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Abstract  The Behrens-Fisher (B-F) problem arises from testing the equality between two population means from 

independent normal populations when variances are unknown, and the variances cannot assume to be equal. Many 

literatures have been introduced to solve this problem and several solutions have been proposed for it. In this article, two 

tests are proposed to deal with the B-F problem. These two proposed tests depended on the test statistic that was introduced 

by Behrens (1929) with some modifications that are based on the method that was provided by Chen et al. (2022) which 

depended on Fisher’s fiducial argument to estimate the variances of the sample means. Also, the formula for degree of 

freedom and constant were derived for each suggested solution. The comparison among the proposed tests and some 

existing tests such as Welch test and Fenstad test have been studied extensively by Monte Carlo simulation. The size and 

the power of these tests are evaluated by using several simulation scenarios to assess the suggested tests. The comparison 

study proved that the sample sizes and variances of populations should be taken into consideration to decide which tests 

should be used when dealing with this problem. This study shows that the power of proposed tests are better than or close 

to the power of Welch test especially, when the sample sizes are large regardless of this data is balanced or unbalanced.  

Keywords  Behrens-Fisher problem, Welch test, Fenstad test, Fisher’s fiducial argument, Power of the test, Size of the 

test, Balanced data, Unbalanced data 

 

1. Introduction 

The Behrens-Fisher (B-F) problem occurs when testing 

the equality between two population means from 

independent normal populations when variances are 

unknown, and the variances cannot assume to be equal [13] [9]. 

Several solutions introduced and developed to solve this 

problem. Behrens (1929) proposed the earliest solution to 

this problem, Fisher (1939) endorsed this solution. Therefore, 

this problem is known Behrens-Fisher (B-F) Problem.   

But, this solution was not acceptable to many statisticians 

because the size or the estimated type Ι error of this test is 

often less than the nominal level [15] [8] [3] [1]. 

Ever since, several solutions proposed for this problem 

and there was no exact solution to satisfy for all sample 

sizes [3] [11]. The popular approximation solution proposed 

by Welch (1938). Also, various approximation solutions 

were proposed such as: Cochran approximations' which 

depends on the Behrens- Fisher test statistic with different 

degrees of freedom [5]. On the other hand, another solution 

proposed by Fenstad (1983). However, Fenstad did not 

derive the formula of degrees of freedom for this test 

statistic that was an approximation to the t-distribution. Best 

and Rayner (1987) derived the degree  of freedom formula 
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for Fenstad test, and Paul (1992) showed that there exists an 

error in the degree of freedom formula. Best and Rayner 

(1987) proposed other solutions for this problem as the 

score test and Wald test. Modified Mover test is one of the 

latest solutions that proposed By Chen et al. (2022). 

Based on empirical properties of two proposed tests that 

deal with B-F problem, this paper aims to compare these 

two proposed tests with some existing tests such as Welch 

test and Fenstad test according to two comprehensive 

Monte Carlo simulation studies with different scenarios on 

the size and the power of the test. This simulation study  

was based on three factors (i) sample sizes (balanced or 

unbalanced), (ii) variances of populations, and (iii) the gap 

between population variances. This paper proceeds as 

follow. Section literature Survey for the Behrens- Fisher 

problem. Then, the proposed solutions were presented in 

section 3. Section 4 demonstrated the simulation study. 

Finally, the conclusion of the study is shown in section 5. 

2. Literature Survey 

Several solutions were proposed for B-F problem. These 

solutions can be classified into exact and approximated 

solutions. In this paper, we focused on three approximation 

solutions (i) the Welch test, (ii) the Fenstad test, and (iii) the 

Wald test [11] [14]. 

For testing the equality between two population means 

when variances are unknown or unequal based on two 

independent samples x1,…, xn and y
1
,…, y

m
 from N(μ

1
,σ1

2) 
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and N(μ
2
,σ2

2) respectively; where -∞<μ
k
<∞ and 0< σk

2<∞ 

for k =1,2. The null and the alternative hypotheses 

are:  H0: μ
1
=μ

2
 (or μ

1
-μ

2
=0)  vs H1: μ

1
>μ

2
( or μ

1
-μ

2
>0) . 

