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Abstract  This paper presents two space-time model specifications, one based upon the generalized linear mixed model (GLMM), and 

the other upon Moran eigenvector space-time filters. We identify optimization algorithms to fit a COVID-19 regression model to a training 

dataset. of non-asymptotical, multicollinear, skew heteroscedastic, estimator and other non-normalities due to violations of regression 

assumptions We did so to learn more about how regression functions can characterize geo-spatiotemporally, spilled over, hierarchical 

diffusion of the viral infection in Uganda at the sub-county district-level. Our objective was to predictively prioritize and target, 

hyper/hypo-endemic transmission variables. A Moran spatial filtering technique was employed which performed an eigenfunction, second 

order, eigen-spatial filter eigendecomposition of the random effects (REs) in varying, temporally dependent, georeferenced, diagnostically 

stratified, clinical, environmental, and socio-economic, endemic, transmission-oriented determinants which rendered (SSRE) and spatially 

unstructured (SURE) components. The RE model incorporated synthetic eigen-orthogonal eigenvectors derived from a geographic 

connectivity matrix to account for SSRE and SURE in standardized z scores stratified by multi-month, viral, infection yield, due to 

geo-spatiotemporal, spill-over, hierarchical diffusion of the virus at the sub-county, district-level. We calculated the conditional 

probabilities and derived the conditional distribution functions for the regressed diagnostic determinants including the probability density 

function, the cumulative density function, and quantile function. A Poisson random variable mean response specification was written as 

follows: 𝐿𝑁 𝜇𝑖𝑡 =  𝛼 +  𝛽𝑑𝑎𝑦 𝐿𝑁 𝜇𝑑𝑎𝑦  +   𝐾
𝑘=1 𝑒𝑠𝑖𝑡𝑘 𝛽𝑠𝑘  +   𝐻

ℎ=1 𝑒𝐻𝑖𝑡ℎ𝛽𝐻ℎ +  𝑅𝐸𝑖 + 𝐿𝑁 𝑃𝑖  where esitk and eHith respectively 

were the ith elements of the K < NT and H < NT selected eigenvectors and Estk and EHth were extractable from the doubly-centered 

space-time SWMs (IT⊗Cs + CT⊗In) and (IT⊗CH + CT⊗In). The expectation attached to the equation, i.e., RE ≡ SURE was satisfied, with 

both having trivial SSRE components. In the Bayesian context, the SSRE component was modelled with a conditional autoregressive 

specification which captured residual, zero autocorrelation (i.e., geographic chaos), non-homoscedastic, asymptotical non-normality and 

multicollinearity in the georeferenced, aggregation/non-aggregation-oriented, COVID-19, specified, diagnostically stratified, 

prognosticator, clustering propensities. The model’s variance implied a substantial variability in the prevalence of COVID-19 across 

districts due to the hierarchical diffusion of the virus. Site-specific, semi-parametric eigendecomposable, eigen-orthogonal, eigen-spatial 

filters are useful in revealing the influence of non-normality [e.g., heterogeneity of variances] in diagnostic, COVID-19 variables due to 

violations of regression assumption and hence are more accurate in prediction of georeferenceable, hyper/hypo-endemic, sub-county, 

transmission-oriented district-level geolocations compared with a global model in which the non-homogenous erroneous estimators and 

their evidential uncertainty-oriented probabilities do not vary across Bayesian eigenvector eigen-geospace.  
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1. Introduction 

In recent studies Farzanegan et. al. (2020) (Farzanegan  

et. al., 2020) revealed globalization to be positively linked   

to the reported numbers of COVID-19 cases in that more 

globalized countries experience higher exposure to 

outbreaks (Zimmermann et. al., 2020) as do ‘global cities’ 

within countries (Ali and Keil 2006). On a global scale, 

Sirkeci and Yüceşahin (2020) suggest that the spread of 

COVID-19 in China follows a relocation diffusion pattern, 

while Kuebart and Stabler (2020) observe relocation 

diffusion of COVID-19 in Germany based on existing 

interpersonal networks. Internationally, globalization 

supports relocation diffusion, as public health studies have 

repeatedly acknowledged (e.g., Tatem and Rogers 2006). 

COVID-19 has rapidly spread via international air travel 

(Candido et al. 2020) connecting countries with high levels 

of tourism and trade (Ribeiro et al. 2020). Another study 

Farzanegan et. al (2020) found that almost all KOF (Swiss 

Economic Institute) globalization sub-indices (Gygli et al. 

2019) exhibit a robust positive association with the number 

of district-level, COVID-19, reported cases, with social 

globalization—which proxies migration and civil rights 

among other measures—being the most important predictor 

both in magnitude and statistical significance. 

Another mode of spatial diffusion of COVID-19 is 

through geographic, spatiotemporal, (henceforth 

geo-spatiotemporal), hierarchical diffusion, which 

characterizes spread from large settlements to smaller ones, 

or from more internationally significant cities (e.g., ‘global 

city-regions’) to those less significant. In the case of 

COVID-19 previous research suggests that large 

metropolitan areas experience greater spread due to the 

larger number of people, their closer proximity and increased 

movement. For example, Ali et al. (2020) observed, spilled 

over, geo-spatiotemporal, hierarchical diffusion of 

COVID-19 from the largest cities to smaller settlements in 

Brazil. Similarly, Sirkeci and Yüceşahin (2020) observed 

hierarchical diffusion of COVID-19 infection in countries 

including the United States, the United Kingdom, South 

Korea and Italy among others. 

Certain settlement characteristics are associated with 

hyper/hypo-endemic, geo-spatiotemporal, geosampled, 

hierarchical, diffusion-related, aggregation / 

non-aggregation-oriented, parameterizable, estimator 

tendencies of an infectious, viral, disease process, including 

diagnostically stratifiable, determinants associated with the 

level of urbanization, population density and transportation 

network and accessibility. Larger and denser cities have been 

shown to increase vulnerability to viral, infectious disease 

spread (Connolly et. al. 2021) by creating the requisite 

preconditions for higher numbers of human interactions 

wherein higher densities act to increase the intensity of such 

interactions. Tarwater et. al. (2001) and Andersen et. al., 

(2021) find that urbanization is a significant forecaster of 

COVID-19 transmission within the United States, while 

Carozzi (2020) finds urban density to be a explanatory, (i.e., 

statistically significant), linearizable, regression, 

district-level, subcounty-level determinant of the pandemic. 

Additionally, there are marked differences in population 

characteristics—population size, development levels, 

household size and age structure—and environmental 

co-factors affecting the diffusion of a viral infectious disease. 

