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Abstract  The constraints on responding time involved with dynamic vehicle routing problem (DVRP) require a 
compromise between distance and time in order to obtain the best solutions as fast as possible, so the flow t ime and the 
number o f lost customers have gotten the mean  to DVRP. Here, we propose a hybrid ant colony system (ACS) init ially 
applied to design a static version of vehicle routing problem (VRP). Then, stochastic information of customers is used to be 
considered in the part ially dynamic version of VRP. Our approach uses some heuristics to reconstruct routes and update 
pheromone. This approach for solving DVRP with the proper combination of parameters is compared with an insertion 
heuristic on the benchmark problems of Solomon's instances. The results show that our approach acts well in comparing 
some heuristic methods. 
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1. Introduction 

Vehicles routing and scheduling through a set of required  
services, could be counted as a key element in many 
distribution systems both in the private and public sectors. 
In vehicle routing problem (VRP), a fleet of vehicles 
supplies a set of geographically d ispersed customers to 
construct optimal routes with a minimal cost regarding 
distance, time, and the number of vehicles. Each vehicle 
goes through a tour, and each tour starts from a depot going 
towards customers to satisfy their demands. 

If the unknown attributes have been integrated with the 
constraints of VRP, the system has to incorporate changes 
and modify the scheduling to an appropriate one. This 
dynamically  responding to requests is termed as dynamic 
VRP (DVRP), or on-line VRP, which is also well-known as 
real t ime VRP (RTVRP); noteworthy these titles are 
corresponded with the quality and quantity of the 
responding system’s capability.  

As it is pointed out in reference[32], DVRP based on the 
degree of dynamis m and objective function can be termed 
as weakly or moderately or strongly dynamic system. For 
exa mple, a  d ial-a- ride p rob lem with  the number o f 
immediate requests being quite low, in which requests are 
booked before the day o f the t rip, is considered to  be a 
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weakly dynamic system ([19],[10],[58],[42]). Repair and 
mail services are counted as moderately dynamic routing 
systems ([23],[34]). In moderate systems, there is a need to 
have reaction to requests as soon as possible but not as fast 
as emergency cases that are known to be strongly dynamic 
systems ([24],[7]). Corresponding to the level of dynamism 
of DVRP, there are d ifferent optimizing  methodologies 
such as heuristic and meta-heuristic  methods. Our study 
utilizes the ant colony system (ACS) along with some quick 
heuristic methods to divert a vehicle away from its current 
destination to respond new requests.  

1.1. The Motivations and Contributions 

This paper has been inspired by the works done by 
references[23] and[39]. The main difference between our 
work and their studies is our account for some heuristic 
methods on ACS along with the scenarios of the DVRP. 
This is done to adapt the methodology with time restrict ion 
in order to find enough good solutions quick. In  our method, 
new requests arriving during a slice time are listed and 
posted to the next closest time slice. During each time slice, 
a problem similar to a static VRP, but with vehicles having 
different capacities and starting locations, is traced.  

This is a soft time window-based problem, in which  
requests should be responded dynamically. The future 
requests are not known, however the demands occur with 
Poison distribution function whereas the locations of 
requests are known. Regarding the order of the requests, 
vehicle are assigned to carry out them, therefore some 
requests may be postponed. This is the reason that we call it  
as a partially moderate DVRP. 
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The main contribution of our work is to develop a 
constructive structure to re-optimize routes for occurred 
events in the requests list. Although time window vehicle 
routing problems have been studied extensively, there is not 
a lot of ACS researched dedicated to solve DVRP (see 
Table 1). Insertion heuristic, tabu search, local search and 
genetic algorithm have attracted the most considerations in 
this field. Among them, the construction structure of ACS is 
well to solve routing kind problems; however the running 
time of this algorithm may seem high for DVRP. In this 
paper, we try to design an efficient ACS with setting 
appropriate parameters besides initial pheromone and 
increasing pheromone methodology. Moreover, 

neighborhood searches help us to reach feasible solutions 
quick. We prove that applied ACS is a suitable method for 
the proposed partially moderate DVRP. 

Regarding the points have been cleared in[28] to have 
more logical judgments about the quality of the solutions, 
we make use of an alternative object ive function in p lace of 
a distance-based objective function. Authors of[28] show 
the objectives of min imizing the make-span or the latency 
are inadequate since both will always be infinite. Thus, they 
consider the objectives of maxima and average flow time, 
which is the difference between the completion and release 
time. We use a combined idea of d istance and flow t ime as 
the objective function. 

Table 1.  A summary of related works on dynamic vehicle routing problems 

References Problem Objective  Solving technique 

[44] Stochastic model of dynamic vehicle 
allocation  

Maximizing the net revenue minus 
stockout costs 

Frank-Wolfe and heuristic splitt ing 
algorithms 

[34] Dispatching repair men Minimizing the travel cost Booking heuristic  for routing and 
timing of customers 

[35] Dial-a-ride 
Minimizing the total driving time, 

waiting time, number of vehicles and 
deviation from expected service 

Insertion heuristic 

[23] Real-time routing and dispatching Minimizing the travel cost Parallel tabu search heuristic 

[28] Online dial-a-ride  Minimizing the maximal/ average 
flow time 

REPLAN and IGNORE online 
heuristic strategies 

[24] Real-time ambulance relocation Maximizing the backup coverage 
demand Parallel tabu search heuristic 

[19] Dial-a-ride with dynamic and stochastic 
travel t imes 

Minimizing client inconvenience 
and service hours 

Heuristic algorithm coupled with a 
first-in-first-out (FIFO) assumption 

[10] Dial-a-ride with deterministic travels Minimizing the travel cost 
accommodating all requests Tabu search heuristic 

[2] Partially dynamic routing with 
stochastic customers 

Maximizing the number of serviced 
customers Multiple scenario approach 

[18] Dynamic routing and dispatching 
vehicles Minimizing delays and travel cost Heuristic assignment rules 

[37] Dynamic pickup and delivery with time 
windows 

Minimizing the travel cost 
accommodating requests Four waiting heuristic strategies 

[8] Routing a just-in-time (JIT) supply 
pickup and delivery system Minimizing the travel cost Column generation and tabu search 

[39] Dynamic routing Minimizing the travel cost Ant colony system 

[29] Dynamic and stochastic routing Minimizing the travel cost Scenario hedging heuristic 

[27] Dynamic routing Minimizing the travel cost Genetic algorithm 

[46] Dynamic pickup and deliver Minimizing the travel cost Insertion heuristics based on waiting 
and buffering strategies 