First, we define some statistics as 

 
x =
 xi

n
i=1

n
 , y =

 yj
m
j=1

m
  (1) 

 S1
2
= 
 (xi-x)

2n
i=1

n-1
 , S2

2
= 

 (yj-y
 )

2m
j=1

m-1
  (2) 

Where x , y  are the sample means and S1
2, S2

2  are the 

sample variances for the first and second sample respectively. 

So that: 

 
 x ~N (μ1,

σ1
2

n
), and 

y ~N(μ2,
σ2

2

m
)
 (3) 

 x -y  ~ N(μ1-μ2,
σ1

2

n
+

σ2
2

m
) (4) 

Then 

 
 n-1 s1

2

σ1
2 ~X

2
(n-1), 

 m-1 s2
2

σ2
2 ~X

2
(m-1)

 (5) 

Where, X2(k) is chi- square probability distribution with 

k degrees of freedom.  

Therefore, 

 E 
 n-1 s1

2

σ1
2
 =n-1, and E 

 m-1 s2
2

σ2
2
 =m-1 (6) 

And thus, 

 E s1
2 =σ1

2, E s2
2 =σ2

2 (7) 

Therefore, S1
2, S2

2  are unbiased estimators for σ1
2 , σ2

2 

respectively. 

Welch test (T1): This test was proposed by Welch (1938), 

this is well known as a standard solution to testing the 

equality between two means from normal population with 

unequal variances, [3] [4]. According to this test, the test 

statistic was approximated by t-distribution with degrees of 

freedom ( 𝑓 1 ). We can calculate the Welch statistic T1 and 

𝑓 1  as the following [14] [3]: 

 T1=
 x -y  

 S1
2

n
+

S2
2

m

 (8) 

 
f 1 =

 S1
2

n
+

S2
2

m
 

2

 

  
 
 S1

2

n
 

2

 n-1  

 

  
 

+

 

  
 
 S1

2

m
 

2

 m-1  

 

  
 
 (9) 

Fenstad test (T2): Fenstad (1983) suggested a test 

statistic to deal with B-F problem as the following [3] [13]: 

 
T2=

 x -y  

 
 n-1 S1

2

n2-3n
+

 m-1 S
2

2

m2-3m

 (10) 

Where, T2 was approximated by t-distribution with degrees 

of freedom ( f 2 ) and constant (C 2 ) as the following: 

 T2~ C 2 t f 2  (11) 

 f 2 =

 
 n-1 s1

2

n (n-3) +

 m-1 s2
2

m (m-3) 
 

2

 n-1 S1
4

n2(n-3)2+

 m-1 S2
4

m2(m-3)
2

 (12) 

 C 2 =

S1
2

n
+

S2
2

m
 n-1 s1

2

n (n-3) +

 m-1 s2
2

m (m-3) 

  (13) 

 f 2  Was proposed by Paul (1992) and C 2  was 

introduced by [3]. 

Wald test (W): This test was proposed by Best and 

Rayner (1987). The Wald test statistic is: 

 W=
 x -y  

2

(

 n-1 S1
2

n2 + 
 m-1 S2

2

m2 )

 (14) 

Best and Rayner only suggested the formula of the test 

statistic without proposing the approximated distribution for it. 

3. Proposed Solutions to the B-F Problem 

In this paper, we suggest new two solutions to the B-F 

problem to solve the B-F problem. These solutions depended 

on the test statistic that introduced by Behrens (1929), 

supported by Fisher (1939) and used by Welch (1938) [10]. 

Also, we use the method that was provided by Chen et al. 

(2022) that based on Fisher’s fiducial argument to estimate 

the variances of the sample means and substituting with them 

in the test statistic. Then, we derive the formula for degree of 

freedom and constant for each suggested solution. Let T be 

the test statistic: 

 T=
 x -y  - μ1- μ2

 

 S1
2

n
+

S2
2

m

 (15) 

 
T=

 x 1-x 2
 - μ1- μ2

 

 v x  +v y  
 (16) 

When H0  is true   or μ1 − μ2 = 0 . The test statistic 

can be written as the following: 

 T=
 x -y  

 S1
2

n
+

S2
2

m

= 
 x 1-x 2

 

 v x  
 

+v y  
  (17) 

Welch (1938) approximated this test statistic to the 

student t- distribution. It can be written as: T~ c tf, where f 

is the degrees of freedom, and c is a constant (c=1). 

