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Abstract In this paper, we tackle a new variant of the Vehicle Routing Problem (VRP) which combines two known
variants namely the Profitable VRP and the VRP with Multiple Trips. The resulting problem may be called the Profitable
Vehicle Routing Problem with Multiple Trips. The main purpose is to cover and solve a more complex realistic situation of
the distribution transportation. The profitability concept arises when only a subset of customers can be served due to the
lack of means or for insufficiency of the offer. In this case, each customer is associated to an economical profit which will
be integrated to the objective function. The latter contains at hand the total collected profit minus the transportation costs.
Each vehicle is allowed to perform several routes under a strict workday duration limit. This problem has a very practical
interest especially for daily distribution schedules with limited vehicle fleets and short course transportation networks. We
point out a new discursive approach for profits quantification which is more significant than those existing in the literature.
We propose four equivalent mathematical formulations for the problem which are tested and compared using CPLEX
solver on small-size instances. Optimal solutions are identified. For large-size instance, two constructive heuristics are
proposed and enhanced using Hill Climbing and Variable Neighborhood Descent algorithm based on a specific
three-arrays-based coding structure. Finally, extensive computational experiments are performed including randomly
generated instances and an extended and adapted benchmark from literature showing very satisfactory results.

Keywords Profitable Vehicle Routing Problem, Multiple Trips, Mixed Integer Linear Programming, Constructive
Heuristics, Hill Climbing, Variable Neighborhood Descent

applications of the VRP.

In this research, we focus on two variants of the VRP: the
Profitable VRP and the VRP with Multiple Trips, which we
combine to obtain a new variant not addressed in the
literature to our knowledge and involving a new challenge
in term of solving approaches. This problem which can be
named the Profitable Vehicle Routing Problem with

1. Introduction

Nowadays, effective management of the supply chain is
recognized as a determinant key of competitiveness and
success for manufacturing and distribution organizations.
The problems of routing goods from depots to consumers or

between different logistical sites are very important.
Drawing adequate plans may produce significant savings for
many distribution systems. Therefore, the Vehicle Routing
Problem (VRP) is a well-known problem studied in
Operational Research. It deals with finding the optimal
delivery routes configuration fromone or several depots to a
number of customers using a fleet of capacitated vehicles,
while satisfying some constraints. The solution ofa VRP is a
set of minimum cost routes which fulfill the customers’
requirements. In the classical version of the problem, only
one depot is considered with an unlimited fleet of vehicles
where each vehicle performs exactly one circuit. Several
operational constraints can be considered in more practical
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Multiple Trips (PVRPMT) calls for the determination of a
set of routes for a given heterogeneous set of vehicles
visiting a selective subset of customers such that: i) it is
difficult, if not impossible, to visit all customers for a lack
of logistical means or for insufficiency of the offer; ii) each
visited customer provides a fixed profit that is recognized in
the objective function to maximize. The latter is the
difference between the total profit generated by the all visits
and the resulting total transportation cost; iii) each vehicle
may perform several routes in the same planning period but
does not exceed a strict duration limit (temporal capacity);
iv) for each route, the total load does not exceed the vehicle
capacity (physical capacity). The motivation to study this
problem come not only from its theoretical interest but also
from its practical relevance. For example, the size of the
vehicle fleet indicates the capital invested in logistics
resources. That the reduction of this size is naturally more
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desirable, the problem counts as a strategic choice in the
problem reading to guide the optimization towards reducing
both capital and operating (scheduling) costs. In this
situation, there might be a trade-off between higher
scheduling costs and lower vehicle ownership-based costs
(and eventually associated driver salaries-based costs).
Otherwise, this problem is very practical where daily drivers
schedules must be achieved with a limited vehicle fleet and
short-distance distribution networks. Furthermore, when we
are unable to respond to all costumer requests, the problem
reading should be different. A subtle selection of costumers
to be served is required. It should be based on a clear and
measurable criterion. It is therefore important to define a
significantly manner to classify customers according to their
importance, behavior and costs implications, and to translate
this into a global criterion that can be optimized as the total
cost associated with the transportation program. This issue of
profitability will be raised when the instances are to be
conceived and tested, because most companies do not have a
carefully designed evaluation of each costumer’s profit. The
latter should not only be related to the volume of its current
request but must take into account other considerations,
related to the future potentials of this costumer. And the
value must also be reasonably projected on a coherent scale
with the transportation costs that appear in the objective
function in order to ensure significant aggregation-based
assessments for the computed solutions.

The addressed problem concerns the PVRPMT as a new
variant of practical VRP. Note that this kind of problems
would be attractive in particular for planning mechanisms of
ERP software which must integrate a miscellaneous range of
situations of management and control. For a more devoted
emphasis mainly to the operational context, our objective is
multiple with this problem combining at hand: the
maximization of the total collected profit, the minimization
of the total routing costs and indirectly the maximization of
the use of resources (vehicles and drivers). The issue of
different mathematical models for this problem is to be
addressed and used to seek solution optimality for small-size
instances. Giving the complexity of the problem which is
NP-hard, two constructive polynomial heuristics with two
different greedy-based constructions will be proposed as a
first approach to solve the large-size instances. Their
effectiveness is tested and then enhanced, in a second solving
approach, with an iterative ameliorative procedure using
successive local searches with nmultiple and sequential
neighborhood structures. For instances generation, we point
out a new and quick discursive approach for profits
quantification which is more significant than those existing
in the literature.

The remainder of this paper is organized as follows.
Section 2 reviews the related research literature. In section 3,
we formally present the optimization problem PVRPMT
with a detailed theoretical graph description and we
introduce the corresponding proprieties and notations.
Furthermore, we determine this problem complexity. In
Section 4, based on two strategies of sub-tours elimination
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constraints, we provide four mathematical models of the
problem including MILP and 0-1 ILP. Section 5 describes
two constructive heuristics and an enhancement procedure
based on the Variable neighborhood Descent algorithm
(VND). The computational experiment is presented in
Section 6 to obtain insights about the different
performances of the optimizing proposed algorithms. This
section begins with a new precision about the evaluation of
profitability indices to be incorporated into the numerical
instances’ files and subsequently into the computation of
the objective functions in adequacy with the measures
adopted for the transportation costs. We draw conclusions
and discuss future research directions in Section 7.

2. Literature Review

The problem we focus on is a combination of the two
known variants such that: the vehicle routing problem with
multiple trips or with multiple uses of vehicles (noted by
VRPMT or VRPM) and the profitable vehicle routing
problem (PVRP). To the best of our knowledge, these
problems are studied separately in literature, excepting some
special recent works[2, 3, 5], but with time windows
considerations. For the latters, the concept of Multiple Trips
is obtained indirectly by imposing a duration limit on each
tourand not on the workday duration. Thus, the problem may
look like a Capacitated VRP, where the multiple uses of
vehicle is a consequence since the tours duration limit is
fixed sufficiently small. So, the tours could be seen as
paralle] tours conducted by several vehicles. However, the
integration of time windows constraint into the same
problem gives the importance to the tours’ order and
consequently gives a special (restricted) Multiple Trips
consideration. In this section, we devote two sub-sections to
review the literature of the VRPMT and the PVRP.

2.1. The Vehicle Routing Problem with Multiple Trips

The VRPMT is an extension of the classical VRP in
which the same vehicle may perform several routes in the
same planning period (workday). In this case, the fleet
includes a fixed number of available vehicles. However, the
duration of a vehicle workday which is made of a set of
successive routes does not exceed a certain limit.