[58] Dial-a-ride under stochastic 
environments Minimizing the travel cost Heuristic scheduling based on local 

search strategy 

[6] Dynamic routing with time windows 
Maximizing the routing profit as the 

total revenue minus lateness and 
travel costs 

Granular local search heuristic 

[30] Routing with Dynamic Requests Minimizing the travel cost Multi-adaptive particle swarm 
optimization 

[42] Dial-a-ride Minimizing total routing costs Variable neighborhood search  

[31] Dynamic routing Minimizing the travel cost and 
insertion cost 

Particle swarm optimization and 
variable neighborhood search 
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1.2. The Applications of Model  

The main purpose of our model is to apply  for the repair, 
fuel d istribution, courier and mail service systems or other 
moderate routing problems. Broken car rescue, appliance 
repair are counted as repair services that are evolved in real 
time. In the courier and email service systems, there are a 
limited number of vans going around a specified location to 
collect parcels in order to consolidate loads. Sometimes, 
dynamic pick-up requests have to be serviced in a  same day. 
It is noteworthy that our study could be applicable for static 
version of VRP, too. 

The application  of th is problem could be found in  
considering the realistic property, which is occurring 
continuously. There are different real problem categorizes 
that must be solved dynamically  regarding  time windows 
constraints. For example[41] applies soft time windows 
constraint on vehicle scheduling within airport logistic. 
Dial-a-ride system is another example, which gives 
transportation service to (handicapped or elderly) people 
between given orig in and destination pairs. This system can 
be divided into the static model when trips are booked one 
day in advance ([10],[42]) or the dynamic models handling 
short notices ([35],[58]). 

1.3. The Organization of paper 

The rest of this paper is organized as follows. A review 
on the literature is presented in Section 2. The definit ion of 
the VRP and supposed dynamic strategy are provided in 
Section 3. The ACS procedure fo r real t ime responding to 
requests is presented in Section 4. Sect ion 5 using Taguchi 
method takes into account the calibrat ion of parameters and 
operators. A discussion on numerical results in comparing 
with other methods is given in Section 6. Lastly, 
conclusions and future work are p resented in Section 7.  

2. Literature Review 
VRP falls into the combinatorial optimization and integer 

programming prob lem categories, being studied extensively 
in the past forty years. The research was done in [13] as the 
first paper on VRP has been followed by a significant 
number of scholars until the present time. Readers are 
referred to refernce[16], in which there is a comprehensive 
taxonomy of classifications and categories contributed by 
VRP. 

The disparate structure of the literature of this problem 
makes it  quite difficult  to track developments on the subject. 
This subject covers several theoretical and practical 
disciplines from algorithm design to traffic management. 
Actually, VRP's facets encompass a spectrum from 
stochastic to deterministic areas and from static to dynamic 
issues. It could be said that time windows structure 
([52],[40],[9],[3],[36],[38]), time horizon structure 
([35],[10]), and backhauls ([14],[54]) are there general 
scenario characteristics of VRP. 

There is a large portion of the literature on static VRP, 
which may be termed as tradit ional VRP. In the static VRP, 
the data such as the locations, load splitting, demand 
quantities, capacities of vehicles, request time, driving time, 
wait ing time, and service time are known and determin istic 
([49],[11],[43],[60],[38]). The complex structure of DVRP 
for scheduling orders to vehicles and vehicles to routes 
admits difficult ies for finding feasible solutions, and this is 
the cause for lack of large number of researches in this field.  
With the enhanced computational capability offered in the 
1990s and the enhancement in vehicle tracking, exchange 
media, and data storage, DVRP has been more common in  
the literature ([1],[2],[18],[39],[51],[6],[50],[30],[4]).  

A variety of solution methodologies including heuristics, 
simulations and exact methods with regard to service 
strategies, relat ions between vehicles-customers along with 
supposing appropriate objective functions, have been 
developed to encounter DVRP models.  Authors of[23] 
develop a parallel tabu search (TS) to find min imum cost of 
delay on service for presumed soft t ime windows. A  survey 
on results obtained on different types of DVRPs can be 
found in[22]. References[26] and[39] develop d ifferent 
approaches of ant colony algorithm for DVRP. Reference[6] 
considers a granular local search heuristic for RTVRP. Note 
that partially dynamic vehicle routing problems may vary  
greatly in complexity according to the characteristics of 
dynamis m, which have been classified as in[45] and[25]. 

The first DVRP study dates back to reference[44], which  
surveyed uncertainty in VRP with stochastic flows of 
vehicles. It  could be said that stochastic routing is another 
attracting subject in VRP literature, in which supposing 
stochastic nature of events made it more close to real-world  
problems ([57],[56]).The concept of DVRP and RTVRP 
encompasses time window constraints on request nodes. 
Therefore, some DVRP fall under the stochastic vehicle 
routing problem category too ([5],[21],[20],[29],[55],[17],[4
7]).The DVRP in which  stochastic informat ion about future 
request is known could  be called  dynamic and stochastic 
VRPs. In the current paper, we focus on the dynamic frame 
of VRP, in which routes could be changed regarding time 
windows. The ACS algorithm is used to solve the partially  
DVRP with stochastic characteristic of occurring future 
events with known demands and location. 

3. The Dynamic Vehicle Routing 
Problem 

The VRP can be described as a weighted graph-theoretic 
problem. Let 𝐺𝐺 = (𝑉𝑉 , 𝐿𝐿)  indicates the graph, where 
𝑉𝑉 = {𝑣𝑣0, 𝑣𝑣1, 𝑣𝑣2, … , 𝑣𝑣𝑁𝑁} are vertices, 𝑣𝑣0  is the central depot, 
and the other nodes are 𝑁𝑁 customers that have to be served. 
The arcs connecting vertices are represented with 𝐿𝐿 =
�(𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑗𝑗 )|𝑖𝑖 ≠ 𝑗𝑗�. There is a nonnegative demand 𝑑𝑑𝑖𝑖  for each 
node and a nonnegative cost 𝑐𝑐𝑖𝑖𝑖𝑖  associated with each arc 
(𝑖𝑖, 𝑗𝑗), which usually stands for the traveling distance from 
vertex 𝑖𝑖 to vertex 𝑗𝑗. Since 𝑐𝑐𝑖𝑖𝑖𝑖 = 𝑐𝑐𝑗𝑗𝑗𝑗    ∀ 𝑖𝑖, 𝑗𝑗 , so the problem is 
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called symmetric. In several practical cases, the triangular 
inequality holds, that is 𝑐𝑐𝑖𝑖𝑖𝑖 + 𝑐𝑐𝑢𝑢𝑢𝑢 ≥ 𝑐𝑐𝑖𝑖𝑖𝑖    ∀ 𝑖𝑖, 𝑗𝑗, 𝑢𝑢 ∈ 𝑉𝑉 . The 
objective is to find a collection of 𝐾𝐾  simple circuits with 
minimum cost satisfying the following constraints: 

(1) Each circuit v isits the depot. 
(2) Each vertex is visited by exactly one circuit. 
(3) The sum of the vertices’ demands visited by a circuit 

does not exceed the vehicle capacity. 
Here, we exp lain how motions can be evaluated in time 

window constraints. The static mode can design routes by 
applying supposed ACS, but the key discussion is on 
dynamic routing. We survey the strategy aimed at 
discarding moves which are not most likely to yield any 
improvement. First of all, some descriptions about the 
basics of DVRP are given. 