Recent research regarding COVID-19 has identified multiple 

environmental co-factors associated with this incident, such 

as, temperature (Liu et al., 2020; Wang et al., 2020; Zhu and 

Xie, 2020), air pollution (Wu et al., 2020), and humidity 

(Auler et al., 2020; Gupta et al., 2020). Further types      

of behaviour such as smoking (Taghizadeh-Hesary 

aghizadeh-Hesary 2020)  WaSH effects (Das et al., 2020) 

and socio-economic vulnerability (Kang et al., 2020) may 

regulate the severity and rate of COVID-19 spread due    

to district-level, geo-spatiotemporal, hierarchical diffusion 

of the virus. These diagnostic, geossmpled, clinical, 

environmental, and socio-economic determinants may be 

evaluated in a regression framework for optimally, 

prognosticating, hyper/hypo-endemic geolocations. In so 

doing resources and other prevention measures (targeting 

and prioritizing vaccine distribution) may be correctly 

allocated to specific sub-county district-level regions.  

Multiple linear regression is a statistical method which 

has been employed to understand the relationship between 

multiple predictor variables and a response variable 

(district-level COVID-19 prevalence) for modelling 

determinants associated to hierarchical diffusion of the 

SARS-CoV-2 virus If the X (independent variable), or Y 

(dependent variable) from which the COVID 19 data to be 

analyzed by linear regression were sampled, violate one or 

more of the linear regression assumptions, the results of the 

analysis may be incorrect or misleading. For example, if the 

assumption of independence is violated, in a COVID-19 

model then linear regression may not be appropriate for 

modelling variables associated to the pandemic. If the 

assumption of normality is violated, or outliers are present 

in the model outcome, then the linear regression goodness 

of fit test may not be the most powerful or informative test 

available, and this could mean the difference between 

detecting a linear fit or not in these models. A 

nonparametric, robust, or resistant regression method, a 

transformation, a weighted least squares linear regression, 

or a nonlinear model may result in a better fit. If the 

population variance for Y is not constant in a linear 

COVID-19 model, a weighted least squares linear 

regression, or a transformation of Y may provide a means of 

fitting a regression adjusted for the inequality of the 

variances. Often, the impact of an assumption violation on 

the linear regression result depends on the extent of the 

violation (such as the how inconstant the variance of Y    

is, or how skewed the Y population distribution is)  

(Hosmer and Lemeshew 2002). Some small violations in  

a prognosticative, hyper/hypo-endemic, hierarchical, 

diffusion-related, diagnostically stratified, COVID-19 

regression model may have little practical effect on the 

analysis, while other violations may render the linear result 

https://www.sciencedirect.com/science/article/pii/S2667010021000755#bib0016
https://www.sciencedirect.com/science/article/pii/S2667010021000755#bib0027
https://www.sciencedirect.com/science/article/pii/S2667010021000755#bib0031
https://www.sciencedirect.com/science/article/pii/S2667010021000755#bib0031
https://www.sciencedirect.com/science/article/pii/S2667010021000755#bib0029
https://www.sciencedirect.com/science/article/pii/S2667010021000755#bib0001
https://www.sciencedirect.com/science/article/pii/S2667010021000755#bib0009
https://www.sciencedirect.com/science/article/pii/S2667010021000755#bib0023
https://www.sciencedirect.com/science/article/pii/S2667010021000755#bib0023
https://www.sciencedirect.com/science/article/pii/S2667010021000755#bib0023
https://www.sciencedirect.com/science/article/pii/S2667010021000755#bib0023
https://www.sciencedirect.com/science/article/pii/S2667010021000755#bib0006
https://www.sciencedirect.com/science/article/pii/S2667010021000755#bib0011
https://www.statology.org/multiple-linear-regression/
https://www.statology.org/explanatory-response-variables/
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uselessly incorrect or uninterpretable. 

Problem associated to violations of regression 

assumptions in a prognosticative, hierarchical, diffusion 

-related, COVID-19 model (skew heteroscedasticity, 

multicollinearity) may be solved in a principled, time   

series, dependent, inferential, Bayesian framework for 

learning aggregation / non-aggregation-oriented, hyper / 

hypo- endemic, model, selection sites, and density 

estimation. Bayesian statistics is a theory in the field of 

statistics based on the Bayesian interpretation of probability 

where probability expresses a degree of belief in an event. 

The degree of belief may be based on prior knowledge about  

the event, such as the results of previous experiments, or   

on personal beliefs about the event. (district COVID-19 

transmission). This differs from several other interpretations 

of probability, such as the frequentist interpretation that 

views probability as the limit of the relative frequency of an 

event after many trials. 

Precision forecast maps targeting and prioritizing 

hyper/hypo-endemic, transmission-oriented, diagnostically 

stratifiable, COVID-19 determinants associated with a 

subcounty, district-level, transmission-related, hot /cold spot 

requires disturbance-free regressors. (e.g., non-Gaussianity 

of the errors) for asymptotically optimally reflecting     

the geo-spatiotemporal, hierarchical, diffusion-related 

dissemination of the sampled determinants. Statistical error 

or uncertainty is the amount by which an observation differs 

from its expected value (Freedman 2008), the latter being 

based on the entire population from which the statistical unit 

was chosen randomly. The expected value, being the   

mean of the entire population, may be typically unobservable 

in an empirical, non-asymptotical, vulnerability-oriented, 

geo-spatiotemporally dependent, district-level, COVID-19, 

hierarchical diffusion-related, subcounty, prognosticative 

model, and hence the statistical error may not be observable. 

A residual (or fitting deviation), on the other hand, is      

an observable estimate of the unobservable statistical   

error, which may have embedded in noisy non-normal 

trajectories in empirically regressed georeferenced   

datasets of district-level, sub-county, COVID-19,  

diagnostic, stratifiable, geo-spatiotemporal, hierarchical, 

diffusion-related, vulnerability-oriented, estimated 

parameterizable determinants.  

In regression analysis, the distinction between errors and 

residuals is subtle and leads to the concept of studentized 

residuals (i.e., the quotient resulting from the division of a 

residual by an estimate of its standard deviation). Commonly 

in the literature, public health, epidemiological, viral, 

infection, transmission-related, predictive, risk models (e.g., 

hyper/hypo-endemic, hierarchical, diffusion, COVID-19, 

regression paradigm) are constructed in the form of a 

Student’s t-statistic, with the estimate of error varying 

between sentinel site, time series, dependent, geosampled, 

data, capture points (e.g., district level, aggregation / 

non-aggregation-oriented, diagnostic determinants). Given 

an unobservable function that relates the independent 

variable to the dependent variable, the deviations of the 

dependent variable observations [e.g., scaled-up, subcounty, 

district-level prevalence] from this function would be the 

unobservable errors in an epidemiological, hierarchical, 

diffusion-related, COVID-19, stratified, predictive, risk 

model. If one runs a regression on some data, then the 

deviations of the dependent variable observations from the 

fitted function are the residuals (Hosmer and Lemeshew 

2002). Optimally, if the linear COVID-19 model is 

applicable, a scatterplot of residuals plotted against an 

independent variable (e.g., number of inmates with positive 

clinical presentation in a sub-county local jailhouse) in an 

epidemiological, district-level, hierarchical, diffusion- 

related, prognosticative, regression model, the renderings 

should be random about zero with no trend to the residuals.   