To get the values of the test statistic, we need to get: 

 
v x  +v y  = σ1

2

n
+

σ2
2

m
 (18) 

In the B-F problem, σk
2 is often unknown, we can replace  

it by using the variance estimate σ k
2
. Therefore, we can 

rewritten equation (19) as: 
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 v x  
 

+v y  
 

= 
σ 1

2

n
+

σ 2
2

m

 (19) 

Then σj
2  can be estimated by using the following 

relationships [4]: 

 
 n-1 s1

2

σ1
2 ~X

2
(n-1)

, 
 m-1 s2

2

σ2
2 ~X

2
(m-1)

 (20) 

Let:  

 
 n-1 s1

2

σ1
2 =Uk

,  k = 1, 2 (21) 

Where, Uk  is a random variable that follows the 

chi-square X2 distribution. 

Therefore: 

 σ1
2
=

s1
2
(n-1)

U1

, σ2
2
=

s2
2
(m-1)

U2

 (22) 

We can assume some values for Uk  to get the 

corresponding values of 𝜎 k
2. Different values for Uk  will 

lead to different values of 𝜎 k
2.  

Chen et al. (2022) replaced Uk  with (n-3), which is the 

maximum value of probability density function when 

introduced the Modified Mover statistic. If we replaced Uk  

with (n-1), get the variance estimate and substitute with it in 

equation (8), we will get to the Welch statistic. Where, (n-1) 

is the mean of 𝒳2  distribution. Thus, in this paper we 

proposed two different cases, the values (n, m) will replace 

the variables (U1 , U2) respectively as will be shown in the 

Case-I. While, in the Case-II we consider (n-2, m-2) to 

replace the variables (U1, U2) respectively. 

For each suggested test statistic, we need to get the 

degrees of freedom (f) and the constant (C) to approximate 

the test statistic to t- distribution as we shown in Welch 

approximation. By investigating the previous solutions for 

the B-F problem which introduced in statistical literatures 

such as: Welch test and Fenstad test, we can derive the 

formulas for (f), (C) as: 

 f=
(v  x  +v  y  )

2

(
 v  x   

2

n-1
+ 
 v  y   

2

m-1
)
 (23) 

 C=
v x 1

 +v y  

v  x  +v  y  
 (24) 

 v x  
 

+v y  
 

= S1
2

n
+

S2
2

m

 (25) 

Where v  x  ,v  y   are variances values of the sample 

mean for the first and second sample respectively. 

v x 1 ,v x 2  are variances value of the sample mean 

which was used by Behrens and Fisher before for the first 

and second sample respectively.  

3.1. Case-I: (U1= n, U2= m) 

In this case, we need to get the variance estimate by 

replacing the variables (U1, U2) with (n, m) respectively. 

Then equation (22) can rewritten as the following: 

 σ 1
2
=
 n-1 s1

2

U1

, 
σ 2

2
=
 m-1 s2

2

U2

 (26) 

Therefore, the variance estimator is given as: 

 
σ 1

2
=
 n-1 s1

2

n

, 
σ 2

2
=
 m-1 s2

2

m

 (27) 

  
v x  
 

=
 n-1 s1

2

n2

, 
v y  
 

=
 m-1 s2

2

m2
 (28) 

We can substitute with v x   , v y    in equation (17) to 

get the new test statistic as follow: 

 T3=
 x -y  

  n-1 S1
2

n2 +

 m-1 S
2

2

m2

= W (29) 

Where  W is the square root of Wald statistic, thus 

T3~ C 3 tf(3)
. 