3.1. The DVRP Defini tions  

We consider the general case that some requests (of the 
pick up or delivery) could arrive randomly, just like courier 
distribution systems. Travel times are updated based on real 
time information; however, travel distances are kept 
constant in all experiments. All vehicles are assumed to be 
similar and there are capacity constraints for all of them, 
and the pre-defined number of vehicles is assumed to be 
sufficient to serve the average o f the requests. There is no 
concentration of vehicles in a small area and the route loads 
are balanced. Moreover, when vehicles leave the depot, 
they do not have to go back to it, unless there is not enough 

capacity for servicing or when all the customers have been 
serviced. Notably, no service would be canceled even if 
delays are faced. 

In the version of DVRP considered having time windows, 
each customer should be served within the earliest and 
latest service times g iving as an interval [𝑒𝑒𝑖𝑖 , 𝑙𝑙𝑖𝑖] . The 
demands for servicing new customers are generated at the 
nodes of the network according to a Poisson process. The 
travel times among nodes are known and deterministic, and 
each vehicle spends a known service time for each new 
coming customer. In  this condition, part  of the input is 
revealed to the dispatcher, while servicing the static 
requests. Given this, it is impossible for optimal routes to be 
produced in advance. At the best, what can be produced is 
to determine what action should be taken as a function of 
the state of the system.  

Figure 1 shows an example of DVRP considered by time 
windows. The pre-planned customers and dynamic requests 
are depicted by grey and white nodes, respectively. The pre-
planned routes are represented by solid lines. The thick arcs 
indicate the current positions of vehicles at the time the 
immediate requests are received. The new customers have 
to be inserted into the already planned routes with a 
minimal delay. Because of the time window constraints, 
some new requests, like 𝑁𝑁1 might not be satisfied. Since our 
approach is not to reject requests, unsatisfied orders should 
be saved to be considered in the next  work slices.

 

Figure 1.  An example of DVRP with seven pre-planned customers and three immediate requests 
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Figure 2.  An architecture of DVRP algorithm 

 
Table 2.  The List of symbols used in the DVRP 

Symbol Definition 
𝑖𝑖, 𝑗𝑗 The index of node; 𝑖𝑖, 𝑗𝑗 = 0,1,2, … ,𝑁𝑁 
𝑘𝑘 The index of vehicle; 𝑘𝑘 = 1,2, …,𝐾𝐾  

𝑖𝑖𝑘𝑘  The index of 𝑖𝑖th node in 𝑘𝑘th route 
𝑣𝑣 The index of new customer; 𝑣𝑣 = 1,2, … ,𝜗𝜗 

𝜂𝜂 The lateness penalty coefficient associated with each work 
station 

𝑑𝑑𝑖𝑖𝑖𝑖  The length of edge (𝑖𝑖, 𝑗𝑗) 

𝑐𝑐𝑖𝑖𝑖𝑖𝑘𝑘  
The cost of travelling edge (𝑖𝑖, 𝑗𝑗) by 𝑘𝑘th vehicle; 𝑐𝑐𝑖𝑖𝑖𝑖𝑘𝑘 = 𝑑𝑑𝑖𝑖𝑖𝑖 +

𝜂𝜂max�0, 𝑡𝑡𝑖𝑖𝑘𝑘 − 𝑙𝑙𝑖𝑖𝑘𝑘 �    , ∀𝑘𝑘 

𝑡𝑡𝑖𝑖𝑘𝑘  The possible beginning service time for 𝑖𝑖th workstation of 
𝑘𝑘th vehicle 

𝑒𝑒𝑖𝑖𝑘𝑘  The earliest service time for𝑖𝑖th workstation of 𝑘𝑘th vehicle 
𝑙𝑙𝑖𝑖𝑘𝑘  The latest service time for 𝑖𝑖th workstation of 𝑘𝑘th vehicle 

𝑃𝑃𝑃𝑃 
The push forward in the beginning time of services, when a 

new request is added; 𝐹𝐹𝑟𝑟𝑘𝑘 = 𝑡𝑡𝑟𝑟𝑘𝑘
𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑡𝑡𝑟𝑟𝑘𝑘  

𝜇𝜇 The saving parameter for neighborhood customers 
𝜆𝜆 The saving parameter for new customers 
𝛿𝛿1 The effecting parameter of distance 
𝛿𝛿2 The effecting parameter of t ime 

Some processes are known in advance before the start of 
the working day. As the day progresses, new orders arrive 
and the system has to incorporate them into an evolving 
schedule. The advancing technology allows for informat ion 
to be obtained and updated in real t ime. The dispatching 
center can periodically communicate with the vehicles in 
order to assign them. When new requests occur, vehicles 

with enough capacities to satisfy the orders would be the 
candidate. Clearly, these vehicles have to satisfy pre-
allocated requests, and so a new request would be assigned 
to a vehicle, if it does not violate the constraint of other pre-
assigned requests. The hard restriction on time windows 
may cause loss of services; therefore, soft time windows are 
supposed. Consequently, the cost function of distribution 
for each circu it is defined by Eq. (1) below, as the total cost 
function of a routing solution is calculated by Eq. (2): 
𝐶𝐶(𝑘𝑘) = ∑ ∑ 𝑑𝑑𝑖𝑖𝑘𝑘𝑗𝑗𝑘𝑘 + 𝜂𝜂∑ max�0, 𝑡𝑡𝑖𝑖𝑘𝑘 − 𝑙𝑙𝑖𝑖𝑘𝑘 �𝑖𝑖𝑘𝑘𝑗𝑗𝑘𝑘𝑖𝑖𝑘𝑘    ,   ∀ 𝑘𝑘     (1)  

𝐶𝐶 = ∑ 𝐶𝐶(𝑘𝑘)𝑘𝑘                                    (2) 

The cost function appeared in Eq. (1) contains total 
traveled distance as well as lateness penalty, which are 
measured regarding to either customers or the single depot. 
Table 2 lists the notation used in our DVRP model. 