If the geosampled data (e.g., temporally dependent, 

georeferenced, clinical, environmental, and or, 

socio-economic, diagnostic, stratified, empirical, COVID-19, 

hierarchical, diffusion estimators) exhibit a trend in 

regression space then the model is likely erroneous, for 

example, the true function m a quadratic or higher order 

polynomial. If they are random, or have no trend, they will 

exhibit heteroscedasticity.  

Homoscedasticity, or homogeneity of variances, is an 

assumption of equal or similar variances in distinct groups 

being compared. (Hosmer and Lemeshew 2002). This is an 

important assumption of parametric statistical tests because 

they are sensitive to any dissimilarities. Uneven variances in 

samples [e.g., heteroscedasticity] in empirical, regressed, 

geosampled, datasets of epidemiological, district-level, 

hyper/hypo-endemic, geo-spatiotemporal, COVID-19, 

sub-county, georeferenceable, aggregation / 

non-aggregation-oriented, diagnostic estimators will result 

in inaccurate, model, test results. For example, assuming a 

clinician or researcher constructs a mean ordinary least 

squares (OLS) regression for optimizing targeting and 

prioritizing an empirical geosampled dataset of hierarchical, 

diffusion-related, diagnostic determinants of COVID-19. 

This model would assume nothing about the shape of     

the dependent or independent variable; it would make only 

assumptions about the distribution of the errors as measured 

by the residuals. When these assumptions are violated,    

the results of the regression may be wrong. The  

relationship between "extent of violation" and "type of   

error" in an epidemiological, district-level, subcounty, 

vulnerability-oriented, regression, COVID-19, model  

output for targeting and prioritizing, aggregation / 

non-aggregation-oriented, hyper/hypo-endemic, 

transmission, due to hierarchical diffusion of the virus has 

not been contributed to the literature. 

The mean squared error [MSE] of a regression is a number 

computed from the sum of squares of the computed residuals, 

and not of the unobservable errors (Freedman 2008). If   

that sum of squares in an epidemiological, COVID-19, 

diagnostic, stratified, regression, prognosticative model    

is divided by n, the number of geosampled observations  

[i.e., subcounty, hyper/hypo-endemic, hot/cold spot, 

hierarchical, diffusion-oriented, risk-related, aggregation / 
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non-aggregation-oriented determinants], the result is the 

mean of the squared residuals. Since this would be a biased 

estimate of the variance of the unobserved errors in the viral, 

infection, prognosticative, epidemiological, risk model, the 

bias could be removable by dividing the sum of the squared 

residuals by df = n − p − 1, instead of n, where df is the 

number of degrees of freedom (n minus the number of 

parameters (excluding the intercept) p being estimated     

- 1). This would form an unbiased estimate of the variance  

of  the unobserved errors and the MSE rendered by the 

epidemiological, hierarchical, diffusion, forecast-related, 

vulnerability-oriented, diagnostic, COVID-19, district-level, 

subcounty, stratified, model output. 

Another method to calculate the MSE in an 

epidemiological, prognosticative, subcounty, district-level, 

scaled-up, prognosticative, hierarchical, diffusion-related, 

diagnostically stratified, COVID-19, vulnerability-oriented 

model for optimizing targeting and prioritizing, potential, 

hyper/hypo-endemic determinants is by analysing the 

variance of linear regression employing a technique like that 

used in ANOVA (they are the same as ANOVA is a type of 

regression). In these paradigms the sum of squares of the 

residuals (aka sum of squares of the error) is divided by the 

df (which would be equal to n − p − 1, where p is the number 

of, diagnostic, sampled, COVID-19, stratified, clinical, 

socioeconomic and or environmental parameters for 

example, estimated in the model (one for each variable    

in the regression equation, not including the intercept).    

An infectious disease modeller or research collaborator may  

also calculate the mean square of the sampled, district-level, 

hierarchical, diffusion-related, subcounty, aggregation / 
non-aggregation-oriented, COVID-19, stratified, 

vulnerability-oriented, model estimators by dividing the  

sum of squares of the model minus the df which would be 

just the number of selected diagnostic parameters (i.e., 

clinical, environmental and/or socioeconomic determinants). 

Subsequently the F value can be calculated for the model by 

dividing the mean square of the derived output by the mean 

square of the error, and then determining significance (which 

is why one needs to calculate the mean squares to begin with) 

in an epidemiological, COVID-19, district-level, subcounty, 

prognosticative, vulnerability-related model. An F-test is any 

statistical test in which the test statistic has an F-distribution 

under the null hypothesis (Hosmer and Lemeshew, 2002). 

Hence, to compare residuals from an epidemiological, 

hierarchical, diffusion-related, hyper/hypo-endemic, 

COVID 19, risk model at different inputs, a viral infectious 

disease modeller or researcher would need to adjust the 

residuals by the expected variability of residuals, (i.e., 

studentizing). In statistics, studentization is the adjustment 

consisting of division of a first-degree statistic derived from 

by a sample-based estimate of a population standard 

deviation (Hosmer and Lemeshew 2002). This is particularly 

important in the case of detecting outliers, where the case in 

question is somehow different than the others in an 

epidemiological, COVID-18, estimator dataset. For example, 

a large residual may be expected in the middle of the domain 

in an empirical, hierarchical, diffusion-related, district-level, 

COVID-19, aggregation/non-aggregation-oriented, hyper / 

hypo-endemic, vulnerability, model output for targeting  

and prioritizing, subcounty, hot/cold spot, diagnostic 

determinants, but considered an outlier at the end of the 

domain.  

Outlier detection algorithms are intimately connected  

with robust statistics that down-weight some observations  

to zero especially in epidemiological, viral, infection 

forecast-oriented, vulnerability models (e.g., Jacob et al. 

2014). In this experiment we define several outlier detection 

algorithms related to an empirical epidemiological dataset of 

georeferenced, geosampled, hierarchical, diffusion-related, 

sub-county, district-level, hyper/hypo-endemic, COVID-19, 

stratified, risk, model estimators. Next, we apply asymptotic 

theory for evaluating the predictors. In statistics, asymptotic 

theory, or large sample theory, is a framework for assessing 

properties of estimators and statistical tests. (Estrada and 

Kanwal, 2002). Within this framework, it is often assumed 

that the sample size n may grow indefinitely; the properties 

of estimators and tests are then evaluatable under the limit of 

n → ∞. Subsequently, a COVID-19 modeller, researcher or 

data analyst may investigate the gauge, [i.e., the fraction of 

wrongly detected disturbances] in the model and establish 

asymptotic normality and Poissonian theory for the gauge.  