By applying equations (23) and (24), respectively. We 

get f 3 , C 3  as the following: 

 
 f 3 =

 
 n-1 s1

2

n 
+

 m-1 s2
2

m 
 

2

 

 
 
 
  

 n-1 s1
2

n2
 

2

 n-1  

 

 
 
 
 

+

 

 
 
 
  

 m-1 s2
2

m2 
 

2

 m-1  

 

 
 
 
  (30) 

Then, 

 
f 3 = 

 
 n-1 s1

2

n 
+

 m-1 s2
2

m 
 

2

 n-1 S1
4

n4 +

 m-1 S2
4

m4

 (31) 

 C 3 =

S1
2

n
+

S2
2

m
 n-1 s1

2

n2 
+

 m-1 s2
2

m2 

 (32) 

3.2. Case-II: (U1=n-2, U2=m-2)  

In this case, we need to get the variance estimate by replacing 

the variables (U1, U2) with (n-2, m-2) respectively. Then, 

we can reformulate equation (12) as the following: 

 σ 1
2
=
 n-1 s1

2

n-2
, σ 2

2
=
 m-1 s2

2

m-2
 (33) 

 v x  
 =

 𝑛−1 𝑠1
2

𝑛(𝑛−2)
, v y  
 

=
 m-1 s2

2

m(m-2)
 (34) 

Then, we can substitute with v x   , v y    in equation (17) 

to get the test statistic T4 as the following: 

 T4=
 x 1-x 2

 

 
 n-1 s1

2

n(n-2)
+

 m-1 s2
2

m(m-2)

 (35) 

This test statistic is approximated by t-distribution with 

degrees of freedom ( f 4 ) and constant value ( C 4 ) as: 

 T4 ~ C 4 tf(4)
 (36) 

By using the formulas in equation (23) & (24) we can get 

f 4 , C 4  as the following: 
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  C 4 =

S1
2

n
+

S2
2

m
 n-1 s1

2

n(n-2)
+

 m-1 s2
2

m(m-2)

 (38) 

4. Simulation Study 

The Monte Carlo simulation study was conducted using 

R package as shown in the following steps: 

1-  Generating data for samples from normal populations 

at different combinations of the four factors that we 

referred to them in the previous section.  

2-  Calculate the estimated sample means (x , y ) for each 

case. 

3-  Calculate the estimated variances (σ 1
2
, σ 2

2) for each 

case. 

4-  Calculate the test statistics for the four tests.  

5-  Calculate the size of the four tests.  

6-  Calculate the power of the four tests. 

A comparative study was conducted to evaluate the 

performance of four tests:  

(1) Welch test (T1),  

(2) Fenstad test (T2), and the proposed tests: 

(3) The first proposed test (T3), and  

(4) The second proposed test (T4). 

Table 1.  The Probability of Type-I Error for The Four Tests Under 
Different Variances, μk = 2 and n = m = 20 

Var(1) Var(2) T1 T2 T3 T4 

1 0.5 0.0499 0.0631 0.045 0.0564 

5 3 0.0466 0.0608 0.0412 0.0536 

8 2 0.0472 0.0601 0.041 0.0534 

12 6 0.0508 0.0642 0.0468 0.0574 

16 8 0.0505 0.0632 0.0455 0.0562 

20 15 0.0498 0.0610 0.0449 0.0548 

25 20 0.0463 0.0600 0.0421 0.0519 

36 24 0.0455 0.0583 0.0417 0.0522 

40 45 0.0526 0.0644 0.0475 0.0572 

50 60 0.0526 0.0659 0.0469 0.0599 

60 75 0.049 0.0632 0.0434 0.0562 

70 100 0.0483 0.0617 0.0435 0.0549 

60 80 0.0491 0.0638 0.0436 0.0561 

80 100 0.0454 0.0571 0.0412 0.0503 

85 120 0.0521 0.0634 0.0473 0.0572 

105 150 0.0525 0.0638 0.0477 0.0582 

These simulation studies are based on three factors: (i) 

sample sizes (balanced or unbalanced), (ii) values of the 

variances of the populations, and (iii) the gap between 

population variances. In several scenarios, the simulation 

studies were conducted to compare the size (The probability 

of type-I error) and the power of each test under different 

factors combinations. These simulation studies were applied 

with samples generated from normal populations with 

different means and different variances in two scenarios as 

the following: 

Case 1: Balanced data (the sample sizes are equal). 

Case 2: Unbalanced data (the sample sizes are different). 

In Tables (1, 2 and 3), the estimated type-I error probabilities 

for the four tests are shown when the sample sizes are    

(n, 𝑚 = 20, 50 and 100).  