We divide a working day into time slices with equal 
length 𝑇𝑇 𝑛𝑛𝑠𝑠⁄ , where 𝑇𝑇 is the length of the working day. It is 
crucial that informat ion updating methodologies be sorted 
for assignment purposes, the accuracy have be done 
specially in the wait ing section ([37],[46]). If there were no 
appropriate vehicle, the requests would wait in a queue for 
satisfying some pre-planned ones, until enough capacity for 
accomplishing requests in the queue is acquired. After 
complet ing a request, all new requests placed in the queue 
is checked, and the first request found to be appropriate for 
a remain ing vehicle capacity is assigned, and the queue is 
sorted again. Determined orders have to be inserted in 
appropriate routes, and then appropriate modificat ion 
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should take place. A diagram for th is process is shown in 
Figure 2 and described in the following algorithm. A  
pseudo code of the DVRP strategy is considered below. 
Algorithm 1: The DVRP strategy 

For each time slice, do 
While there are new requests, do 
Put new requests in a sorted queue. 

For each request in the queue orderly, do 
Consider appropriate vehicles with enough 

capacities as candidates. 
Sort the candidates based on the cost function. 

If it  is feasible to insert new request in current 
time slice, then 

Update the adaptive memory in each insertion. 
Else 
Put the request in the next slice. 
End If 
Apply the routing method (ACS/Insertion 

heuristic) and assign new requests. 
Apply improving methods on the best solutions 

found. 
New current solution= A complete feasible 

reconstructed solution. 
End For 

End While 
End For. 

3.2. The Insertion Heuristic 

The insertion of new customers is quite a complicated 
task and consideration is needed either for partial or for full 
re-planning of the non-visited part of the routes. After 
determining the position, the circuits are broken into routes 
with the last station as the departure and the depot as a 
destination for each vehicle (route). Then, ACS, to be 
described in detail in the next  section, would be applied to 
find a minimal cost for responding to requests. If there is 
more than one request, requests are processed in the order 
of their entrances. 

Alternatively, there are different approaches in the 
literature to face with new customers. Our study compares 
ACS with the insertion idea for incoming orders arisen from 
the insertion heuristic, which was firstly proposed in[53]. 

We use some modificat ions on this method. Established 
upon this heuristic, the necessary and sufficient  conditions 
for feasibility of inserting a customer, say 𝑣𝑣 , between 
(𝑖𝑖 − 1)𝑘𝑘  and 𝑖𝑖𝑘𝑘  (as the last customer of 𝑘𝑘th vehicle and the 
depot, respectively) on a partially  feasible route 
(0𝑘𝑘 , 1𝑘𝑘 , 2𝑘𝑘 , … , 𝑛𝑛𝑘𝑘 ) with 0𝑘𝑘 = 𝑛𝑛𝑘𝑘 = 0 are: 
𝑡𝑡𝑣𝑣 ≤ 𝑙𝑙𝑣𝑣   𝑎𝑎𝑎𝑎𝑎𝑎  𝑡𝑡𝑟𝑟𝑘𝑘 + 𝑃𝑃𝑃𝑃𝑟𝑟𝑘𝑘 ≤ 𝑙𝑙𝑟𝑟𝑘𝑘         ,      𝑖𝑖𝑘𝑘 ≤ 𝑟𝑟𝑘𝑘 ≤ 𝑛𝑛𝑘𝑘     (3) 

𝑃𝑃𝑃𝑃𝑟𝑟𝑘𝑘 = 𝑡𝑡𝑟𝑟𝑘𝑘
𝑛𝑛𝑛𝑛𝑛𝑛 − 𝑡𝑡𝑟𝑟𝑘𝑘                          (4) 

The best feasible insertion place is searched in the 
emerging route phase to maximize the benefit derived from 
servicing the customer on the specified constructed partial 
route: 

𝐶𝐶11((𝑖𝑖 − 1)𝑘𝑘 , 𝑣𝑣 , 𝑖𝑖𝑘𝑘) = 𝑑𝑑𝑣𝑣𝑖𝑖𝑘𝑘 + 𝑑𝑑𝑣𝑣(𝑖𝑖−1)𝑘𝑘 − 𝜇𝜇𝑑𝑑𝑖𝑖𝑘𝑘 (𝑖𝑖−1)𝑘𝑘       (5) 

𝐶𝐶12((𝑖𝑖 − 1)𝑘𝑘 , 𝑣𝑣 , 𝑖𝑖𝑘𝑘) = 𝑃𝑃𝑃𝑃𝑖𝑖𝑘𝑘                                  (6) 

𝐶𝐶((𝑖𝑖 − 1)𝑘𝑘 ,𝑣𝑣 , 𝑖𝑖𝑘𝑘) = 𝛿𝛿1𝐶𝐶11((𝑖𝑖 − 1)𝑘𝑘 , 𝑣𝑣 , 𝑖𝑖𝑘𝑘) + 𝛿𝛿2𝐶𝐶12((𝑖𝑖 −

1)𝑘𝑘 , 𝑣𝑣 , 𝑖𝑖𝑘𝑘)   , 𝛿𝛿1 + 𝛿𝛿1 = 1 , 𝛿𝛿1, 𝛿𝛿2 ≥ 0                       (7) 

It is noteworthy that after insertion, 𝑛𝑛𝑘𝑘  would be updated. 
The involved parameters in the above insertion heuristic 
affect the best feasible place for an un-routed customer. 
Provision of service to a customer is dependent on a 
weighed combination of distance to the place and time 
window vio lation. A pseudo code of the algorithm can now 
be given. 

4. the Hybrid Ant Colony System 
Here, we describe a methodology for finding the shortest 

path by using ACS in  order to find enough good solutions 
in real time events. The proposed method hybridizes the 
mechanis m of ACS and some updating and explorat ion 
searches. Discussion on ACS as an applicable algorithm for 
combinatorial optimizat ion problems can be found in[15], 
but here we give some exp lanations about the current 
approach on this well-known meta-heuristic algorithm. The 
notations used in the ACS algorithm are presented in Table 
3. 

Table 3.  The List of symbols used in the ACS 

A pseudo code of the hybrid ACS is given below. 
Algorithm 2: The hybrid ACS process 
Initialization 

Set best routes, pheromone and data structure as initial 
solution. 