In probability theory and statistics, the Poisson 

distribution is a discrete probability distribution that 

expresses the probability of a given number of events 

occurring in a fixed interval of time or space if these events 

occur with a known constant mean rate and independently  

of the time since the last event (Haight 1967). We  

employed the Poisson distribution to estimate how many 

times a district-level, COVID-19, hierarchical, diffusion, 

transmission-related, event was likely to occur within    

"X" periods of time at a sub-county in Uganda. Poisson 

distributions are used when the variable of interest is a 

discrete count variable (Haight 1967). Finally, we 

eigendecompose the COVID-19 estimators and then 

determined robustness of the georeferenced, determinants in 

Bayesian eigenvector eigen-geospace. 

Eigen-spatial filters are used to decompose a matrix into 

eigenvectors and eigenvalues which are eventually applied in 

methods used in machine learning, such as in the Principal 

Component Analysis method or PCA [Griffith 2003]. Our 

assumption was that an eigendecomposed, asymptotic 

estimator model may optimize predictively targeting     

and prioritizing, hierarchical, diffusion-related, hyper / 

hypo-endemic, subcounty, district-level, transmission- 

related geolocations by generating error-free time series, 

dependent, epidemiological determinants. Asymptotic 

regression is appropriate when a contiguous region on the 

right or left (or both) of the input is expected to deviate 

systematically from the regression model in a finite fashion. 

Such regions ("non-asymptotic regions") often occur in time 

series dependent, vulnerability-oriented, viral infection,  

risk, model analysis (Jacob et al. 2013, Griffith 2006). We 

assumed that the local asymptotic normality property may be 
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establishable for an epidemiological, district-level, 

diagnostically stratifiable, georeferenced, hierarchical, 

diffusion-related, COVID-19, parameter estimator, 

predictive, vulnerability-oriented, regression model for 

optimizing targeting and prioritizing, subcounty, 

hyper/hypo-endemic, transmission sites with fractional 

ARIMA p, d, q errors.  

ARIMA is an acronym for “autoregressive integrated 

moving average” which is a model used in statistics and 

econometrics to measure events that happen over a period. 

The model is used to understand past data or predict future 

data in a series. We assumed that the results from such a 

paradigm would allow for solving, in an asymptotically 

optimal way, a variety of inference problems such as 

hypothesis testing, discriminant uncertainty analysis, rank 

based testing, etc. for constructing an epidemiological, 

geo-spatiotemporal, vulnerability-related, COVID-19, 

diagnostic, stratified, model for optimizing predictively 

targeting and prioritizing, georeferenceable, aggregation / 
non-aggregation-oriented, hyper/hypo-endemic, subcounty, 

district-level hierarchical, diffusion-related determinants. 

Further, we assumed that the problem of testing linear 

constraints on the parameters could be treated in some  

detail in an asymptotic regression equation for generating 

robust, (i.e., noiseless) iterative, interpolative estimators   

of COVID-19. In this experiment we also wanted to deal 

with the problem of extracting statistically significant 

determinants associated to geolocations of georeferenced 

subcounty epicentres of hyper/hypo-endemic, COVID-19, 

transmission at the district level in the presence of nuisance 

parameters.  

Nuisance parameters occur when reality and data are 

complex enough to require models with multiple parameters, 

but inferential interest is confined to a reduced set of 

parameters. Making inferences on geosampled, hierarchical, 

diffusion-oriented, transmission-related estimators in a 

prognosticative, vulnerability-oriented, geo-spatiotemporal, 

COVID-19, epidemiological, subcounty, scaled up, 

district-level, model output that are not influenced by the 

nuisance parameters is difficult. Marginal or conditional 

likelihoods may be pertinent for quantifying nuisance 

parameters. These are proper likelihoods so all the likelihood 

ratio based evidential techniques may be employable for 

unbiasing the estimator non-normality in the regression 

model. Output. Unfortunately, marginal, and conditional 

likelihoods are not always obtainable. Royall (2000) 

recommends the use of profile likelihood ratio as a general 

solution. According to Royall, the profile likelihood ratio is 

an ad hoc solution as true likelihoods are not being compared. 

Nevertheless, he finds the performance of the profile 

likelihood ratio to be very satisfactory for prognosticative 

modelling.  

Likelihood ratio tests are standard statistical tools used to 

perform tests of hypotheses. The null distribution of the 

likelihood ratio test statistic is often assumed to be χ2, 

following Wilks’ theorem. In statistics Wilks' theorem 

(Wilks 1938), offers an asymptotic distribution of the 

log-likelihood ratio statistic which may be usable to  

produce confidence intervals [CIs] for maximum likelihood 

(ML) estimates, or as a test statistic for performing the 

likelihood-ratio test in, for example, an epidemiological, 

geo-spatiotemporal, subcounty, district-level, hierarchical, 

diffusion-related, prognosticative, COVID-19, vulnerability 

model, regression estimation. Statistical tests (such as 

hypothesis testing) require knowledge of the probability 

distribution of the test statistic. This is often a problem    

for likelihood ratios, especially in an epidemiological, 

COVID-19, prognosticative, risk model where the 

probability distribution can be exceedingly difficult to 

determine. Suppose that the dimension of Ω=v is related to 

the dimension of Θ0=r. Under regularity conditions and 

assuming H0 is true, the distribution of Λn would tend to a 

chi-squared distribution with df equal to v−r as the sample 

size tends to infinity. With this theorem in hand (and for n 

large), we can compare the value of our log-likelihood ratio 

to the expected values from a χ2v−r distribution. However, 

in many circumstances relevant to an epidemiological, 

prognosticative, hierarchical, diffusion-related, sub-county, 

district-level, COVID19, diagnostic, stratified, vulnerability 

-related model this theorem may not be applicable. 

In this contribution we reveal practical ways to identify 

erroneous variable situations due to violations of regression 

assumptions and provide guidelines on how to construct 

valid inference for statistically forecasting COVID-19 

endemic, district-level transmission due to hierarchical 

diffusion of the virus in Uganda. In our expanded view    

of evidence, the profile likelihood ratio may not be ad hoc  

as the profile likelihood ratio may be shown to be an 

evidence function in an epidemiological, hierarchical, 

diffusion-related, vulnerability-oriented, COVID-19, 

diagnostically stratified, parameter estimation, district-level, 

subcounty, geo-spatiotemporal, forecast model. We show 

that the probability of misleading evidence from a profile 

likelihood ratio is not constrained by the universal bound, 

and can exceed 1/k. Thus, even in this first expansion of the 

concept of evidence from the likelihood ratio of two simple 

hypotheses, it may be that ML may be decoupled from the 

likelihood ratio in an epidemiological, COVID 19, stratified, 

prognosticative, hierarchical, diffusion-related, risk-related 

paradigm. In so doing, non-normal information (e.g., 

multicollinear, uncertainty estimators) may be optimally 

extractable prior to mapping the forecasted, georeferenced, 

hot/cold spot, aggregation/non-aggregation, district-level, 

transmission-oriented, subcounty epicentres of COVID-19 

transmission. In this experiment, we assumed that a 

regression, may be able to model the roles of scaled up 

georeferenced, subcounty, human settlement, and population 

characteristics employing socio-economic determinants, for 

example, of reported COVID-19 hierarchical diffusion in a 

Generalized Linear Mixed Model (GLMM).  