This problem has a very practical importance. For
example, in the home delivery of perishable goods like food,
routes are of short duration and must be combined to form a
complete workday[1]. Some real-world cases dealing with
this kind of problem appear in applicative research
publications. For instances, note the paper of Brandao et al.
1997[6] which studies the VRP in Burton’s Biscuit Ltd;
and the case study of the logistical activities of Santa Fe
Indonesia (precisely in the office of Jakarta, a company
specialized on relocation services to individuals as well as
companies) which is considered in[7]. Derigs et al. 201 1[§]
study some real cases dealing with this problem from a
consultancy company in the air cargo transportation field
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(air cargo road feeder services). Planned and ad-hoc tasks,
different resources and environment constraints are taken
into account, such as driving time with breaks, working
time with minimum requirements in relation to the health
and the safety of persons performing mobile road transport
activities. These problems deals with different applications,
such as: the transportation of live animals to a
slaughterhouse, the transportation of the meals or the flight
food froma central kitchen to the aircraft, the transportation
of goods from suppliers to retailers using one or more
cross-docks. More additional constraints, such as time
windows, split delivery, heterogeneous fleet, are considered
respectively in[9, 10, 11and 12]. Griinert et al. 1999[13]
develop a decision support system (DSS) which is designed
in order to assist planners of the German postal service at
the Deutsche Post AG. The main goal is to reduce the costs
of the letter-mail transportation. In[14], a vehicle routing
problem including multiple trips in a health care
organization which operates about 240 buildings of medical
offices in Southern California is treated. Finally, we
mention Hemandez et al. 2009[15] which present a
VRPMT applied in a context of optimizing the agronomic
performance and its impact on the environment.

In the academic literature, the papers treating the
VRPMT consider in general additional constraints mainly
the time windows. Aziet al. 2007[ 1] study this problem with
time windows consideration and a single vehicle’s use. The
extension for multi-vehicle version is tackled by Az et al.
[2, 3, 4] and Macedo et al. 201 1[5]. Other works include also
both multiple trips and time windows such as[6, 7, 8, 11, 12,
14, 15, 16, 17, 18, 19 and 20]. The overtime constraint is
incorporated to the VRPMT in[14, 16, 21, 22, 23 and 24].
Heterogeneous fleet is considered with this problem in
[7, 10, 12, 16 and 27]. Some VRPMT are studied by
including a products compatibility constraint which
forbidden to gather in a same vehicle route two or more
different categories of goods[7, 8, 16, 24, and 27]. The
multiple trips constraint is used in VRP with backhaul in
[7 and 12], combined with allowed split delivery case in[12],
with location problemin[25 and 26], with a planning horizon
of several days in[14 and 27], with multiple depots in[28],
with meal breaks during the driving time in[11]. The
problem is studied in a dynamic environment in[4 and 8].

In term of solving methods, few papers develop exact
approaches for the VRPMT, because of the problem’s
complexity, such as[l, 2, 5, 15 and 17] using MILPs,
column generation with branch-and-price algorithm and
network flow-based models. Note that solving the VRPMT
may consist on solving a routing and packing problem. In
this level, different heuristics and metaheuristics are
developed. For the routing phase, we can distinguish some
constructive heuristics used to obtain an initial solution, such
insertion heuristics used in[3, 4, 10, 14, 20, 22, 27 and 29],
the Clark and Wight algorithm[24, 25 and 31], the mod ified
Clark and Wight algorithm[25 and 31], the nearest
neighborhood method[25 and 29], clustering algorithms
[7, 19 and 24], the sweep-based algorithm[20, 21, 28 and

32], set covering-based approaches[7 and 32] and the petal
method[32]. The initial obtained solutions are enhanced by
different methods: we find the tabu search in[6, 13, 14, 18,
19, 20, 21, 23, 25, 27, 28 and 29], the simulated annealing
in[3, 25, 26 and 31], neighborhood search based on
insertion moves in[10, 18, 22, 24, 25, 29 and 31], on swap
moves in[22, 24, 25, 26, 29 and 31], on 2-opt in[18 and 25],
on adaptive memory in[21 and 30]. Other specific
neighborhood search algorithms are proposed such as large
neighborhood search in[3 and 4], guided neighborhood
search in[8]. In[8], we find also a decomposition approach.
In[18], a filter and fan procedure is developed. For the
packing phase, some well-known heuristics for bin packing
problems are used, specially the best fit decreasing in
[16, 22, 24, 25 and 30]. In[8], a greedy packing procedure is
used and a fuzzy theory-based method is proposed in[33].

The VRP with multiple trips, but no other additional
constraints, is addressed through heuristics in Brandao and
Mercier 1998[7], Taillard et al. 1996[23], Olivera and Viera
2007[21], Petch and Salhi 2004[22].

2.2. The Vehicle Routing Problem with Profit

VRP with profits are a generalization of the vehicle
routing problems. Given a fixed-size fleet of vehicles, it
might not be possible to serve all customers. Thus, a known
profit is associated with each demand node and the
customers must be chosen based on their associated profit
minus the travelling cost to reach them in the solution. The
idea to associate a known profit at each customer is made
by Dell’Amico et al. 1995[35]. The constraint to visit all the
customers is relaxed, but for each unvisited customer a
given penalty has to be paid. The objective function is to
find a balance between these penalties and the cost of the
tour. Profits are explicitly considered both in the Vehicle
Routing Problem (PVRP) and the Traveling Salesman
Problem with Profits (TSPP), as stated by Feillet et al.
2005[34] in an excellent comprehensive survey. The TSPP
can be formulated as a discrete bi-criteria optimization
problem where the two goals are referred: maximizing the
profit and minimizing the traveling cost. It is also possible
to use one of the goals as the objective function and the
other as a constraint. These problems can be divided into
three categories according to Feillet et al. 2005[34]: a) the
Profit Tour Problem (PTP), b) the Selective TSP (STSP),
and c) the Prize—Collecting TSP (PCTSP).

For the first problem (PTP), the objective is to maximize
the difference between the total collected profit and the
traveling cost. Feillet et al. 2005[34] survey lists various
modeling approaches to TSPP and exact methods as well as
heuristic solution methods. Archetti et al. 2009[36] study
the capacitated version of the PTP and propose exact and
heuristic procedures for it. More recently, the authors[37]
develop an exact approach based on a branch-and-price
algorithm. A restricted master heuristic is applied at each
node of the branch-and-bound tree in order to obtain primal
bound values.

For the second problem which is known through three
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equivalent names in the literature: the Orienteering Problem
(OP), the Selective TSP (STSP), or the Maximum
Collection Problem (MCP), the objective is to maximize
the collected profit such that the total traveling cost or
distance does not exceed a certain upper bound. The
multi-vehicles version of the OP is very similar to the VRP,
except that vehicles are assumed to be with unlimited
capacity and there is a time constraint on each tour. This
problem is called the Team Orienteering Problem (TOP).
Recently, Vansteenwegen et al. 2011[43] provides a survey
of the existing OP and TOP. In this paper, the applications
and the solving approaches about the two problems is
reviewed listing various modeling approaches and exact as
well as heuristic solution methods. In addition, many
relevant variants of these problems are formally presented.

For the third problem which is named the Prize—
Collecting TSP or also known as the Quota TSP concerns
the determination of a tour with the minimum total traveling
cost where the collected profit or prize is greater than a
lower bound.