Table 2.  The Probability of Type-I Error for The Four Tests Under 
Different Variances, μk = 2 and n =m = 50  

Var(1) Var(2) T1 T2 T3 T4 

1 0.5 0.0514 0.0563 0.0487 0.0534 

5 3 0.0511 0.0552 0.049 0.0532 

8 2 0.0497 0.055 0.047 0.052 

12 6 0.048 0.0522 0.0455 0.0505 

16 8 0.0462 0.0501 0.0442 0.0481 

20 15 0.0466 0.0534 0.0449 0.05 

25 20 0.0474 0.0534 0.0452 0.0502 

36 24 0.0494 0.054 0.0471 0.0524 

40 45 0.0476 0.0524 0.0451 0.0502 

50 60 0.0511 0.0556 0.0488 0.053 

60 75 0.0462 0.0515 0.0437 0.049 

70 100 0.0498 0.0541 0.0471 0.0521 

60 80 0.0529 0.0572 0.0505 0.0556 

80 100 0.0487 0.0522 0.0465 0.0505 

85 120 0.0537 0.0584 0.052 0.056 

105 150 0.0516 0.0559 0.0482 0.054 
 

Table 3.  The Probability of Type-I Error for The Four Tests Under 
Different Variances, μk = 2 and n= m = 100 

Var(1) Var(2) T1 T2 T3 T4 

1 0.5 0.0511 0.0533 0.0495 0.0523 

5 3 0.0500 0.0527 0.0484 0.0512 

8 2 0.0551 0.0571 0.0538 0.0561 

12 6 0.0513 0.0535 0.0503 0.0524 

16 8 0.0493 0.0524 0.0482 0.0506 

20 15 0.0494 0.0519 0.0481 0.0508 

25 20 0.0521 0.0551 0.051 0.0535 

36 24 0.0512 0.0539 0.0501 0.0527 

40 45 0.0539 0.0562 0.0519 0.0554 

50 60 0.0509 0.0533 0.0489 0.0517 

60 75 0.0498 0.0529 0.0485 0.0512 

70 100 0.0520 0.054 0.0504 0.053 

60 80 0.0485 0.0503 0.0475 0.0496 

80 100 0.0506 0.0539 0.0493 0.0524 

85 120 0.0510 0.0539 0.0488 0.0523 

105 150 0.0520 0.054 0.0504 0.0530 
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These simulation studies determined based on 10000 

generated samples at a nominal level α = 0.05, the samples 

generated from normal distribution at μ = 2 under different 

variances. Var(1) and Var(2) are the variances of the first 

and the second population respectively. We used the R 

package for the computations in this paper. 

Figure. 1 represents the estimated type-I error probabilities 

(transformed by log10) for the four tests. This figure 

corresponding to values of Tables (1, 2 and 3). Two vertical 

lines in this figure represent the solid and broken lines 

equivalent to 0.05 and 0.06, respectively as shown in Figures. 

1 and 3. Different symbols in these figures represent the 

different sample sizes (n, m= 20, 50 and 100) as shown in 

Figures. 1, 2, 3 and 4. 

Figure. 1 demonstrates that the estimated type-I error for 

test T1 (Welch test) is closer to a nominal probability at  

0.05 in all combinations (acceptable size). But test T2 has 

overestimated probably of type-I error when sample sizes are 

small regardless of the values of population variances. 

Therefore, test T2 cannot be recommended for testing the 

differences between the two means in this case. 

The estimated type-I error for test T3 is so far from a 

nominal level at 0.05 when the sample sizes are small and 

variances are small. But it becomes closer to 0.05 when 

increasing sample size and the value of variances. 

type-I error for test T4 is between the two lines, that is 

mean that the size of this test is acceptable. 

 
P-value (log

10
) scale  

Figure 1.  The estimated probabilities of type-I error for the four tests 

Tables (4, 5 and 6) represent the power of the four tests 

when the sample sizes are equal (balanced data) and (μ1 = 2, 

μ2 = 8) under different variances.  