Operationally GLMMs estimate fixed and random effect 

(REs) and are especially useful when the dependent variable 

is binary, ordinal, count, or quantitative but not normally 

distributed. In statistics, a RE model, also called a variance 

https://en.wikipedia.org/wiki/Statistics
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components model, is a statistical model where the model 

parameters are random variables (Diggle et. al. 2002). It is a 

kind of hierarchical linear model which assumes that the data 

being analysed are drawn from a hierarchy of different 

populations whose differences relate to that hierarchy. A RE 

model is a a mixed model here the model parameters are 

random variables. (Hosmer and Lemeshew 2002). 

A mixed model, mixed-effects model or mixed 

error-component model is a statistical model containing both 

fixed effects and REs. These models are useful in a wide 

variety of disciplines in the physical, biological and social 

sciences. They are particularly useful in settings where 

repeated measurements are made on the same statistical  

units (longitudinal study), or where measurements are made 

on clusters of related statistical units. Because of their 

advantage in dealing with missing values, mixed effects 

models are often preferred over more traditional approaches 

such as repeated measures analysis of variance for 

uncertainty-oriented, error, parameter, estimator 

quantification. 

Further, GLMMs can model autocorrelation. Spatial 

autocorrelation is the correlation among values of a single 

variable strictly attributable to their relatively close 

locational positions on a two-dimensional surface, 

introducing a deviation from the independent observations 

assumption of classical statistic (Griffith 2003). Random 

effects (REs) may be described as inference predictor 

variables about the distribution of values (e.g., quantifiable 

variance amongst diagnostically stratifiable, hierarchical, 

diffusion-related, semi-parameterizable, time series, 

dependent, COVID-19, regression, estimator values of the 

response at different measurable levels (e.g., time series, 

zero autocorrelation to non-zero autocorrelation).  

In fixed-effects models (e.g., regression, ANOVA), there 

is only one source of random variability. This source of 

variance is the random sample one may employ to measure 

for example, empirically geosampled, geo-spatiotemporally 

scaled-up, district-level, georeferenceable, aggregation / 
non-aggregation-oriented, hyper/hypo-endemic, subcounty, 

COVID-19, diagnostic determinants. Capturing the precise 

variability across individuals’ “residual” variance (in linear 

models, this is the estimate of σ2 or MSE) is vital for optimal 

forecasting capability (Freedman 2008). Mixed effects 

models—whether linear or generalized linear—are different 

in that there is more than one source of random variability in 

the data. We may account for these differences in an 

epidemiological, hierarchical, diffusion-related, COVID-19, 

district-level, prognosticative, vulnerability model for 

geo-spatiotemporally targeting georeferenceable, subcounty, 

hyper/hypo-endemic, hot/cold spot, endemic, transmission 

zones through the incorporation of REs. Further, quantifiable 

random intercepts may allow the outcome to be higher     

or lower for each regression-related, explanative, predictor 

variable (e.g., a hyper/hypo-endemic, subcounty, district- 

level, geosampled, hierarchical, diffusion-related, COVID- 

19, diagnostically stratifiable, clinical, environmental, or 

socioeconomic determinant). A random intercept model 

estimates separate intercepts for each unit of each level at 

which the intercept is permitted to vary. This is one kind of 

RE model. Another RE model includes random slopes, and 

estimates separate slopes (i.e., coefficients, betas, effects, 

etc. 

Random slopes may allow the fixed effects to vary for 

each geosampled variable in a hierarchical diffusion-related, 

forecast-oriented, COVID-19, regression model. The slope is 

interpreted as the change of Y for a one unit increase in X 

(Hosmer and Lemeshew 2002). This is the same idea for the 

interpretation of the slope of the regression line. β ^ 1 which 

may represent the estimated increase in Y per unit increase in 

X in an epidemiological, COVID-19, regression, risk, model 

estimation. Note that the increase may be negative.  

Regression may also model the relationship between a set 

of hierarchical diffusion-related geosampled, COVID-19 

predictor (independent) variables and specific percentiles (or 

"quantiles") of a target (dependent) variable, which may be 

the median. This may be calculable as the square of the 

correlation between the observed Y diagnostic values and the 

predicted Y values using the estimators for constructing the 

viral infection, risk model. The output may reveal stratifiable, 

time series, dependent, diagnostic determinants associated to 

hyper/hypo-endemic, transmission-related, COVID-19, 

hot/cold spot, subcounty district-level geolocations. 

 Alternatively, the method of least squares is about 

estimating uncertainty parameters by minimizing the 

squared discrepancies between observed data, and their 

expected outcome. Here we employed the least square 

method in the context of a regression problem, where the 

variation in one geosampled, diagnostic, stratified, 

hierarchical, diffusion-oriented prognosticator [i.e., the 

response variable Y] was partly explained by the variation in 

the other variables, [i.e., clinical, socio-economic, and 

environmental, COVID-19 sampled co-variables X]. For 

example, the variation in the subcounty, district-level model 

results Y here was caused by variation in abilities and 

diligence X of the sampled time series variation on the 

scaled-up prevalence Y which was primarily due to 

variations in socioeconomic, environmental, and clinical 

conditions X. Given the value of X, the best prediction of   

Y (in terms of MSE) in the model was the mean f (X) of    

Y given X in the model renderings. The function f (i.e.,   

the regression function) was estimated from sampling n 

co-variables and their responses (x1, y1), . . . , (xn, yn). 

whereas the method of least squares estimates the 

conditional mean of the response variable across sampled 

data capture points, (e.g., subcounty, district-level, 

COVID-19, stratified, hierarchical, diffusion-related, 

explicatory, predictor, variable, discrete integers). Quantile 

regression estimates the conditional median of the response 

variable (Rao 1972). 