Note that the PVRP is also a kind of PTP when
considering comparing to TSPP that vehicles have physical
loading capacities. In[38], The PVRP is applied in the
reverse logistics where a firm aims to collect cores from its
dealers. The problem is an extension of the classical
multi-depots vehicle routing problem (MDVRP) in which
each visit to a dealer is associated with a gross profit and an
acquisition price to be paid to take the cores back. First, two
mixed-integer linear programming (MILP) are presented.
Then, a Tabu Search-based heuristic is proposed to solve
mediumand large-sized instances. In[39], the research deals
with a VRP in which the total profit is to be maximized
subject to market competition. The PTP in a dynamic
environment is considered in[40]. In this problem, the
rewards (profits) are unknown for the customers which are
not yet served. Indeed, the rewards depend on competitors’
prices and auctions. In another extension of the problem,
the profit is associated to each edge non to vertices. The
problem is then called the Profitable Arc Routing Problem
(PARP). Archetti et al. 2010[41] study the capacitated
undirected version (UCARPP) and develop a branch-and-
price algorithm, several heuristics based on Variable
Neighborhood Search (VNS) and two Tabu Search
heuristics. Zachariadis et al. 2011[42] propose another local
search approach for the UCARPP. Two solution
neighborhoods are considered and the overall search is
coordinated by the use of the promises concept.

The problem studied in this paper is a new extension
which combines the two previous variants.

3. Problem Definition and Notation

3.1. Problem Description and Notation

We consider a complete undirected graph G = (V, E),
where V= {0... n} is a set of vertices and E is a set of edges.
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Vertex 0 represents the depot and a fleet of vehicles & =
{I... m} is based. Each vehicle has a limited capacity QO (or
O if with heterogeneous fleet) and a maximum number of
trips L. Note that, the parameter L is defined to facilitate the
problem formulation and can be used as a real constraint, i.e.
as a limit to be respected. However, the best value of L can
be experimentally identified. An edge (i,j)) EE represents
the possibility to travel from customer i to customer j. A
non-negative demand ¢;, profit p;, and time service S;, are
associated with each customer i/ (with setting py=q=0). A
travel time f; and cost c; are associated with each edge
(ij)EE. Each vehicle starts and ends its tour at vertex 0,
and can visit any subset of customers with a total demand
that does not exceed the used vehicle capacity Q. In
addition, there exists a time horizon denoted by the duration
limit 7,,,, which establishes the duration of a workday. It is
assumed that all parameters are nonnegative integers and
the environment is deterministic.

This problem named the PVRPMT consists on
determining a set of routes and to assign each route to one
vehicle, such that the same vehicle can be used by several
routes while respecting the time horizon capacity. The
objective is to maximize the difference between the total
collected profit and the cost of the total traveled distance.
Note that the following properties:

e The optimal solution may be composed by a subset of
customers.

e Each route starts and ends at the depot,

o The total customers’ demand in the same route does not
exceed the physical capacity ofused vehicle,

e The duration of routes assigned to the same vehicle does
not exceed Tmax.

e The profit associated at each customer is fixed and can
be collected by any vehicle.

3.2. Problem Complexity

Olivera and Viera[21] proved that the VRPMT is NP-hard
as well as the PVRP[34]. The studied problem represents the
combination of these two NP-hard problems. This makes it
also NP-hard. In addition, PVRPMT is a generalization of
the classical VRP. There are instances of PVRPMT in which
there exist enough vehicles in the fleet able to optimally visit
during the workday all customers using one vehicle for each
tour. These cases are naturally reduced to a classical VRP.
As the VRP is an NP-hard[22], the PVRPMT is also
NP-hard.

4. Mathematical Models for the
PVRPMT

The design of the VRP solution stands against the
presence of the sub-tours. For that, different sub-tours
elimination constraints are proposed. The most classical
constraint and the mostused in the literature can be written in
this way:
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2.2

icS j#i

<|S|-1 with S < {1,...,n};2<|S|<(n—-1)

)

This formulation is exponential and influences strongly
the resolution time.

In this section, we propose four mathematical
formulations forthe PVRPMT. The difference between them
is based on the strategy used to eliminate the sub-tours and
the decision variables definitions. The different indices,
parameters and decision variables are given in Table 1.

Table 1. Nomenclature

Indices

i,j :customer index
k : vehicle index

[ : trip index

t. order index
Variables

v |1 ifedge(i,j)is assigned to thel™ trip of vehicle k
i .
0Otherwise

“w_ 1 if thevehicle kis used during thetripl
0Otherwise

o |Lifiisthet” visited customerinthetrip
Vi = .
' 0Otherwise

U, : variable associatedto customer i used to reformulatethe
sub-tour elimination constraints

Parameters

cij : cost associated with the edge (i, /)

t;: time to traverse edge (i, j)

O : capacity of the vehicle

m :number of available vehicles

L: maximum number of trips can be made by one vehicle
n: number of vertices

Tinax: working day time limitation

qi: demand of customer i

pi: profit collected at customer i

Si: service time at customer i

M : a big positive number

4.1. Modeling with 0-1 Integer Linear Programming

We start with the idea to specify for each assigned
customer his order in the trip. This idea has been applied in
the scheduling problem. For each job, we determine the
position of the job in the sequence. We use the visit order of
customer 7 in the trip in order to eliminate the invalid tours.
Accordingly, we eliminate the subset S and the associated
constraints. We consider the following binary decision
variables:

1 ifedge(i,j)is assigned tothevehicle k during thetrip |

Ko
d {0 Otherwise

u 1 if iis thet” visited customer inthetrip |
Y = .
' 0 Otherwise
A new decision variable y*' is added and informs about
the visit order of customer i in the trip /.

Based on the choice of the principal variable in the
formulation, we can distinguish two different mathematical

models.

e First formulation:
variables.

Here, the second variable y/ is used just to make the
connection between the edge and the vertices. The resulting
formulation is the following:

Max Zn: Zn: i ZL: (P =c;)x;

0-1ILP1 with xkll as principal

=0 ji? k=11=1 (2
Subject to

Zxkl Zyklv, yoomk=1,..ml=1,..,L (3)
]=0

I

n+tl m L i

S¥Ser viel ®

Zyk’<1 Vi=1.,mk=1,.,ml=1..,L (5)
n+l
> v <1 Vk=1 l1=1,...,L (6)
t=1
DD gxll <0 V=1 I=1,..,L )
i=0 j=0

JFi

n L
ZZZ(ty+S)x k=1,..m (8)
i=0 j=0 I=1

J#EL

0 Vh=0,..,mk=1 I=1,..,L

Zx ]O 5 seeey 1M1, 90y (9)
l¢h J#*h

+y” < 1+y 4l Vi, j,t=0,.,mk=1.ml=1.,L10)

o —x{;ﬂ Vj=loomk=1.,ml=1,..L 1)

n+l
)y y.’ff'ViJat=1~,n;k=1.,m;l:1.,L(12)

t'=t+2

MZXoj >3
i=0 j=0
J#i

e{0,1} Vi, j,t=0,.,mk=1.,ml=1.,L (14)