Table 4.  The Power of The Test for The Four Tests Under Different 
Variances, μ1 = 2, μ2 = 8 and n=m=20 

Var(1) Var(2) T1 T2 T3 T4 

1 0.5 99.92% 94.84% 99.93% 99.99% 

5 3 99.87% 94.04% 99.87% 99.95% 

8 2 99.83% 93.73% 99.83% 99.89% 

12 6 99.77% 93.30% 99.79% 99.83% 

16 8 99.63% 92.75% 99.63% 99.72% 

20 15 99.01% 91.79% 98.94% 99.15% 

25 20 97.16% 90.17% 96.84% 97.54% 

36 24 91.85% 85.68% 91.01% 92.57% 

40 45 80.54% 76.11% 79.13% 81.98% 

50 60 70.27% 66.81% 68.39% 71.97% 

60 75 61.13% 58.81% 59.13% 63.15% 

70 100 50.89% 49.57% 49.00% 53.00% 

60 80 59.21% 56.96% 57.12% 61.48% 

80 100 49.31% 47.44% 47.46% 51.48% 

85 120 43.90% 42.83% 41.85% 46.13% 

105 150 36.59% 35.81% 34.68% 38.42% 

Table 5.  The Power of The Test for The Four Tests Under Different 
Variances, μ1 = 2, μ2 = 8 and n= m= 50 

Var(1) Var(2) T1 T2 T3 T4 

1 0.5 99.93% 94.64% 99.92% 99.97% 

5 3 99.86% 94.47% 99.87% 99.90% 

8 2 99.85% 93.75% 99.84% 99.86% 

12 6 99.76% 93.09% 99.79% 99.82% 

16 8 99.73% 92.76% 99.73% 99.77% 

20 15 99.65% 92.50% 99.69% 99.72% 

25 20 99.63% 91.85% 99.62% 99.67% 

36 24 99.55% 91.29% 99.55% 99.57% 

40 45 99.12% 90.19% 99.04% 99.16% 

50 60 97.64% 88.78% 97.53% 97.82% 

60 75 94.30% 85.59% 94.14% 94.49% 

70 100 88.90% 80.29% 88.53% 89.36% 

60 80 93.64% 83.88% 93.40% 94.00% 

80 100 86.97% 77.88% 86.62% 87.44% 

85 120 82.47% 73.86% 81.89% 83.05% 

105 150 74.17% 66.47% 73.61% 74.88% 

Figure. 2 represents the estimated power of the test for the 

four tests. This figure corresponding to values of Tables (4, 5 

and 6). 

The power of the test for test T4 is better than the power 

for test T1 when the values of variances are small regardless 

of the sample sizes. Also, the power for the test T3 is high but 

lower than the power of T1 slightly. In general, the power for 

tests T1, T3 and T4 are decreasing with increasing the values 

of variances and gap of these variances. 
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Table 6.  The Power of The Test for The Four Tests Under Different 
Variances, μ1 = 2, μ2 = 8 and n=m= 100 

Var(1) Var(2) T1 T2 T3 T4 

1 0.5 97.90% 94.53% 96.92% 99.98% 

5 3 97.90% 94.03% 96.87% 99.94% 

8 2 97.83% 93.62% 96.81% 99.86% 

12 6 97.78% 93.50% 96.77% 99.81% 

16 8 97.75% 92.75% 96.73% 99.77% 

20 15 97.66% 92.28% 96.69% 99.74% 

25 20 97.62% 91.60% 96.65% 99.66% 

36 24 97.59% 91.40% 96.61% 99.61% 

40 45 97.55% 90.81% 96.55% 99.59% 

50 60 97.49% 90.38% 96.47% 99.52% 

60 75 97.38% 89.88% 96.38% 99.38% 

70 100 97.00% 89.02% 95.97% 99.00% 

60 80 97.17% 88.61% 96.17% 99.22% 

80 100 96.65% 87.67% 95.59% 98.67% 

85 120 95.90% 86.43% 94.90% 97.95% 

105 150 93.36% 83.69% 92.32% 95.37% 

 

Figure 2.  The estimated power of the four tests 

By Figures. 3, 4, and 5 we can get the simplified overview 

about the estimated power of the test for the four tests when 

the data is balanced. These figures corresponding to the 

values of Tables ( 4, 5 and 6) respectively. 

In Figure. 3, the power of the test for tests T1, T3, and T4 

is very close in almost cases. While, the power of the test for 

T2 is the lowest generally.  

In Figure. 4, the power of the test for tests T2 is the lowest 

one in all cases. And the gap of the power between test T2 

and other tests became clearer. 