Quantile regression is an extension of linear regression 

that could be usable when the conditions of linear regression 

are not met (i.e., linearity, homoscedasticity, independence), 

for example, in an epidemiological, diagnostically  

stratified, COVID-19, hierarchical, diffusion-related, 

https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Hierarchical_linear_model
https://en.wikipedia.org/wiki/Mixed_model
https://en.wikipedia.org/wiki/Statistical_model
https://en.wikipedia.org/wiki/Fixed_effect
https://en.wikipedia.org/wiki/Random_effect
https://en.wikipedia.org/wiki/Repeated_measures_design
https://en.wikipedia.org/wiki/Statistical_unit
https://en.wikipedia.org/wiki/Statistical_unit
https://en.wikipedia.org/wiki/Longitudinal_study
https://en.wikipedia.org/wiki/Analysis_of_variance
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vulnerability-oriented, prognosticative, model, empirical, 

sample dataset for optimizing multicollinear, non- 

asymptotical, diagnostic determinants. We assumed that 

optimizing the geosampled epidemiological data would 

enable robustly predictively, targeting and prioritizing, 

district-level, subcounty, aggregation / non-aggregation- 

oriented, hyper/hypo-endemic, hot/cold spot, 

transmission-related zones employing multiple varying, 

georeferenced, clinical, socio-economic, and environmental, 

diagnostic, stratified determinants. 

It is already observed that time series, dependent, 

regressable, diagnostic determinants of poor demographic, 

socio-economic, built environment and poor health structure 

are elucidative co-factors in hierarchical, diffusion-related, 

forecast models for regressively targeting georeferenceable, 

district-level, subcounty, (e.g., zip code), geospatial, hot/cold 

spots, or endemic transmission for infectious diseases     

like, tuberculosis, (Jacob et. al. 2014) and HIV, (Khalatbari- 

Soltani et al. 2020) Influenza Bluhm and Pinkovskiy (2020) 

and pneumonia (Bärnighausen et al. 2020; Huang et al. 2017, 

Farr et al. 2000). These studies suggest that similar patterns 

might be visible for this emerged virus. However, more, time 

series, sensitive, regression modelling studies are warranted 

that consider a large variety of epidemiological, 

aggregation/non-aggregation-oriented, hyper/hypo-endemic, 

COVID-19, diagnostically stratified, georeferenceable, 

determinants for optimizing predictive mapping subcounty, 

district-level, spill-over, geo-spatiotemporal, hierarchical 

diffusion of the virus in developing countries. In so doing, 

potential intervention geolocations (district-level, subcounty 

transmission-related geolocations) may be regressively 

detected Moreover, most of the current contributions in the 

literature do not emphasize quantitating non-normality in 

time series, dependent, hierarchical, diffusion-oriented, 

forecast, regression-related, epidemiological COVID-19 

model, diagnostic co-factors (i.e., clinical, environmental, 

socioeconomic determinants ) which need to be explored   

to gain more awareness about this pandemic from a 

district-level, geo-spatiotemporal, hyper/hypo-endemic, 

hot/cold spot, predictive, cartographic perspective. Hence, 

the main question that arises in this experiment is can we 

accurately regressively forecast, spill-over, geo- 

spatiotemporal, hierarchical diffusion of the COVID-19 

virus in Uganda at the subcounty district-level employing 

linear/non-linear regressable, diagnostically stratified, 

environmental, socio-economic, and clinical, diagnostic 

determinants?  

Importantly, if any regression assumptions is violated in 

an epidemiological, multivariate, geosampled, hierarchical, 

diffusion-oriented, COVID-19, risk model for targeting 

sub-county, district-level, hyper/hypo-endemic transmission 

epicentres [e.g., if there are nonlinear relationships between 

dependent and independent variables), then the forecasts, 

[i.e., statistically significant (i.e., R square >90%), diagnostic, 

determinants targeting a hot spot], CIs), and scientific 

insights yielded, [e.g. causation covariates of the stratified, 

hierarchical diffusion] may be (at best) inefficient or (at 

worst) seriously biased (skew non-homoscedastic}, or 

misleading [non-elucidative, erroneous predictor].  

In statistics, OLS are a type of linear least squares method 

for estimating the unknown parameters in a linear regression 

model. OLS chooses the parameters of a linear function of a 

set of explanatory variables by the principle of least squares: 

minimizing the sum of the squares of the differences 

between the observed dependent variable [values of the 

district-level, hierarchical-diffusion-related, hyper / 
hypo-endemic, time series, dependent, potentially 

forecastable COVID-19, estimator variable being observed) 

in an epidemiological, empirical, georeferenced dataset of 

stratifiable, subcounty, regressed, diagnostic determinants], 

for example, and those predicted by the linear function of the 

independent variable. Geometrically, this would be seen as 

the sum of the squared distances, parallel to the axis of the 

dependent variable, between each sample, data, capture point 

in the dataset and the corresponding point on the regression 

surface—the smaller the error the better the model fits the 

data. The resulting estimator may be expressible by a simple 

formula, especially in the case of a linear regression, 

hierarchical, diffusion-related, prognosticative, COVID-19, 

stratified, diagnostic, parameterizable estimator model in 

which there is a single regressor (i.e., geosampled hot/cold 

spot determinant) on the right side of the regression equation. 

The OLS estimator is consistent when the regressors are 

exogenous, and—by the Gauss–Markov theorem—optimal 

in the class of linear unbiased estimators when the errors are 

homoscedastic and serially uncorrelated. Under these 

conditions, the method of OLS provides minimum-variance 

mean-unbiased estimation when the errors have finite 

variances. Under the additional assumption that the errors 

are normally distributed, OLS would be the ML estimator. 

However, while having a highly skewed dependent variable 

in an epidemiological, hierarchical, diffusion-related, 

district-level, vulnerability model for optimizing targeting 

and prioritization of aggregation/non-aggregation-oriented, 

COVID-19-related, hot/cold spot, subcounty, transmission- 

oriented determinants does not violate an assumption, it may 

make OLS regression rather inappropriate. OLS regression 

models the mean, and the mean is (usually) not a good 

measure of central tendency in a skewed distribution 

(Hosmer and Lemshew 2002). The median may be modelled 

with regression. In addition, when the dependent variable 

(e.g., district-level, COVID-19 prevalence) is highly skewed 

the interest may be in modelling the tails of the distribution. 

Ideally the statistical software employed to construct an 

epidemiological, COVID-19, prognosticative, risk model for 

prioritizing and targeting, hyper/hypo-endemic, district-level, 

transmission-related geolocations should automatically 

provide charts and statistics that test whether regression 

assumptions are satisfied. Unfortunately, software packages 

do not provide such output by default (additional menu 

commands must be executed or code must be written) and 

some (such as Excel’s built-in regression add-in) offer only 

limited options. RegressIt does provide such output and in 

graphic detail. However, there are many examples in the 

https://www.sciencedirect.com/science/article/pii/S2667010021000755#bib0013
https://www.sciencedirect.com/science/article/pii/S2667010021000755#bib0013
https://www.sciencedirect.com/science/article/pii/S2667010021000755#bib0004
https://www.sciencedirect.com/science/article/pii/S2667010021000755#bib0003
https://www.sciencedirect.com/science/article/pii/S2667010021000755#bib0010
https://www.sciencedirect.com/science/article/pii/S2667010021000755#bib0010
https://www.sciencedirect.com/science/article/pii/S2667010021000755#bib0010
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literature of outputs from models constructed in RegressIt 

that violates all regression assumptions [e.g., multivariate 

normality, no multicollinearity, no zero autocorrelation, 

non-Gaussian non-asymptoticalness]. These regression 

prognosticative models are likely to be accepted by a naïve 

user based on a large value of the R-square.  