Ko, K
Xio + Vi S2-

Vk=1..,ml=1,.,L

(13)

xl_ljc_l, yl_l;l
In this formulation, the objective is to maximize the
overall collected profit minus the transportation cost. The
constraints (3-5) guarantee that each customer is visited at
most once. In (6), if the route / exists, it should start and
finish in the depot. (7) represents the capacity constraint. The
limit duration on a workday is restricted by (8). (9)
represents the flow conservation constraint. The constraint
(10) establish the relation between the edg (i,j) and the
relevant position of i and j. (11) represents the initialization
of the counter and (12) stands against the addition of a
customer if the route is closed. In (13), each constructed trip
should start in the depot. (14) represent the integrity
constraints.
e Second formulation: 0-1 ILP2 with y as principal
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variables

In this model, we conserve the constraints which establish
the relation between x ‘and y such m ILP1. When it is
possible, we mtegrate the variable y*' in the objective
function and in the constraints. The objective is to test the
influence of this transformation on the upper bound and to
know which expression can conserve much more
information if the integrity constraints are relaxed. The
resulting model is as fOHOW'

n n+l m
Max ZZZZP, Vi ZZZZC ' (15)
i=1 =1 k=11=1 i=0 j#i k=11=1
subject to:
Zx Zykl Vi=0,...mk=1,...m;l=1,...,L (16)
Tt
n+l m L
ZZZJ’? <1 Vi=1,...,n 17)
=1 k=1 [=1
Zy,flﬁl Vt=1,...mk=1,...ml=1,..,L (18)
i=1
n+1
>Sya <l Vk=l.,ml=1.,L (19
=1
ZZ% ylz s Vk=1,..m;l=1,..,L (20)

i=1 t=

Zzztl]xlj +Zzzsyll —Tmax Vk_L M (21)

i=0 j#i l=1 i=01=0 /=1
ki S Kkl L= =
Zx th,:o Vh=0.mk =Ll =l..L o)
z;th f‘;h
x4y <1y Vi =0, nk =1, ml =1,.,L (23)

yj1 —xé‘i Vi=L.,mk=1..,ml=1..,L (24)

xikol+y,, <2- Z y Vi jt=1mk=1,ml=1,L (25)

t'=t+2
n I’ n n I’ B o
MZijZZinj Vk=1,..,ml=1..1L (26)
Jj=1 i=0 j=0
J#i
KoK S o -
Xy » Vi e{0,1} Vi, j,t=0,.,mk=1.,ml=1.,L (27)

4.2. Modeling with Mixed Integer Linear Programming

To overcome the limitation of the classical sub-tours
elimination constraint, Miller et al. 1960[44] propose a new
ones which are corrected by Kara et al. 2004[45]. In this
level, we propose an adaptation of these constraints to our
problem. For that, we remove the decision variable yX'and
we define U,. as an associated variable to customer i used to
reformulate the sub-tour elimination constraints;

Firstly, we present the ordinary model. Then an extension
of'this model with some proposed cuts.

e Third formulation: MILP1 (without cuts)

The formulation is the following:
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v $EE 0o

i=0 f:? k=11=1 (28)
Subject to
n m L u
SIS Vislean o)
Jj=0k=1I=1
JEi
Zquxl <Q Vk=1,..,ml=1,. (30)
i=0 j=0
G
n n L I’
DDy +S)xy < Ty Vhk=1,...,m 31
i=0 j=0 /=1
J#i
le-k,f - Z x,]f/l- =0Vh=0,..mk=1,...ml=1,.,L (32)
l:ih j,;h
q;, <U,<Q Vi=1,...,n (33)
m L m L
K K
Ui_Uj+QZfoj +(Q_qi_qj)z ij SQ_q]' (34)
k=11=1 k=11=1
Vizj=0,..,n

K e{0,1} Vi, j,t =0,.,mk=1,..,m[ =1,.,L (35)

The constraint (29) guaranties that the customer i is
visited at most once during the workday. (30) represents the
capacity constraint. The workday duration limit is respected
in (31). (32) represents the flow conservation constraint.
The adaptation of Miller et al. sub-tours elimination
constraints, as it is modified by Kara, for our problem is
given by (33) and (34). (35) represents the integrity
constraint.

e Forth formulation : MILP2 ( with cuts)

For the previous mathematical model (MILP1 without
cuts), we add an optional variable 8 which informs about
the used vehicle. So, the correspondent constraints which
establish the relation between the two decision variables
will be adjoined.

W _ 1 if thevehicle k is used during thetrip |
0Otherwise

The formulation becomes:
L

Max Zn: Zn: iz(pi — )Xy

i=0 j=0 k=1 I=1 (36)
J#L
subject to
ZZZxkl<l Vi=1,..,n (37
j=0k=11[1=1
j:ti
< — =
glzoqlx O Vk=L..ml=1..,L ;g
J#i

n n L
DD Dy +S)x < T, Vk=1,...,m 3
i=0 j=0 I=1

JFi
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inkhl - foll =0Vh=0,...mk=1,...mil=1,..,L (40)
i=0 =0
i#h J#h
0<U, <0 Vi=0,..,n @1)
m L m L
U-U,+0Y 3t +(Q-4,-4) 2. > al <0,
k=11=1 k=11=1 (42)
Vk=1,,mil=1,,L
n n
le-ké +nglj =251 Vik=1..ml=1.,L (43)
i=1 Jj=1

Vik=1,..ml=1,..L

i=0 j=0 (44)
JFi
22 <MY k=l.mil=1..L s
i=0 j=0
JFi
xi €{0,1} Vi#j=0,.,mk=1..,ml=1,..,L46)
s e{0,1}  Vik=lL..ml=1L..,L @7

To integrate the new decision variable, three additional
constraints which establish the relation between the two
decision variables are adjoined. (43) means that if the route /
exists, it should start and finish in the depot. (44) guaranties
that if the edge (i,/) is assigned to the trip /, this latter should
be constructed. The opposite case is presented by (45). This
constraint prohibits the construction of empty route, i.e. if the
route / is constructed, at least one edge must be assigned at
this trip.

4.3. The Heterogeneous Fleet Case

In this subsection, we proposed a formulation extension to
solve the special case of PVRPMT with heterogeneous fleet.
So, each vehicle £ has its own capacity Q,. Then, some
modifications on MILP2 are done. The constraint (4.3) is
replaced by (5.3). The constraints (4.6) and (4.7) are replaced
respectively by (5.6) and (5.7):

Z Z qz'xil;l <O

Vk=1,.,ml=1,..,L

i=0 j=0 (48)
Viad
0<U,<Q, Vi=0,.,n (49)
m L
Ui =U; + 220t +(0 -4 -4;) )
k1 (50)

IA

m L
Y20 —a) () +x) Vhe=Loml=1,...L
k1

5. Solving Algorithms

The present section is devoted to the description of the
main steps of the implemented algorithms. We start by
explaining the solution coding scheme. Then, constructive
heuristics used to build initial feasible solutions to the
problem are described. Finally, improvement procedures

based on Hill Climbing and Variable Neighborhood Descent
(VND) are proposed.