Also, the same result that shows in Figure. 5. The power of 

the test for T2 is the lowest. But, the power of the test for T4 

is the best power. Then, the power of the test for T1 in the 

second level. Also, the power of the test for T3 test is closer 

to the power for T1.  

 

Figure 3.  The estimated power of the four tests 

 

Figure 4.  The estimated power of the four tests 

 

Figure 5.  The estimated power of the four tests 

Table 7 shows the estimated type-I error probabilities   

for the four tests when the sample sizes are not equal 

(unbalanced data) at a nominal level α = 0.05, μk = 2 under 
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different variances.  

Table 7.  The Probability of Type-I Error for The Four Tests Under 
Different Variances, Different Sample Sizes (Unbalanced Data) and μk = 2 

Var (1) Var (2) n m T1 T2 T3 T4 

1 0.5 5 4 0.037 0.180 0.025 0.067 

5 3 8 5 0.044 0.127 0.033 0.064 

8 2 10 8 0.042 0.090 0.034 0.055 

12 6 12 10 0.042 0.083 0.036 0.054 

16 8 25 8 0.043 0.085 0.037 0.053 

20 15 40 25 0.041 0.064 0.039 0.046 

25 20 60 15 0.044 0.075 0.042 0.053 

36 24 85 10 0.043 0.082 0.038 0.053 

40 45 100 30 0.042 0.064 0.042 0.047 

50 60 130 20 0.043 0.070 0.041 0.051 

60 75 170 50 0.047 0.066 0.047 0.050 

70 100 200 100 0.040 0.055 0.042 0.043 

60 80 150 40 0.044 0.063 0.043 0.048 

80 100 175 15 0.046 0.080 0.042 0.055 

85 120 200 10 0.041 0.085 0.039 0.053 

105 150 225 5 0.044 0.134 0.044 0.067 

Figure. 6 represents the estimated type-I error probabilities 

(transformed by log10) for the four tests under different 

variances for unbalanced data (sample sizes are different) at 

μk = 2. This figure corresponds to values that are listed in 

Table 7. 

 
P-value (log

10
) scale 

Figure 6.  The estimated probabilities of type-I error for the four tests 

Figure. 6 shows that the estimated type-I error probabilities for 

test T4 overestimate type-I error when the sample sizes and 

variances are small but it become closer to the nominal level 

when increasing sample sizes and variances. Also, type-I 

error probabilities for tests T1 and  T3 are so far from a 

nominal level (0.05). However, they become closer to 0.05 

when sample sizes and variances are increasing. Finally, the 

estimated type-I error probabilities for test T2 overestimate 

in most cases and so far from 0.05 in other cases. In both 

cases, it shows non-acceptable size so, the power of test T2 

would not be reliable. 

Table 8 represents the power of the four tests when the 

sample sizes are not equal and (μ1 = 2, μ2 = 8) under different 

variances.  

Table 8.  The Power of The Test for The Four Tests Under Different 
Variances, Different Sample Sizes and (μ1 = 2, μ2 = 8) 

Var(1) Var(2) n m T1 T2 T3 T4 

1 0.5 5 4 87.15% 85.32% 90.44% 91.57% 

5 3 8 5 87.12% 85.31% 90.37% 91.55% 

8 2 10 8 86.98% 85.30% 90.07% 91.47% 

12 6 12 10 86.65% 85.08% 89.71% 91.21% 

16 8 25 8 87.14% 85.31% 90.43% 91.56% 

20 15 40 25 86.43% 85.00% 89.50% 91.01% 

25 20 60 15 86.36% 84.77% 89.43% 90.85% 

36 24 85 10 78.21% 76.76% 79.79% 83.80% 

40 45 100 30 87.08% 85.25% 90.37% 91.50% 

50 60 130 20 86.39% 84.64% 89.63% 90.80% 

60 75 170 50 86.15% 84.45% 89.28% 90.57% 

70 100 200 100 76.48% 74.65% 78.41% 81.16% 

60 80 150 40 84.38% 82.82% 88.35% 88.77% 

80 100 175 15 48.59% 47.26% 48.94% 53.65% 

85 120 200 10 28.99% 28.22% 29.16% 33.91% 

105 150 225 5 11.95% 10.05% 12.42% 16.93% 

 

Figure 7.  The estimated power of the three tests 
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Figure. 7 represents the power of the test for three tests 

only. This figure corresponds to the numerical values 

founded in Table 8. In this figure, test T2 has been deleted 

from the power comparison, because the size of this test is 

not acceptable sizes. 