While the stopping criterion is not met, do 
For each ant 𝑘𝑘, do 

Symbol Definition 
𝛼𝛼 The effect of pheromone 
𝛽𝛽 The effect of visibility 

𝜌𝜌 The constant for controlling evaporation speed; 
𝜌𝜌 ∈ (0,1) 

𝑄𝑄 A constant 
𝜏𝜏𝑖𝑖𝑖𝑖  The pheromone on the edge (𝑖𝑖, 𝑗𝑗) 

Δ𝑖𝑖𝑖𝑖𝑘𝑘  The increased pheromone on (𝑖𝑖, 𝑗𝑗)traversed by 𝑘𝑘th 
vehicle 

𝜂𝜂𝑖𝑖𝑖𝑖  The visibility; 𝜂𝜂𝑖𝑖𝑖𝑖 = 1 𝑐𝑐𝑖𝑖𝑖𝑖𝑘𝑘⁄  
𝜀𝜀𝑖𝑖𝑖𝑖  The saving parameter; 𝜀𝜀𝑖𝑖𝑖𝑖 = 𝑑𝑑0𝑖𝑖 + 𝑑𝑑0𝑗𝑗 − 𝑑𝑑𝑖𝑖𝑖𝑖  

𝑚𝑚𝑘𝑘  The number of stations in the 𝑘𝑘th vehicle’s route 
𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘  The memory for 𝑘𝑘th ant 

𝑞𝑞 The fixed parameter related to importance of 
exploitation versus exploration 

𝑞𝑞0 The random uniform variable; 𝑞𝑞0𝜖𝜖[0,1] 
ℜ𝑔𝑔𝑔𝑔

 The best solution found by a loop of ACS 
𝐶𝐶𝑔𝑔𝑔𝑔  The best solution found so far 
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Construct a solution ℜ𝑘𝑘  
Update the tabu list, pheromone, and data structure (local 

updating). 
End For 
Neighborhood search {mutation operator, cross, and 2-

opt exchanges}. 
New current solution = The best (non tabu) solution in 

the neighborhood. 
If the current solution is better than the best so far, then 

The best overall solution (𝐶𝐶𝑔𝑔𝑔𝑔 )= The current solution. 
End If 

Update the tabu list, pheromone, and data structure 
(global updating). 

End While 
Return the best overall solution. 

4.1. The Initial Solution  

The min imum travel time solution can include a number 
of vehicles more than the one obtained by a solution with a 
minimal number of vehicles (see[20]). A heuristic method 
such as the one gave in[53] may be used to min imize the 
number of vehicles. Generally, min imizing the number of 
vehicles is unsuitable for DVRP, because it leaves a low 
residual capacity for each vehicle to accommodate dynamic 
requests. Since time being a crit ical element in DVRP, we 
thus prefer to use all availab le vehicles to form the first seed 
of routes. Two different heuristic scenarios are surveyed to 
find the initial solution for known customers. Both utilize a 
seed to go on finding routes. One of them lets the vehicles 
service customers as much as possible and this is done 
based on using the nearest neighbor to the last serviced 
customer. In this way, some vehicles service a large number 
of customers, while some others serve none.  

Another scenario forms the routes around the seed in 
finding a suitable customer near the last serviced customer 
for each vehicle in order. The former scenario leads to 
finding better routes having lower costs. Because of the 
necessity for scattering vehicles in  the environment in order 
to have quick react ions to the incoming requests, it is 
logically better to use the latter scenario for DVRP. 
Therefore, at the beginning of the work shift, each known 
customers is assigned to a pre-defined number of vehicles. 

To determine seeds of the routes, customers are assigned 
to vehicles using Eq. (1) as a cost function. Initially, a seed 
of routes is formed using known customers with min imum 
cost with respect to a single depot. When the size of the 
seed equals the number of routes, un-routed customers are 
inserted into these routes. This is done based on the cost 
incurred regarding the last inserted customer on each route. 
The insertion process is repeated until all static customers 
are visited.  

4.2. The Neighborhood Searches 

Since a good structure is based on a robust infrastructure, 
we try  to find good in itial solutions. Hereby, accomplishing 
ACS, we used some addit ional heuristics. This was done by 

using some neighborhood searches over the initial solution 
to restrict the exchanges to consecutive customers in the 
routes. Three neighborhood structures were used to find 
new better solutions in any iteration. The mutation operator, 
cross, and 2-opt exchange heuristics played the main roles 
in searching the solution space. 

The idea o f the mutat ion operation is to  randomly mutate 
the route and then produce a new solution that is not far 
from the original one. The steps for the mutation operation 
are as follows: 

(1) Select the two routes from the parent solutions and 
determine the mutating point for each one.  

(2) Exchange the work stations in the different tours and 
generate the child solution. 

(3) Ensure that the child  solution is counted as a local 
optimum. 

As stated in[23], among d ifferent exchanging methods, 
the cross exchange can yield better results than other 
neighborhood searches. In this case, two segments of 
different lengths are removed from the current solution. 
Then, each segment is reinserted at the location with the 
smallest detour. In other words, an arc of each route is 
deleted and two other arcs are inserted such that each 
resulting route has customers of both original routes.  

The 2-opt exchange can be applied to improve the tours. 
This move deletes two arcs from a route and adds two new 
ones to the same route (see[12]). This means that some 
randomized possible pair-wise exchanges of customer 
locations visited by individual vehicles are tested to find out 
whether there would be any improvement in the objective 
function. 

The indicated neighborhood search is used in the 
dynamic part of the problem leading to some chances for 
new customers to be designated to more appropriate routes. 
These exchanges may create invalid solutions, in which 
case routes should be modified to the nearest valid  solution. 
After changes made to reconstructed routes, we modify  
routes to feasible solutions.  

