,814 3397,32 _ 0,49 0,02 

CMT_76_Q_140_m_6_D1_L2 _ 6731,73 3443,2 3443,2 3350,861 3439,272 3366,666 3982,41 _ 0,41 0,14 

CMT_76_Q_140_m_7_D1_L2 _ 6725,33 3310,97 3310,97 3315,43 3390,638 3327,282 3613,24 _ 0,46 0,08 

CMT_101_Q_200_m_1_D1_L2 _ 4058,84 3986,88 2748,67 4349,415 4047,658 3986,878 4558,84 _ 0,43 0,13 

CMT_101_Q_200_m_2_D1_L2 _ 6422,85 3972,35 3981,45 4131,077 3938,675 3877,895 4457,71 _ 0,31 0,11 

CMT_101_Q_200_m_3_D1_L2 _ 7393,38 3824,71 3849,6 4105,052 3922,299 3824,711 4494,23 _ 0,39 0,15 

CMT_101_Q_200_m_4_D1_L2 _ 7386,04 3879,88 3879,88 4031,774 3871,932 3785,425 4189,23 _ 0,43 0,07 

CMT_101_Q_200_m_5_D1_L2 _ 7386,04 3947,93 3947,93 3958,535 4003,192 3947,93 4463,13 _ 0,40 0,12 

CMT_101_Q_200_m_6_D1_L2 _ 7371,37 3556,48 3556,48 3560,052 3632,453 3560,146 4206,69 _ 0,43 0,15 

CMT_121_Q_200_m_1_D1_L2 _ 4395,66 3474,77 2869,42 5720,678 5612,154 5763,513 6280,78 _ 0,40 0,45 

CMT_121_Q_200_m_2_D1_L2 _ 7360,11 5265,92 5390,88 5675,098 5428,476 5274,7 6563,07 _ 0,11 0,20 

CMT_121_Q_200_m_3_D1_L2 _ 9163,22 5218,69 5406,69 5620,678 5357,32 5222,098 7805,58 _ 0,15 0,33 

CMT_121_Q_200_m_4_D1_L2 _ 9753,08 5220,81 5187,36 5353,209 5176,06 5106,129 5687,89 _ 0,42 0,08 

CMT_121_Q_200_m_5_D1_L2 _ 9745,53 5162,67 5352,12 5287,885 5303,714 5259,021 5625,18 _ 0,42 0,08 

CMT_151_Q_200_m_1_D1_L3 _ 5235,16 5149,09 3073,91 5778,358 5380,735 5349,09 6310,27 _ 0,43 0,18 

CMT_151_Q_200_m_2_D1_L3 _ 8216,37 4954,15 5451,05 5379,861 5086,381 4954,147 6328,29 _ 0,23 0,22 

CMT_151_Q_200_m_3_D1_L3 _ 9839,11 5258,76 5098,55 5513,989 5369,196 5258,757 6203,90 _ 0,37 0,15 

CMT_151_Q_200_m_4_D1_L3 _ 10447,70 5332,26 5067,99 5605,328 5389,261 5334,541 5687,98 _ 0,46 0,06 

CMT_151_Q_200_m_5_D1_L3 _ 10447,70 5517,05 5517,05 5545,379 5569,375 5517,049 5602,45 _ 0,46 0,02 

CMT_151_Q_200_m_6_D1_L3 _ 10447,70 5530,36 5530,36 5545,207 5592,485 5529,918 5846,30 _ 0,44 0,05 

CMT_151_Q_200_m_7_D1_L3 _ 10431,00 4851,51 4851,51 4857,404 4945,4 4863,401 5686,25 _ 0,45 0,15 

CMT_151_Q_200_m_8_D1_L3 _ 10447,70 5034,29 5034,29 5028,23 5062,868 5024,861 5551,04 _ 0,47 0,09 

CMT_200_Q_200_m_1_D1_L3 _ 6292,79 3884,96 3273,25 7582,818 6852,94 6769,306 8062,51 _ 0,46 0,52 

CMT_200_Q_200_m_2_D1_L3 _ 10016,85 6760,24 6532,8 7562,591 6852,94 6760,458 7888,35 _ 0,21 0,14 

CMT_200_Q_200_m_3_D1_L3 _ 12033,30 6642,42 6889,04 7222,708 6728,453 6642,42 7340,18 _ 0,39 0,10 

CMT_200_Q_200_m_4_D1_L3 _ 13348,75 6452,5 6894 7074,411 6643,446 6468,593 7898,69 _ 0,41 0,18 

CMT_200_Q_200_m_5_D1_L3 _ 14007,96 6367,01 6486,87 6899,801 6449,095 6367,011 7206,84 _ 0,49 0,12 

CMT_200_Q_200_m_6_D1_L3 _ 14017,08 6707 6707 6976,519 6769,783 6706,998 7120,66 _ 0,49 0,06 

CMT_200_Q_200_m_7_D1_L3 _ 14035,31 6983,25 6983,25 7092,305 7074,797 6985,065 7871,18 _ 0,44 0,11 

CMT_200_Q_200_m_8_D1_L3 _ 14053,55 6659,92 6659,92 6957,153 6752,264 6683,254 7278,76 _ 0,48 0,09 

CMT_200_Q_200_m_9_D1_L3 _ 14044,43 6370,01 6370,01 6763,057 6715,521 6661,164 7246,86 _ 0,48 0,12 

CMT_200_Q_200_m_10_D1_L3 _ 14053,55 6069,91 6069,91 6209,274 6180,566 6094,38 7328,64 _ 0,48 0,17 

 



 Ahlem Chbichib et al.:  Profitable Vehicle Routing Problem with Multiple Trips:  118 
Modeling and Variable Neighborhood Descent Algorithm 

 

7. Conclusions  
In this paper, we describe a new variant of the vehicle 

routing problem namely  the Profitable Vehicle Routing 
Problem with Multip le Trips. Two d ifferent strategies of 
sub-tours elimination constraints are used and for each 
strategy two different cases are defined. Thus, four 
mathematical models are obtained looking for optimal 
solutions. For large-size instances, two greedy constructive 
heuristics are proposed in a first solving step. Three Hill 
Climbing algorithms based on three neighborhood structures 
are developed. With a VND procedure, these methods are 
managed to obtain improved solutions in a second solving 
step of the problem. The design of these methods is based on 
elements of reasoning to obtain intrinsically the best possible 
solutions from the first iterat ions. Enhanced diversification 
was covered by a broad research approach to effectively 
improve the results. Experimental study shows satisfactory 
results for small-size instances with MILPs using some cuts. 
Two strategies of sub-tours elimination constraints are used 
representing a good idea to formulate this kind of constraints. 
The empirical results show the performance of the proposed 
constructive heuristics which provide quick solutions very 
close to the optimum, and also a satisfactory enhancement by 
using the improvement p rocedures. In future work, with 
some adjustments and the introduction of well-studied 
perturbation moves, the obtained results could be further 
refined to ensure a better optimality of solutions. 
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