5.1. Solution Coding Scheme

To further speed up the computation, we use tree-array
data structure to represent a solution. The information
concerning the customer is stored into the first array (V1 /j]).
So, its size is equal to the number of customers n (we
eliminate the deposit fromthe solution representation). First,
the visited customers are stored adjacently in the order of
visit. Then, the unvisited customers are inserted in the end of
the array. It is important to know the start and the end of each
trip. This information is done by the second array (V2/j]).
This latter is a binary vector. Finally, the third array (V3/j])
informs about the index of the used vehicle to visit the
correspondent customer. Using this structure, the lecture of
the solution is clear and easy, and changes can be performed
very quickly and in a constant time. The solution is coded as
follows:

Let the matrix V[i][j] withie {1, 2, 3}andje {1,2,...n} be
the following:

J 1,2,3 i)
Vij] 1,2, 3 i)
V2[j] Binary vector (0,0,1,0,0,1,0,0,)

V3[j] 1,2,3.....om, -1,-1,-1,-1, -1

V1[j]= Customer index
V2[j] _ {1 i jis the last visited customer in the current trip
0 Otherwise
V3[/] _ {Index of theused vehicle to visit the customer j
—1if the customer j is unvisited
Figure 1 represents an illustrative example with 5 short
routes, 18 customers and 3 vehicles and table 4 represents the
relative solution code.

o Visited Customer vehicle 1
o Unvisited Customer vehicle 2
=/ Depot == = vychicle3

Figure 1. Illustrative Example
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Table 2. Coding Solution of the illustrative example

j 11231456 |7 819110
Vil tf(23]5|7(12]1011] 14] 15
V2jl1l]olo0f1]0]O0f 1 0 1 0 1
V3r 11212213 3 313

j 11|12 1314|1516/ 17| 18
vil |17 18] 4| 6| 8] 9|13]16
v2iillo|l 1] oflo|lo]o] oo
AT K118 T S T S S IS T S I IS

5.2. Constructive Heuristics for the PVYRPMT

The goal of this subsection is to construct good feasible
solutions for the problem. We propose two greedy
constructive heuristics. These heuristics use some local
optimalities in certains steps of the algorithm.

5.2.1. Heuristic H1

The insertion heuristic is used to build an initial feasible
solution. In every iteration, the procedure evaluates all
feasible insertions of unvisited nodes and selects the node
representing the best insertion. An insertion is evaluated with
the following criterion. Let i be some node in a tour and let j
be a node candidate for the insertion. Let Chg,., and Tm,,,
denote the actual charge and the traveled time for the current
used vehicle respectively. The insertion of j is feasible ifthe
capacity constraint and the constraint of time duration are
verified (i.e. (51) and (52) are verified):

chg e + q; <O,
Tm,, +; +Sj +1 < T max

(51)

(52)

Then, the best insertion is determined by the pair (7, j) for
which p;; is maximum:

Fj=p;=¢ (53)

Where Pij the profit generates by the insertion of the

customer j after the customer i, p; the profit associated with

customer j and ¢;; the cost transportation between i and j. The
route is considered as completed if the vehicle can not

receive any more other costumers due to its physical capacity.

The vehicle returns to the depot and anew trip starts with the
same used vehicle in the last iteration. The vehicle is
changed only if the daily time horizon 7,,,, will be violated
by the addition of a new trip with the same vehicle. In this
case, the next trip is done by the next vehicle (see Figure 2).

Remarq 1: in the case of a heterogeneous fleet, the
vehicles are sorted in the decreasing order of their physical
capacities. This order is used as a priority rule for the vehicle
choices.

5.2.2. Heuristic H2

This heuristic H2 is almost identical with heuristic HI
with the following basic difference : to construct the trip, we
use the same previous procedure, but the used vehicle is not
necessary kept in prior for the next trip. At each iteration, we

choose the vehicle which has the longest remaining time
service by breaking ties with the largest capacity order (see
Figure 3).

It exists a vehicle with a
“remaining time”
sufficient to be used
(vehicle availability)

Stepl: select the available vehicle (according to the
priority list) and take the depot position.

|

Step2: select the next customer according to the local
optimality rule <

!

Feasibility ofinsertion
to the current vehicle
trip

Vehicle
physical
capacity will be
violated

Vehicle
remaining time
capacity will be
violated

Step3: retum to the depot

and update the vehicle
loading

Step4: Add the customer to the trip and update the
current vehicle loading and the used vehicle time

All customers

are visited?

Figure 2. Constructive Heuristic 1
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It exists a vehicle with a
“remaining time”
sufficient to be used
(vehicle availability)

Stepl: select the available vehicle (according to
the priority list) and take the depot position.

!

Step2: select the next customer according to the
local optimality rule

Feasibility of
insertion to the
current vehicle tip

return to the

Step3:
depot and update the
vehicle loading

Step4: Add the customer to the trip and update the
current vehicle loading and the used vehicle time

All customers
are visited?

Constructive Heuristic 2

Figure 3.

Remarq 2: in the case of heterogeneous fleet, we use the
same priority rule for choices used in HI.

5.3. Improvement Scheme

For the PVRPMT, it is essential to have a neighborhood
that changes the visit combinations for customers. Three
kinds of moves including insertion move, swapping move
and Cross exchange operator move are used to define a set of
neighborhoods that allow the exploration of increasingly
distant solutions from the incumbent to overcome local
optimality and strive for global optimality.

Our improvement phase consists on first developping
three Hill Climbing algorithm (HCi, HCs, HCc) using the
three neighborhood structures, then we test the influence of

combining the three last algorithms in a Variable
Neighborhood Descent procedure.

5.3.1. Hill Climbing Procedure

The local search algorithms show its performance to solve
various variants of routing problems. Here we use the Hill
Climbing heuristic which belongs to the family of local
search methods which often built on neighborhood moves
that make small changes to the current solution.

The insert move consists of removing one customer from
a current position j (origin position) and putting him into
another new position k. The destination route (i.e. the route
that contains the new position) can be an existing route or a
new one. To take into account all the possible moves, a new
decision variable a is defined.

prec : jwill be inserted inthelast trip
“= {suiv : jwill be inserted inthe next trip

Alldepends on the positions of jand k and the variable §,
we can distinguish different possible moves.

* If =k, three scenarios can be distingushed :

e [k is the position of the first visited customer in the
current trip (i.e. V2[k-1]=1)

- if a=prec the customer i will be inserted in the last trip
(ie. V2[k-11=0,V2[k]=1 and V3[k]= V2[k-1])

- if a=suiv no change in the initial solution

o [t is the last visited customer in the current trip (V2[k]=1)

- if a=prec no change in the initial solution

- if o=suiv the customer i/ will be inserted in the next trip
(ie. V2[k-11=1,V2[k]=0 and V3[k]= V3[k+1]).

e Otherwise : there is no change

* If j#k, according to the value of V2[k] two different
cases can appear :

e If, in the initial solution, (V2[k]=1) : two insert moves
are presented

- a=prec: i will be the last visited customer who belongs
to the current trip (V2[i]=1 and (V3[i]=V3[k])

- a=suiv : i will be the first visited customer in the next
trip (V2[i]=0 and (V3 [i]= V3[k+1]).

o if (V2[k]=0), the new solution will be presented as
follows: VI[k] =V1[j], V2[k]=0and V3[k]=V3[k-1].

the swap move consists on exchanging two customers. In
the new solution just the position of the two selected
customers will be exchanged (VI[k]=V1[]).

The cross-exchange operator consists on interchanging
non-consecutive customer segments between the same or
two different routes with the restriction that the orientation
of them be maintained.

Remarg 3: Note that, to elliminate the neglected move, for
the two first neighborhoods (insertion and swap), at least one
from the two selected customers should represent a visited
customer in the initail solution. For the cross-exchange
operator, the two selected customers should be visited in the
initail solution.

5.3.2. Variable Neighborhood Descent Algorithm

The second idea is to test the influence of combining the
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three neighborhood structures in the same algorithm. So, we
develop a variable neighborhood decent algorithm (VND).