4.3. Pheromone Updating of ACS  

An adaptive learning technique in ACS is to update the 
pheromone to cause improvement of new solutions. The 
colonies exchange informat ion through pheromone 
updating. This process in ACS is conducted by reducing the 
amount of pheromone on all edges in order to simulate the 
natural evaporation of the pheromone and to guarantee that 
no path becomes too dominant in local updating, Eq. (8), 
and insists on the best solution by maximizing the 
pheromone trail value in global updating, Eq. (9): 
𝜏𝜏𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 = (1 − 𝜌𝜌)𝜏𝜏𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜 + 𝜌𝜌𝜏𝜏0                                               (8) 

𝜏𝜏𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 = (1 − 𝜌𝜌)𝜏𝜏𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜 + 𝜌𝜌 𝐶𝐶 𝑔𝑔𝑔𝑔⁄       ,       ∀(𝑖𝑖 , 𝑗𝑗) ∈ ℜ𝑔𝑔𝑔𝑔       (9) 

As it is exp lained in[20], the value 𝜏𝜏0 = 1 (𝑁𝑁 × 𝐶𝐶 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 )⁄ , 
where 𝐶𝐶 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  is the initial solution produced by a greedy 
heuristic, can make good initial pheromone trails on the 
arcs.  
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In addition, we utilize the idea of ant-weight strategy rule 
for the pheromone increment updating[59]. The ant-weight 
strategy consists of two components: the global pheromone 
increment and the local pheromone increment. This 
updating method appropriates additional pheromone 
depending on the solution quality or the contribution of 
each link to the solution. The strategy is then written to be: 
𝜏𝜏𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛 = 𝜌𝜌× 𝜏𝜏𝑖𝑖𝑖𝑖𝑜𝑜𝑜𝑜𝑜𝑜 + ∑ Δ𝑖𝑖𝑖𝑖𝑘𝑘𝑘𝑘                                             (10) 

Δ𝑖𝑖𝑖𝑖𝑘𝑘 = 𝑄𝑄
𝐾𝐾×𝐶𝐶

×
𝐶𝐶(𝑘𝑘)−𝑐𝑐𝑖𝑖𝑖𝑖

𝑘𝑘

𝑚𝑚𝑘𝑘−𝐶𝐶(𝑘𝑘)
      ,       ∀(𝑖𝑖 , 𝑗𝑗) ∈ ℜ𝑔𝑔𝑔𝑔                   (11) 

Because both the global and local features of a solution 
are considered in this pheromone updating procedure, the 
assigned additional pheromone is directly responsible for 
the enhanced quality of routes. Moreover, the runs this 
algorithm has shown that a second update greatly improves 
the system’s performance. We applied  this strategy for 
finding more favorable routes having more pheromones to 
produce accurate direct information fo r subsequent searches. 

4.4. The Probability Function of ACS 

It can be said that pheromone trails g ive a measure of 
how much an arc is desirable to be inserted in a solution. In  
other words, these trails are used for exp loration and 
exploitation. Based on the characteristic of ACS to select 
the next  station 𝑗𝑗 , the ant 𝑘𝑘  at the current position of 
customer 𝑖𝑖 uses the probabilistic Eq. (12), as given below: 

𝑝𝑝𝑖𝑖𝑖𝑖𝑘𝑘 = �𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙∉𝑀𝑀𝑀𝑀𝑀𝑀𝑘𝑘
[𝜏𝜏𝑖𝑖𝑖𝑖]𝛼𝛼 �𝜂𝜂𝑖𝑖𝑖𝑖𝑘𝑘 𝜀𝜀𝑖𝑖𝑖𝑖 �

𝛽𝛽
      , 𝑖𝑖𝑖𝑖 𝑞𝑞 ≤ 𝑞𝑞0

 ℋ            ,        𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒
�     (12) 

where, ℋ represents a random selecting method according 
to the probabilistic distribution of Eq. (12), as given below: 

𝑝𝑝𝑖𝑖𝑖𝑖𝑘𝑘 = �
�𝜏𝜏𝑖𝑖𝑖𝑖 �

𝛼𝛼 �𝜂𝜂𝑖𝑖𝑖𝑖
𝑘𝑘 𝜀𝜀𝑖𝑖𝑖𝑖 �

𝛽𝛽

∑ [𝜏𝜏𝑖𝑖𝑖𝑖]𝛼𝛼�𝜂𝜂𝑖𝑖𝑖𝑖
𝑘𝑘 𝜀𝜀𝑖𝑖𝑖𝑖 �

𝛽𝛽
𝑙𝑙∉𝑀𝑀𝑘𝑘

      , 𝑗𝑗 ∉ 𝑀𝑀𝑘𝑘

 0            ,        𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

�                            (13) 

Although 𝜂𝜂𝑖𝑖𝑖𝑖  is usually counted as a static value, but in 
DVRP,  it can be changed with respect to the corresponding 
time and distance of each arc, and so we have defined it as 
the inverse of d istribution cost (𝑐𝑐𝑖𝑖𝑖𝑖𝑘𝑘 ), which  incorporates the 
combination of distance and travel t ime for each arc in  each 
route. The value of the pheromone trail 𝜏𝜏𝑖𝑖𝑖𝑖  is dynamically 
changed. 

5. Calibration of the Parameters and 
Operators 

Clearly, the values of parameters involved in the ACS 
algorithm d irectly  or indirect ly affect the quality of the final 
solution, and so control is needed for the result to be 
reliable. In o rder to determine the best combination of 
parameters for ACS, Taguchi’s method is used[48]. This 
method combines design of experiments and optimizat ion 
of the control parameters based on the orthogonal array  
experiments and optimal settings of control parameters 
giving much reduced variance for the experiments.  

Exp loring all parameter states is expensive and so 
selecting a candidate list as a representative for the search 
would be appropriate. We choose control factors including 
the number of ants (𝑎𝑎𝑎𝑎𝑎𝑎), the influence of the pheromone 
(𝛼𝛼), the visib ility (𝛽𝛽), the pheromone decay (𝜌𝜌) , and the 
probability exp lorat ion (𝑞𝑞0) , which  are respectively 
symbolized by A, B, C, D, and E . For each parameter, three 
quantities are investigated as shown in Table 4.  

Table  4.  The involving factor levels in DACS 

Factor Symbol Levels values 

The number of ants(𝑎𝑎𝑎𝑎𝑎𝑎) A 
A(1) 5 
A(2) 10 
A(3) 15 

The influence of the pheromone 
(𝛼𝛼) B 

B(1) 1 
B(2) 3 
B(3) 5 

The influence of visibility (𝛽𝛽) C 
C(1) 1 
C(2) 3 
C(3) 5 

The pheromone decay (𝜌𝜌) D 
D(1)  0.05 
D(2)  0.15 
D(3)  0.25 

The probability of exploitation 
versus exploration (𝑞𝑞0) E 

E(1)  0.65 
E(2)  0.8 
E(3)  0.95 

Table 5.  The modified orthogonal array L18 

Scenario 
Control Factor Level 

A B C D E 
1 A(1) B(1) C(1) D(1) E(1) 
2 A(1) B(2) C(2) D(2) E(2) 
3 A(1) B(3) C(3) D(3) E(3) 
4 A(2) B(1) C(1) D(2) E(2) 
5 A(2) B(2) C(2) D(3) E(3) 
6 A(2) B(3) C(3) D(1) E(1) 
7 A(3) B(1) C(2) D(1) E(3) 
8 A(3) B(2) C(3) D(2) E(1) 
9 A(3) B(3) C(1) D(3) E(2) 