An example of an epidemiological, vulnerability-oriented, 

geo-spatiotemporal, prognosticative, hierarchical, 

diffusion-related, diagnostically stratifiable, COVID-19, 

vulnerability model that may satisfy regression assumptions 

reasonably well, may be obtainable from a nonlinear 

transformation of the geosampled diagnostic determinants. 

The normal quantile plots from these models may reveal the 

correct geo-spatiotemporality of hierarchical, diffusion- 

related, explicatory predictors which may be measureable for 

revealing an actual representative of a hyper/hypo-endemic, 

infected, georeferenced, hot/cold spot-related, COVID-19, 

district-level, subcounty population. The quantile-quantile 

(q-q) plot is a graphical technique for determining if two 

empirical sampled datasets come from populations with a 

common distribution (Cressie 1993). These are important 

considerations in any form of statistical modelling of time 

series, dependent, COVID-19, stratifiable, hierarchical, 

diffusion-related, diagnostic determinants although they do 

not refer to properties of the linear regression equation per 

se.  

Spatial statistics (e.g., variogram clouds Moran 

scatterplots, eigenvector spatial filters) and GIS mapping 

may aid the process of providing insights to fight against a 

pandemic and improving public health by identifying 

outliers in geo-spatiotemporal, subcounty, district-level, 

COVID-19, sample, parameterizable, regression, estimator 

datasets. For example, the Spatial Statistics toolbox in 

ArcGIS ProTM contains statistical tools for analyzing spatial 

distributions, patterns, processes, and relationships in 

various geospace. Doing so may enable unbiasing, spatial 

error non-normality asymptotically by quantitating 

multicollinear, zero autocorrelatable skew, heteroscedastic, 

non-exploratory estimators in an empirical dataset of 

eigendecomposable, geosampled, subcounty, district-level, 

georeferenced, aggregation/non-aggregation-oriented, geo- 

spatiotemporal, hierarchical, diffusion-related, COVID-19, 

diagnostically stratifiable, epidemiological, hot/cold spot, 

risk, model, eigen-spatial filter, eigen-orthogonal synthetic 

eigenvectors. 

Eigenvectors are a special set of vectors associated with a 

linear system of equations (i.e., a matrix equation) that are 

sometimes also known as characteristic vectors, proper 

vectors, or latent vectors (Marcus and Minc 1988). While 

there may be similarities between spatial and nonspatial 

(traditional) statistics in terms of concepts and objectives, 

spatial filtering statistics are unique in that they were 

developed specifically for use with geographic data. Unlike 

traditional non-spatial statistical methods, they incorporate 

space (proximity, area, connectivity, and/or other spatial 

relationships) directly into their mathematics. 

Our assumption in this experiment was that the Spatial 

Statistics toolbox could determine overarching directional 

trend in an eigenfunction, geo-spatiotemporal, 

eigen-decomposed dataset of grid-stratifiable, eigen-spatial 

filter, geosampled, COVID-19, hierarchical, diffusion- 

oriented, district-level, subcounty, diagnostic determinants. 

In so doing we would be able to identify geo-statistically 

significant, hyper/hypo-endemic, georeferenceable, hot 

spot/cold spot, clustering spatial outliers by teasing out 

variables associated to violations of regression assumptions. 

We wanted to assess overall patterns of clustering, or 

dispersion, group attribute features based on ArcGIS ProTM 

geolocation, land cover classification (e.g., sub-county, 

peri-urban, agro-ecosystem, rural pastureland, riverine 

tributary, an urban low income residential neighbourhood 

etc.) employing regressively predictable, geosampled, 

geo-spatiotemporal, district-level, hierarchical, diffusion- 

related, spill-over, COVID-19, diagnostically stratifiable, 

aggregation/non-aggregation-oriented, hyper/ hypo-endemic, 

covariate, feature, attribute similarities, (e.g., georeferenced, 

sub-county, hot/cold spot, cluster with homogenous    

tribal economy) for exploring appropriate scale of analysis, 

and non-normal variability in estimator relationships in 

Bayesian eigenvector eigen-geospace. The workflow 

involved multiple steps to progress from pre-processing to 

segmentation, training sample selection, classifying, and 

assessing accuracy. Each step was iterative, and the process 

required in-depth knowledge of the input classification 

schema, classification methods, expected results and 

acceptable accuracy. Infectious diseases diffuse over space 

and time through inherently heterogeneous, geographical 

processes (Hufnagel 2004). The geographical concept of 

diffusion may be defined as the spread of a phenomenon 

across space of which disease diffusion through 

interpersonal transmission is but one variant (Dalvi et al. 

2019).  

Here, we investigated the role of globalization, settlement, 

and population heterogeneous characteristics amongst 

geosampled, multivariate, aggregation / non-aggregation- 
oriented, diagnostic determinants of reported, COVID-19- 

related, geo-spatiotemporal, hierarchical diffusion between 

subcounties and districts in Uganda as an outcome of 

transmission between individuals. Although each new case is 

a product of interpersonal transmission—both directly via 

contact, and indirectly via fomites— one of our hypotheses 

in this experiment was that COVID-19 hierarchical, 

diffusion can occur across large, subcounty, district-level 

distances as an outcome of human movement and mobility. 

Understandings of viral transmission lie more firmly within 

the academic domain of virology than diffusion does, which 

is a fundamentally geographic phenomenon that can be 

applicable to other forms of spread [for example, innovation 

diffusion (Hägerstrand 1967)]. Different underlying 

non-linear, exploratory, epidemiological, empirical 

processes (e.g., spline back-fitted kernel smoothing of 

additive auto-regressors of geosampled, time series, 

dependent, diagnostic, stratified, clinical, socio-economic, or 

environmental determinants) may describe types of 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/variogram
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geo-spatiotemporal hierarchical diffusion of COVID 19 at 

the subcounty, district-level. Expansion diffusion identifies 

the general tendency for phenomena to spread ‘outward’ and 

infectious diseases are most associated with contagious 

(expansion) related diffusion, indicating potential direct 

transmission between georeferenced neighbours in a 

particular geolocation (e.g., urban park night club, sports bar 

primary or secondary school, church, local fish market etc.) 

due to their physical proximity (Golub 1993). 