The VND is the simplest variant of the variable
neighborhood search heuristic (VNS) which performs
several descents with different neighborhoods until a local
optimum for all considered neighborhoods is reached. Let
Ny, N,, ..., Ny denote a set of K neighborhood structures
(ie., N;(S) contains the solution that can be obtained by
performing a local change on s according to the i type).
The VND works as follows:

Step 1. Choose an initial solution s in S.

Step 2.Set i := 1 and Sy, =5 .

Step 3. Perform a descent form s, using neighborhood

N;. Let s’ be the resulting solution. If f(s") < f(s) then
set s :=s".Set i :=i+ 1.If i <K then repeat Step 3.

Step 4.1f f(s) < f(s,,s ) then go to Step 2; else stop.[46]

6. Computational Results

In the following, obtained results concernening the
performance of the different proposed mothods are reported.
First, the test instances construction, the parameters choice
and the profit quantification are presented. Then, the
performance of the equivalent presented models are tested
and compared. Finally, the last subsection is devoted to the
heuristics procedures performance (contructive, Hill
Climbing, VND). The MILPs and solving algorithms was
tested on a Intel Core 2 Duo CPU 2.20 GHZ and 4.00 Go
RAM. The codes are written in C++, using CPLEX librairies
for the first part. All the algorithms were stopped before a
computational time of one hour at atmost.

6.1. Test Instances and P arameters Choice

The tests will be applied first on our own benchmark
devoted for small-size instances and then on the benchmarks
of Taillard et al. 1996[23] taken from the VRP library with
adaptations and some extended data. In our benchmark,
twenty small-size instances are generated randomly. A
certain setting is used to obtain interesting instance values
according to the practice and real-case situations. For each
instance, we indicate the number of vertices n which ranges
from 6 to 20. The customers are randomly distributed in
two-dimension area, and the depot is set at point (0, 0). the
fleet of vehicles m accounts for 2 or 3 vehicles. The vehicle
physical capacity limit Q ranges from 1000 to 3000 kgs.
The horizon time limit T,,,, for all the small size instances
is equal to 480 minutes (i.e. 8 hours of workday).

Note that in the litterature according to[36], the profit p;
of customer i depends on the three parameters namely: cons,
h and the customer’s demand gq;, where / is a random ratio
number uniformly generated in the interval[0,1] and cons is a
constant factor that measures the profit according to a sale
turnover. In[36], the authers consider p; = (cons + h)qi and
suppose that cons=0.5 indifferently with the level of
greatness of the other values used for the instances data. This

American Journal of Operational Research 2012, 2(6): 104-119

implies a lack of guarantee ofa necessary coherence between
the different values while the choices of the units and the
level of greatness of the four used data are unambiguous:
costomers’ demands ¢; , distances dj;, transportation times
tij and transportation costs c;.

In our opinion, it is important to obtain meaningful and
significant proportions of the profits according to the
transportation costs. In our case, they are assimilated to d; .
Concerning the profit calculation, we take as reference a
general realistic model where the logistical cost represents
between 5 and 10 per cent of the sale turnover, and the gross
benefit may represent between 20 and 50 per cent of the
sale turnover. So, it is possible to have a global profit which
ranges almost between 3 and 5 times the gobal transportation
cost. The distribution of this global profit on customers may
respect the demand quantity g; of each customer i. Let ¢4
and g,,;, be respectively the greatest and the smallest value of
all demand quantities. ¢,.. and g¢,;, can be associated
respectively to a,,. =5 and a,,;,=3 factors. We use a projetion
to calculate the factor @; of the customer i according to his
demand ¢; .

In order to estimate the transportation cost, we calculate
firstly the average distance, identify and «; and p; such as:

2.2.%

d: i j#i - (54)
(n-1)
i Amin _ %max “%min
- (55
4i —9min 9max ~49min
ri= a,(1+h)d. (56)

Note that ¢; are also assimilated to d;; and the level of
greatness of the vertices coordinates values is chosen
adequately to obtain significant #;; values suitable with 7},,4,.

In addition, we point out that L, which is used in MILP
formulations, represents the total number of trips which can
be made by a vehicle during 7,,,, . Its value can be estimated

as :
. T
min ZQk ; ZQk X
minQ, | | minQ, | nd
Forthe original instances of Taillard etal. 1996, we add all
previous adaptations and extensions, as well as the service

time S; and the maximum number of trip which can be
assigned at each vehicle L.

6.2. Mathematical Models Experimentations

In order to test the proposed models, we used the
commercial solver CEPLEX 10.0. of ILOG ®.

First, the four mathematical models are teted on the small
size instances and the results are reported in Table 3.The
optimal solution obtained by CPLEX is indicated under
column /. The “_” means that we cannot obtain the optimal
solution before the time limit. The column UB represents the
solution of the linear relaxed problem (the upper bound). In

addition, (%) represents the gap between the optimal
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solution and the relevant upper bound. (%) = (+~UB)/UBx
100.

We observe on Table 3 that the optimal value can be
obtained within the time limit just for small size instances for
the four mathematical models. For the instances where the
number of vertices is superior to 17, the optimal solution
cannot be determined. We can show also that
computationnel time grow strongly with the increase of
instance size. MILP 2 is able to solve more instances than the
other proosed models and it clearly outperforms them in
terms of computing time.

In Table 4, we try to compare the performance of the four
mathematical models by confronting the obtained upper
bounds. We choose as reference the upper bound of the first
mathematical model (UB1) and we calculate the deviation of
the different upper bounds in comparison with the first.
(%*w =(UBw-UBI1)/UBIx 100.

Different remarks can be taken into account. First by
comparing the two strategies, the 0-/ ILP and the MILP, it is
very clear that the upper bounds obtained by the mixed
integer programming are better than those obtained by the
0-1 integer programming for all the tested instances. For the
0-1ILP, the choice of the principal variable has not great
influences on the upper bounds quality (for the majority of
the tested instances the upper bound obtained by the two
models are equal) but strongly affects the number of
iterations. For the MILP, the upper bounds of the
mathematical models with cuts are better than those without
cuts. That shows the efficiency of these cuts. MILP2 is able
to solve more instances than the other mathematical models
and outperforms them in terms of computing time and the
upper bound quality. So, we can judge that the additional
constraints represent valid cuts for our model.

6.3. Heuristics Procedure Performance

To test and compare the performance of our heuristics, we
compute the obtained gaps of the obtained solutions
comparing to the linear upper bounds. These gaps are given:
first for the two constructive heuristics bounds, second for
the three Hill Climbing based solutions, and finally for
enhancement by using the Variable Neighborhood Descent
algorithm. Gaps are also computed comparing to the optimal
solution for the small-size instances. Then, to know the
contribution generated by the VND algorithm, we calculate
the gap between the initial solution given by the constructive
heuristics and the lower bound. As it is previously mentioned,
MILP? represents the best formulation of our problem. So,
the lower bound given by our heuristic will be compared
with the upper bound obtained with this formulation.

The test includes ourtwenty instances generated randomly
with adequate settings and forty adapted instances selected
fromthe benchmarks of Taillard et al. 1996[23]. The results
are shown in table 5 and 6.

The column fand UB represent respectively the optimal
solution and the upper obtained by the linear relaxation of
MILP2. The initial solution of our constructive algorithms
(Constructive heuristic 1 and constructive heuristic 2) is
given in column A/ and H2. The Hill Climbing improvement
tested for the three neighborhood structures by the insertion
move, the swap move and the cross-exchange are showed in
the column HCi, HCs and HCc respectively. The column
VND gives the lower bound obtained with the Variable
Neighborhoods Decent algorithm. The column gap and gap*
represent respectively the gap between the lower bound (the
VND solution) and the optimal solution and the upper upper
respectively. The column gap ** calculates the enhancement
generated by the VND algorithm by mesuring the gap
between the VND and the initial solution.