10 A(1) B(1) C(3) D(3) E(2) 
11 A(1) B(2) C(1) D(1) E(3) 
12 A(1) B(3) C(2) D(2) E(1) 
13 A(2) B(1) C(2) D(3) E(1) 
14 A(2) B(2) C(3) D(1) E(2) 
15 A(2) B(3) C(1) D(2) E(3) 
16 A(3) B(1) C(3) D(2) E(3) 
17 A(3) B(2) C(1) D(3) E(1) 
18 A(3) B(3) C(2) D(1) E(2) 

The total degree of freedom for a supposed parameter 
with three levels is equal to 5×2=10, and so the fittest 
orthogonal array  is L18. The modified orthogonal array L18 
for our case is shown in Table 3. Each test scenario of Table 
5 was used to run test C101 of the Solomon benchmark 
problems four times. The approach is also effective on other 
instances of the Solomon benchmark prob lems, as observed 
in our further experiments not shown here for the sake of 
brevity. 
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Further details on experimental design procedure in 
Taguchi method can be found in[48]. Taguchi's signal-to-
noise (𝑆𝑆/𝑁𝑁) rat io, which is log functions of desired output, 
serves as objective function for optimizat ion, and helps in 
data analysis and prediction of optimum results. The 𝑆𝑆/𝑁𝑁 
ratio representing the magnitude of the mean of a process 
compared to its variation as introduced by Taguchi is given 
by the following formulas: 

𝑆𝑆
𝑁𝑁

= −10 log10(𝑀𝑀𝑀𝑀𝑀𝑀)                                                  (14) 

𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑦𝑦1
2 +𝑦𝑦2

2+⋯+𝑦𝑦𝑛𝑛2

𝑛𝑛
                                                      (15) 

where, 𝑦𝑦 is an indicator for the result of repeating each 
experiment and 𝑛𝑛 is the number of repetitions. The mean of 

𝑆𝑆/𝑁𝑁  is exhib ited in Figure 3, and Figure 4 confirms the 
level for each factor by using the mean of normalized  
objective function as a common performance measure. 

The mean square deviation (MSD) and 𝑆𝑆/𝑁𝑁  ratio are 
related to each other, and so for our study the larger 𝑆𝑆/𝑁𝑁 is 
better. To achieve better results, the following setting 
should be made for the factors: level 3 for factor A, level 3 
for factor B , level 1 for factor C, level 2 for factor D, and 
level 2 for factor E. The analysis for parameter setting S/N 
ratio is done with ANOVA as exh ibited in Table 6. W ith 95%  
confidence level, the level o f factor B  is not found to be 
considerable among the indicated levels here.

 
Figure 3.  The mean of 𝑆𝑆/𝑁𝑁 ratio for each level of the ACS factors 

 
Figure 4.  The mean of normalized objective function for each level of the ACS factors 
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Table 6.  ANNOVA for the 𝑆𝑆/𝑁𝑁 ratio 

Factors D.F S.S. M.S. F Percent X Cumulative 

A 2 0.017496987 0.008748493 1.807165366 2.5992682 2.5992682 

B 2 0.183068861 0.09153443 18.90815288 57.668596 60.267864 

C 2 0.027089484 0.013544742 2.797920475 5.78974 66.057604 

D 2 0.013673097 0.006836548 1.412217261 1.3274396 67.385043 

E 2 0.025445336 0.012722668 2.628105677 5.2428951 72.627938 

Error 7 0.033887023 0.004841003    
Total 17 0.300660788 0.138227886    

 
Figure 5.  An example of re-optimized route for incoming customers as time progresses 

According to the obtained results, the following  
parameter settings have shown to be suitable for ACS 
calibrat ion: 𝑎𝑎𝑎𝑎𝑎𝑎 = 15, 𝛼𝛼 = 5, 𝛽𝛽 = 1, 𝜌𝜌 = 0.15, 𝑞𝑞0 = 0.8 
and for the parameters independent of the ACS process 
𝑄𝑄 = 1000, 𝑛𝑛𝑠𝑠 = 20, 𝜂𝜂 = 1 . 

In addition to the parameter setting for ACS, the 
parameters of the insertion method are set as 𝛿𝛿1 = 𝛿𝛿1 =
0.5,𝜇𝜇 = 𝜆𝜆 = 1. We used the same share of time and 
distance for our method. 

6. Numerical Results and Discussion 

The 56 benchmark problems of So lomon’s instances 
composed of six d ifferent problem types C1, C2, R1, R2, 
RC1,and RC2 were used to evaluate the developed ACS for 
DVRP. These problems contain between eight to twelve 
100-node problems. The locations of customers in problem 
set R are generated as uniformly  distributed random 
numbers in a square[0, 100] ×[0, 100]. For the test set C, 
the customers whose time windows are generated based on 
a known solution, are placed in  clusters, and the test set RC 
is a combination of randomly placed and clustered 
customers. There are narrow time windows and small 

vehicle capacities for sets of type 1, and large time windows 
and large vehicle capacities fo r sets of type 2. Therefore, 
the solutions of type 2 p roblems have very few routes and 
significantly more customers per route. 

We supposed that about 40% of requests of these 
benchmarks appeared as dynamic requests depending on the 
order of the request in the orig inal instances. The entrance 
rate 𝜆𝜆 was adapted with the length of the working day 𝑇𝑇 to 
consider each one of the 100 requests. The length of 
working day was set to the due date vehicles needed to 
return to the depot. Event manager was set to handle the 
immediate requests during the day after the advancing 
requests were serviced. We considered this uniform rate, 
because this seemed to be an intuitively  correct approach 
for the performance of the dynamic system. For instance, 
Figure 5 graphically displays the entrance of static and 
dynamic customers for vehicle number 1 of C101 test 
problem. The route is extended from (𝑣𝑣93 , 𝑣𝑣29, 𝑣𝑣38)  to 
(𝑣𝑣93, 𝑣𝑣29, 𝑣𝑣38, 𝑣𝑣9, 𝑣𝑣97, 𝑣𝑣60 , 𝑣𝑣48 , 𝑣𝑣69)  as the left and right  
subplots show respectively. 