Figure. 7 shows that the power of T4 test is the best power 

among the three tests in this comparison. The power for T3 is 

better than T1. But, the power of all tests reached the lowest 

level when one sample size is small while, variances values 

and the gap between them are large. 

In Figure. 8 we can show the overview about the power of 

the test for three tests only (T1, T3 and T4) when the data is 

unbalanced. This figure corresponds to the numerical values 

in Table 8. This figure shows that the power of T4 test is the 

best power among tests in this comparison. Also, the power 

for T3 is better than T1. 

 

Figure 8.  The estimated power of the three tests 

5. Summary and Conclusions 

In this paper, two tests (T3, and T4) were proposed to 

solve the B-F problem. These tests depended on the test 

statistic which was introduced by Behrens (1929) using the 

variance estimators. These estimators based on the method 

that was provided by Chen et al. (2022) that based on 

Fisher’s fiducial argument to estimate the variances of the 

sample means v x 1 ,v x 2  respectively. For each suggested 

test statistic, we needed to get the degrees of freedom (f)  

and the constant (C) to approximate the test statistic to     

t- distribution as we shown in Welch approximation. Then,  

we derived the formula for degree of the freedom (f) and  

the constant (C) for each suggested solution to approximate 

their distributions to t-distribution as we shown in Welch 

approximation and Fenstad test. 

Monte Carlo simulation was used to evaluate the 

performance of the proposed tests (T3, and T4) and the other 

tests such as (Welch test, and Fenstad test) under several 

scenarios. The simulation study was conducted to compare 

the sizes (the estimated type-I error probabilities) and the 

powers of these tests. This simulation study was based on 

three factors (i) sample sizes (balanced or unbalanced), (ii) 

values of population variances, and (iii) the gap between 

population variances. The main findings of the simulation 

study can be summarized in the following: 

1)  The estimated type-I error probabilities for tests T4, 

and T1 (Welch test) are closer to a nominal level 0.05 

when the sample sizes are equal (balances data) 

especially when the sample sizes are large as shown 

in Figure. 1. 

2)  In most cases, test T2 has overestimated probability of 

type-I error. Therefore, test T2 cannot be recommended 

for testing the differences between two population 

means generally. 

3)  When sample sizes and variances are small, the 

estimated type-1 error for test T3 is so far from a 

nominal level. But it becomes closer to nominal level 

with increasing the sample sizes and variances. So, we 

can recommend test statistic T3 to deal with B-F 

problem when the sample sizes and variances are large. 

4)  When the data is unbalanced, the type-I error 

probabilities for tests T3, and T1 are so far from the 

nominal level. However, they become closer to 

nominal level when sample sizes and variances are 

increasing. This result about test T1 agrees with 

Chen's mention in his study in 2022 (Welch test is 

applicable for large sample sizes only). 

5)  The estimated type-I error probabilities for test T4 is 

overestimated when the sample sizes and variances are 

small but it becomes closer to the nominal level when 

increasing sample sizes and variances. 

6)  When the data is balanced, the power for test T4 is 

better than the power for test T1 when the variances 

are small regardless of the sample sizes. But, the power 

for test T1 is better than the power of T3 slightly. 

7)  In general, the power for tests T1, T3, and T4 are 

decreasing when the gap between variances gets larger 

and sample sizes are equal, but still T4 with the 

highest power. 

8)  When sample sizes are unequal, the powers for T4 and 

T3 are better than the power of T1. Where the power 

for test T4 is the best power between all tests in this 

comparison.  

9)  Generally, when the sample sizes are unequal, one 

sample size is much smaller than the other, and the  

gap of the variances are large, the power of all tests 

reached to the lowest level.  

Finally, we conclude that the proposed tests (T3 and T4) 

can be recommended as alternative new solutions to the B-F 

problem especially, when sample sizes are large. That is 

because, the power of test T3 and test T4 are better than or 

close to the power of test T1 (Welch test).  
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