Fromthe first observation and by comparing the three Hill
Climbing shemes, we can see that these procedures give
several acceptable results for the most tested instances.
Howerever, some of them still require further enhancement.
On the 12 instances for which the optimal solution is
determined, the VND algorithm is managed to find the
optimal solution in 50% of cases. For the others, the gap is
generally tiny, except for few exceptional instances, where it
is quite signeficant reaching for the worst 33%. For the large
size instances, this gap (gap *) becomes important and grows
continuously because it is computed compared to the linear
bound and not to optima. The VND algorithm enhances
clearly the initial solution for the total of the tested instances.
But, for few instances (ie. instances 7 and 8) the
improvement is small and the VND converges quickly to local
maxima.

To crown all, we can conclude that the MILP2 (with cuts)
represents the best formulation of our problem. The two
constructive heuristics and the enhancement procedure based
on the Hill Climbing and the VND algorithm produce
acceptable solutions close to the optimal ones for s mall size
instances. For the big size instances, the obtained solutions
are the best till now. In a future works, we think about
enhancing more and more the upper bounds with some
polyhedral techniques to have a clearer idea about the
performance of our proposed methods for the large size
instances. To escape from a current local optimum, we
should think to add, in a third solving phase, some
perturbation moves to strengthen the search diversification in
our algorithms. Best performances could be deduced in
future works after some enhancements.
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Table 4. Comparison between the Upper Bounds
Instance (%*)1 (%* )2 (%*)3 (%* ¥
Ingt 6 2 2 1000 0 -0,259 -1488 -5,164
Inst 7 2_2 2000 0 0,000 -2.256 -2,256
Inst 7 2 3 3000 0 0,019 0511 5423
Inst 9 2 2 2000 0 -0,068 -1,564 -2,191
Inst_9 2 3 2000 0 0,000 -1,460 -1,481
Ingt 10 2 3 2000 0 0,000 -3,156 -4264
Ingt 11 2 2 2000 0 0,000 1282 -1426
Inst 12 2 3 3000 0 0,000 2,784 2,979
Ingt 13 2 3 1000 0 0,000 -3,372 -3,409
Inst_13_3_2 2000 0 0,000 -2,380 -2,996
Inst 14 2 2 3000 0 0,000 -2,171 -3,010
Table 5. The Performance ofthe heuristic procedures (small-size benchamark)
Instance . . U
Ing n Qm DI L f UB H1 H2 HCi HCs HCc VND | gap | gap*| gap
Ing 6 Q 1000 m 2 L2 54478 | 63779 | 533,07 | 533,07 | 533,071 | 544,787 | 544,787 | 544,787 | 000 | 0,15| 002
Inst_ 7.Q 2000 m 2 12 844,77 957,59 815,77 | 815,77 | 844,779 | 838,828 | 838,828 | 844,779 | 0,00 | 0,12 | 0,03
Inst 7 Q3000 m 2 L3 178043 | 2186,67 | 1420,07 | 1420,07 | 1422,865 | 1460,897 | 1420,071 | 1460,99( 0,18 | 0,33 | 0,03
Int 9 Q2000 m 2 I2 607,73 684,71 593,63 | 593,63 | 599,798 | 599,798 | 593,632 | 607,73 | 0,00 [ 0,11 [ 0,02
Ing 9 Q2000 m 2 L3 1932,04 | 2710,12 | 16444 |[147324(1743288 (1696424 | 1644,395]1932,04| 0,00 [ 029 0,15
Inst 10 Q 2000 m 2 L3 212394 | 244465 | 206421 | 1906,3 | 2075956 |2102,914 | 2064241 | 2123,94( 0,00 | 0,13 | 0,03
Inst_11_Q 2000 m 2 L2 231094 | 292751 | 1767,09 |1775,67 | 1775,667 | 1767,088 [ 1767,088 | 177567 | 023 | 0,39 | 0,00
Inst_12_Q 3000 m_2 L3 2226,08 | 234648 | 2210,68 |2162,52|2217,934]2202,656 | 2150,677 | 2226,08 | 0,00 | 0,05 | 0,00
Inst 13 Q 1000 m 2 L3 2979.,55 3602,70 | 2194,54 | 2194,54(2211,132 2242851 | 2194,54 | 242446 033 | 0,33 | 0,09
Inst_13_Q 2000 m_3 L2 2781,13 | 3039,55 | 2623,57 [2730,63 2660211 | 2689486 | 2526,086 270020 0,05 | 0,05( 0,03
Inst 14 Q 3000 m 2 L2 3546,04 | 472095 | 3146,87 [3141,51|3146,865 [ 3149,766 | 3146,865|3149,77| 0,11 | 0,33 | 0,00
Inst_15 Q 3000 m 3 L2 4623682 560983 | 393541 (3552493935414 (3935414 | 3960,382 | 4046,39( 028 | 028 0,03
Inst_16_Q 3000 m_2 L3 _ 6060,13 | 2665,68 [2678,24 | 266568 | 2665,68 | 2665,68 | 267824 _ | 056| 0,00
Inst 16 Q 3000 m 3 L3 _ 5531,54 | 322031 |3221,31(3305,529 (3344938 | 3232,182(3966,52| 0281 0,19
Inst_17_Q 2000 m_3 L2 _ 316023 | 2711,65 |2586,85(2740,154 [ 2753,153 | 2598,295(2795,56| _ | 0,12 0,03
Inst 13_Q 2000 m 3 12 _ 6741,72 | 4236,92 |4478,07 (4236,919 [ 4266,928 | 4266928 | 426693 | _ [ 037] 0,01
Inst 18 Q 3000 m 3 L3 _ 2686,73 | 348328 | 3473,86|3548,689 | 3573,86 | 3510,165|3777,69| 0,03 0,08
Ing 19 Q 2000 m_3 L2 _ 2686,73 | 2296,54 |2318,93 (2443338 (2367,516 | 2464,153 251130 _ [ 007 | 0,09
Inst 20 Q 3000 m 2 L3 _ 32582 | 2222072225593 (2247,616] 229896 | 2222,072 (253385 0221 0,12
Inst_20_Q_3000_.m_2 L2 _ 434768 | 2812,74 (2812,74]2828,015(2846,575 | 2812,736|3063,55( _ | 030 0,08
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Table 6. The Performance ofthe heuristic procedures (large-size benchamark)