Experiments on the algorithms were made in  MATLAB® 
7.6.0 (R2008a) environment, on a PC with 2.0GHz Intel 
Core® 2 Duo processor and 2GB RAM. Each test was 
conducted for four times, and the solution fo r each  problem 
type is reported as the mean of the obtained results.  
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First, the comparisons of three classes of Solomon’s 
instances are reported in Tab les 7-9. These tables 
respectively represent the mean of the costs obtained by 
applying different neighborhood search methods on ACS-
DVRP and insertion fo r the R, C and RC problem sets. The 
first column in each method tit led COST is the result 
obtained by cost function, and the second column named  
DIST is the traveled d istance. Figure 5 shows suitable 

operators for the problem with respect to distance or cost 
function. For example, the mutation operator is more 
appropriate for type 2 tests, and 2-Opt exchange is usually a 
good selection for type 1 tests. Our study considers cost 
functions located in the left side of the figure. Eventually, 
ACS-DVRP is suggested for developing a DVRP with the 
supposed attributes. 

Table 7.  The results of comparing heuristic for test problems R 

Problem R1   R2 

Methodology ACS-DVRP Insertion Heuristic   ACS-DVRP Insertion Heuristic 

Function COST DIST COST DIST   COST DIST COST DIST 

Mutation 10396.324 3565.0306 10875.463 3676.781   8257.5545 3450.9864 8509.0182 3516.1529 

Cross Exch. 9901.3577 3600.8199 10267.272 3823.6443   8488.9956 3548.44 8625.7583 3599.6925 

2-Opt 9975.117 3509.7503 10371.507 3667.4862   8702.7548 3629.4199 9146.5268 3816.2552 

Table 8.  The results of comparing heuristic for test problems C 

Problem C1   C2 

Methodology ACS-DVRP Insertion Heuristic   ACS-DVRP Insertion Heuristic 

Function COST DIST COST DIST   COST DIST COST DIST 

Mutation 19306.266 4222.5108 19733.384 4298.6558   17616.565 3909.6282 17811.261 3978.4795 

Cross Exch. 19277.058 4161.7924 19791.779 4329.2819   17776.285 3979.3309 17852.827 4061.8004 

2-Opt Exch. 19154.217 4211.7042 19571.007 4391.1376   17815.752 3981.7287 18240.791 4151.0525 

Table 9.  The results of comparing heuristic for test problems RC 

Problem RC1   RC2 

Methodology ACS-DVRP Insertion Heuristic   ACS-DVRP Insertion Heuristic 

Function COST DIST COST DIST   COST DIST COST DIST 

Mutation 14173.928 4614.7092 14639.637 4769.1463   10745.27 4643.3659 11076.434 4747.3458 

Cross Exch. 14453.602 4612.2534 15312.951 4811.0675   11114.58 4714.9816 11401.118 4923.7998 

2-Opt Exch. 14543.764 4599.3484 14872.385 4681.7297   10954.945 4657.4057 11240.504 4853.5573 

 
Figure 6.  The analysis for different operators on DVRP 



42 Hannaneh Rashidi et al.:  A Hybrid Ant Colony System for Partially Dynamic Vehicle Routing Problem  
 

 

Table 10.  The comparisons of ACS and insertion heuristic with different sizes of DVRP 

      ACS-DVRP   Insertion Heuristic-DVRP 

Customers Problem   Max Min Mean   Max Min Mean 

200 
   

C1_2_1   58796.76 55826.90 57270.48   62396.31 57438.21 59690.60 

C2_2_1   49511.20 45576.57 47194.47   51849.66 46862.72 48889.92 

R1_2_1   41387.99 37822.40 39605.20   43179.80 37903.29 40541.54 

R2_2_1   38006.85 33596.82 35583.85   40504.73 34698.95 36941.95 

RC1_2_1   44552.27 39132.84 41568.18   46340.45 43238.40 44676.31 

RC2_2_1   35739.05 33596.39 34877.68   40332.21 37886.35 38731.15 

400 

C1_4_7   161991.38 145855.57 152216.67   162864.44 145876.39 153574.57 

C2_4_7   115718.13 113302.44 114816.03   116381.41 115106.42 115946.01 

R1_4_7   139521.89 138841.30 139181.60   141159.19 139027.20 140093.20 

R2_4_7   118596.29 115604.12 116921.83   119314.58 117829.36 118617.88 

RC1_4_7   141711.36 135502.72 137734.02   145990.50 139744.30 142127.67 

RC2_4_7   96937.51 94429.35 95645.46   97342.11 94560.68 96343.89 

600 

C1_6_4   500135.31 495133.03 497061.44   501908.12 496220.36 498323.31 

C2_6_4   437918.38 352169.48 408091.36   441501.39 354074.25 411404.15 

R1_6_4   388202.72 387839.83 388021.27   389922.14 388306.81 389114.48 

R2_6_4   356459.52 352315.31 354118.45   357165.15 355645.67 356422.51 

RC1_6_4   407025.93 400653.26 404418.60   415767.86 401855.88 409201.53 

RC2_6_4   357567.41 351537.04 354621.36   376361.09 356152.57 363579.87 

  Total   3489779.94 3328735.38 3418947.94   3550281.15 3362427.82 3464220.52 

 

It appears that the obtained means of cost and distance 
for the test 2 set are better than the ones for the test 1 set. 
The reason may  relate to narrow t ime windows effect ing on 
the cost function and certainly on the distances.  

The ACS-DVRP is compared with insertion heuristic for 
some extended Solomon’s VRPTW instances. Table 10 
shows comparison for min, max and mean for four runs of 
each scenario. Totally, the results obtained by ACS-DVRP 
are better than insertion heuristic’s. This may be exp lained 
by the fact that the population-based structure of ACS, 
avoiding local optimum, can provide more d irect searches 
in constructing and re-optimizing routes. The insertion 
method utilizing a greedy approach, searches new routes 
that leads to more costly solutions. Fairly, the results show 
that the cost function can be a more suitable measure than 
the distance function. 

7. Conclusions 
In this paper, we proposed an ant colony system for 

dynamically responding requests in the vehicle routing 
problem. We used ACS besides neighborhood searches 
including mutation, cross and 2-opt exchange heuristics. As 
the procedure progresses, new solutions are created from 
the routes associated with previous solutions based on the 
defined objective function. The experimental results show 

that our hybrid ACS acts well for the supposed DVRP. 
It is important to notify that the approach is essentially  

domain-independent, and we expect that many other 
dynamic applications may benefit  from this technique. 
Since time is a significant note on real time strategies, 
application of quick search strategies other than ACS are 
worth investigating. As further study, a simulation based 
study could be helpful to evaluate events for the considered 
problem. In addition, instead of certain probability 
distribution, uncertainty could be supposed, which there are 
rare studies in this regard such as reference[33]. 
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