oMT TS‘erfle bl L £ UB H1 H2 Hcl HcS HeC | VND | gap |gap*| gap**
CMT 51 Q 160 m 1 DI 12 - 311345 | 220659 | 2206,59 | 2455032 | 2277,637 | 2206588 | 2842.89| [ 009 | 022
CMT 51 Q 160 m 2 DI 12 - 3736.64 | 208134 | 2183.8 [2350.804| 2130816 | 222508 | 246125| _ | 034 0.15
CMT 51 Q 160 m 3 DI 12 B 374872 | 233457 | 233457 | 2464253 [ 2371068 | 2334567 | 248791 [ 034| 006
CMT 51 Q 160 m 4 DI 12 - 374872 | 223098 | 223098 [ 2343928 |2130,042 [ 2099.984 | 246735 [ 034]| 0.0
CMT 76 Q 140 m 1 DI L2 B 303245 | 352405 | 2064263769024 | 3562,532 | 352405 | 400800|  [045] 0,12
CMT_76_Q 140 m 2 DI 12 ~ 5007.04 | 349802 | 363666 |3879.421|3556,819 3612512 419205 _ [o0,16| 0,17
CMT 76 Q 140 m 3 DI 12 B 6286.68 | 339744 |3275,17|3646,122| 3501 368 | 3398561 | 430636|  [032] 021
CMT_76_Q 140 m 4 DI 12 ~ 673173 | 335893 | 3395,48 3523918 | 3427507 | 3359.549 | 374066| [ 044]| 0,10
CMT 76 Q 140 m 5 DI 12 B 672533 | 332581 | 3325813328465 |3365,189 | 3325814|339732| _ [049| 002
CMT 76 Q 140 m 6 DI 12 B 673173 | 34432 | 34432 [3350.861 (3439272 | 3366.666 | 398241  [041]| 0,14
CMT_76_Q 140 m 7 DI 12 ~ 672533 | 331097 | 331097 331543 |3390,638 3327282 361324| _ [046| 008
CMT 101 Q 200 m 1 DI L2 ~ 405884 | 398688 | 2748.67 [ 4349.415 | 4047658 | 3986878 | 455884 | 043 | 0,13
CMT 101 _Q 200 m 2 DI L2 B 642285 | 397235 | 398145 (4131,077|3938,675 [ 3877.895 | 445771 _ [031] 0,11
CMT _101_Q 200 m 3 DI L2 - 739338 | 382471 | 38496 [4105052(3922299 | 3824711 | 449423| [ 039 0.15
CMT 101 Q 200 m 4 D1 L2 ~ 738604 | 3879,88 | 3879.88 [ 4031,774 | 3871932 [3785.425| 418923| _ [ 043 | 007
CMT 101 Q200 m 5 DI L2 B 738604 | 394793 | 394793 3958535 4003,192 | 394793 | 446313| _ |040]| 0,12
CMT_101_Q 200 m 6 DI L2 - 737137 | 355648 | 355648 3560052 | 3632453 | 3560146 | 420669| | 043 | 0.15
CMT 121 Q200 m 1 DI L2 - 439566 | 3474,77 | 2869.42 [ 5720678 | 5612,154 [ 5763.513 | 6280,78| | 040| 045
CMT 121 Q200 m 2 DI L2 B 7360,11 | 526592 | 539088 | 5675098 | 5428476 | 52747 | 656307| _ |o0,11| 020
CMT 121 _Q 200 m 3 DI L2 - 916322 | 5218,69 | 5406.69 | 5620678 | 535732 |5222,098 | 780558 | 0.,15| 033
CMT 121 Q 200 m 4 D1 L2 ~ 975308 | 522081 | 5187.36 | 5353209 | 517606 |5106,129 | 568789 | 042| 008
CMT 121 Q200 m 5 DI L2 B 974553 | 516267 | 5352,12 | 5287.885 | 5303714 | 5259.021 | 5625,18| | 042| 008
CMT 151 Q200 m 1 DI L3 B 523516 | 514909 | 307391 | 5778358 | 5380,735 | 534909 | 631027| _ [043]| 0.8
CMT 151 _Q 200 m 2 D1 L3 ~ 821637 | 4954,15 | 545105 | 5379.861 | 5086381 |4954,147 | 632829| _ [023| 022
CMT 151 Q 200 m 3 D1 L3 B 9839,11 | 525876 | 509855 | 5513,989 | 5369,196 | 5258757 | 6203.90| | 037 0.5
CMT 151 _Q 200 m 4 DI L3 B 10447,70 | 533226 | 5067,99 | 5605328 | 5389.261 | 5334541 | 5687.98| | 046 0,06
CMT 151 _Q 200 m 5 DI L3 - 10447,70 | 5517.05 | 5517,05| 5545379 | 5569.375 | 5517,049 | 560245 | 046 002
CMT 151 Q 200 m 6 D1 L3 B 10447,70 | 553036 | 553036 | 5545207 | 5592485 | 5529918 | 584630| [ 044| 005
CMT 151 Q 200 m 7 DI L3 B 10431,00 | 485151 | 4851514857404 | 49454 |4863.401|568625|  |045| 0.15
CMT_151_Q 200 m 8 DI L3 - 10447,70 | 503429 | 503429 | 502823 |5062.868 | 5024861 | 5551.04] | 047| 0,09
CMT _200_Q 200 m_1 DI L3 ~ 629279 | 388496 | 327325 7582.818 | 6852.94 | 6769306 | 8062.51| _ [046| 052
CMT 200 Q 200 m 2 DI L3 B 10016,85 | 676024 | 6532.8 | 7562591 | 685294 | 6760458 | 788835  |021| 0,14
CMT 200 Q 200 m 3 DI L3 - 12033,30 | 664242 | 6889,04 | 7222708 | 6728 453 | 6642.42 | 7340,18| _ | 039 0,10
CMT 200 Q 200 m 4 D1 L3 ~ 13348,75 | 64525 | 6894 |7074.411| 6643446 | 6468593 | 789869 _ |041| 0,18
CMT 200 Q 200 m 5 DI L3 B 14007,96 | 636701 | 648687 | 6899.801 | 6449095 | 6367011 | 720684| | 049| 0,12
CMT 200 Q 200 m 6 DI L3 - 14017,08 | 6707 | 6707 |6976,519|6769,783 | 6706998 | 712066| | 049| 0,06
CMT 200 Q 200 m 7 D1 L3 B 1403531 | 698325 | 698325 7092.305 | 7074,797 | 6985065 | 7871,18] | 044 | 0,11
CMT 200 Q 200 m 8 DI L3 - 14053,55 | 6659.92 | 665992 | 6957,153 | 6752264 | 6683254 | 727876 | 048 | 0,09
CMT 200 Q 200 m 9 DI L3 B 1404443 | 637001 | 637001 | 6763.057 | 6715521 | 6661,164 | 724686 | 048 | 0,12
CMT _200_Q 200 m_10 DI L3 14053,55 | 6069.91 | 606991 | 6209274 | 6180,566 | 609438 | 7328.64 048] 017
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7. Conclusions

In this paper, we describe a new variant of the vehicle
routing problem namely the Profitable Vehicle Routing
Problem with Multiple Trips. Two different strategies of
sub-tours elimination constraints are used and for each
strategy two different cases are defined. Thus, four
mathematical models are obtained looking for optimal
solutions. For large-size instances, two greedy constructive
heuristics are proposed in a first solving step. Three Hill
Climbing algorithms based on three neighborhood structures
are developed. With a VND procedure, these methods are
managed to obtain improved solutions in a second solving
step of the problem. The design of these methods is based on
elements of reasoning to obtain intrinsically the best possible
solutions from the first iterations. Enhanced diversification
was covered by a broad research approach to effectively
improve the results. Experimental study shows satisfactory
results for small-size instances with MILPs using some cuts.
Two strategies of sub-tours elimination constraints are used
representing a good idea to formu late this kind of constraints.
The empirical results show the performance of the proposed
constructive heuristics which provide quick solutions very
close to the optimum, and also a satisfactory enhancement by
using the improvement procedures. In future work, with
some adjustments and the introduction of well-studied
perturbation moves, the obtained results could be further
refined to ensure a better optimality of solutions.
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