In this experiment, varying, time series, district-level, 

risk-related, stratified, COVID-19, hierarchical, 

diffusion-oriented, diagnostic determinants of 

georeferenceable, sub-county, district-level, transmission- 

related, hot/cold spots, were mapped in ArcGIS Pro 2.9 and 

other software packages to examine the COVID-19 situation 

in Uganda. This study in Uganda with respect to COVID-19, 

we assumed could be helpful in (i) accessing the role      

of different influencing epidemiological, regression model, 

multivariate, diagnostic co-factors [e.g., non-normally 

distributed, heterogeneity in variance estimates derived from 

regressed, time series, dependent, geo-spatiotemporally, 

diagnostically stratifiable, hierarchical, diffusion-oriented, 

georeferenced, clinical, environmental and socioeconomic 

determinants], to the practitioners and administrators;     

(ii) addressing the spatial vulnerability of the community   

to the COVID-19 district-wide [e.g., provide fully Bayesian 

intrinsic, autoregressive priors models delineating  

subcounty, georeferenceable, hot /cold spot geolocations of 

hyper/hypo-endemic transmission]; and, (iii) development of 

effective mitigation strategies. 

Moran's Indices (I) statistics were employed in the 

analyses to estimate latent, non-zero, global, spatiotemporal 

autocorrelation and spatial distribution of the georeferenced, 

district-level, subcounty, COVID-19 cases employing the 

multivariate, geosampled, hierarchical, diffusion-oriented, 

clinical, socioeconomic, and environmental, time series, 

dependent, diagnostically, stratified determinants. Moran's I 

is a measure of geospatial autocorrelation which is 

characterizable by a correlation in a signal among nearby 

georeferenced locations in eigenvector eigen-geospace 

(Griffith 2003). Geo-spatiotemporal autocorrelation exists 

because real world phenomena are typified by orderliness, 

pattern, and systematic concentration, rather than 

randomness. Tobler’s First Law of geography encapsulates 

this situation: "everything is related to everything else, but 

near things are more related than distant things." To this 

maximum should be added the qualifier: “but not  

necessarily through the same mechanisms.” In other words, 

autocorrelation means a dependency exists between 

georeferenced time series, epidemiological, sampled, data 

capture points [i.e., re-infection cases in an hyper/hypo- 

endemic, transmission-oriented, COVID-19, diagnostically 

stratifiable, subcounty, district-level, hot spot] based on an 

empirical dataset of geosampled, geo-spatiotemporal, 

hierarchical, diffusion-related, georeferenced, regression- 

oriented, prognosticative, diagnostic determinants [e.g., a 

socioeconomic index such as high human household count  

in a low income, urban commercial neighbourhood] in 

proximal geolocations. Autocorrelation can also occur as a 

systematic pattern in values of other exogenous 

observational predictors across geolocations on a 

georeferenced district map due to underlying common 

co-factors [e.g., high disease transmission infection rate in a 

zip code, geospatial cluster]. Latent geo-spatiotemporal 

autocorrelation is more complex than one-dimensional (d) 

autocorrelation since spatial correlation is multi-dimensional 

(i.e., 2 or 3 dimensions of space) and multi-directional.   

Our assumption was that Moran's I may help to optimize  

[i.e., remove residual, non-normal, multicollinear and/or 

skew heteroscedastic, zero autocorrelated, non-asymptotical 

parameters) in an eigendecomposed, georeferenced, 

geo-spatiotemporal, empirical, sampled dataset of subcounty, 

district-level, hierarchical, diffusion-related, hyper / 

hypo-endemic, COVID-19, diagnostically stratified, 

transmission-oriented determinants] and their distribution 

patterns in geo-spatiotemporal, Bayesian, eigenvector 

eigen-geospace.  

We employed the Spatial Autocorrelation (Global 

Moran’s I) tool in ArcGIS ProTM to measure residual, 

non-zero, autocorrelation in the empirical, georeferenced, 

eigen-decomposed dataset. Using a set of time series 

dependent, COVID-19 stratified, georeferenceable, 

subcounty, district-level, epidemiological, data, capture 

point, diagnostic, feature attributes, this tool evaluated 

whether synthetic, eigen-decomposed, geo-spatiotemporal, 

eigen-spatial filter, eigen-orthogonal eigenvectors derived 

from weighted, aggregation/non-aggregation-oriented, 

hyper/hypo-endemic patterns were clustered dispersed, or 

random. Here the tool calculated the Moran's I value and 

both a z-score (i.e., standard deviations) and p-value to 

evaluate the significance of the georeferenced. 

aggregation/non-aggregation-oriented, hyper/hypo-endemic, 

diagnostic stratified, determinants. P-values are numerical 

approximations of the area under the curve for a known 

distribution limited by the test statistic (Aschwanden 2015 

Wasserstein et al. 2016). 

A key perspective in our model assumption was that the 

georeferenced, diagnostic, epidemiological, subcounty, 

district-level, uncertainty-oriented, eigendecomposed, 

discrete, integer values in the middle of the normal 

distribution (z-scores like 0.19 or -1.2, for instance), could 

represent the expected outcome in any geosampled, 

diffusion-related, geo-spatiotemporal, aggregation / 

non-aggregation-oriented, regression-related, COVID-19, 

model estimator. When the absolute value of the z-score in 

an empirical geosampled, dataset of georeferenced 

geo-spatiotemporal, hierarchical, diffusion-related, 

COVID-19, stratified, epidemiological, model forecasts is 

large and the error probabilities are small (e.g., as established 

in the tails of the normal distribution), we assumed this could 

indicate that there is a presence of a statistically significant 

subcounty, district-level, georeferenceable, ‘hot spot’ or 

‘cold spot’ [e.g., an hyper/hypo-endemic, georeferenced, 

aggregation/non-aggregation, transmission-oriented, 

https://en.wikipedia.org/wiki/Spatial_autocorrelation
https://en.wikipedia.org/wiki/Autocorrelation
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hot/cold spot, zip code, geospatial cluster]. Regardless,    

the findings would be invalid if either the assumption     

of independence i.e., non-multicollinearity o 

non-homoscedasticity, linear relationship exists, no 

autocorrelation is violated in the residual, epidemiological, 

prognosticative, vulnerability-oriented, regression, model 

testing for quantitating and determining statistical 

significance of the sampled determinants. In statistics, a 

sequence of random variables is homoscedastic if all its 

random variables have the same finite variance [i.e., 

homogeneity of variance] (Hosmer and Lemeshew 2002). 

In the context of predictive, epidemiological, 

regression-related, time series, dependent, vulnerability 

analysis, several methods are employable to control for 

statistical effects of propagation non-normality [e.g., 

multicollinearity, skew heteroscedasticity, non- 

asymptoticalness] in endemic, transmission-oriented, 

hot/cold spot, cluster causation, covariate dependencies 

inconspicuously embedded amongst georeferenceable, 

eigendecomposable, district-level, grid-stratifiable, 

prognosticative, COVID-19, subcounty, geo-spatiotemporal, 

spill-over, hierarchical diffusion–related, diagnostic 

determinants in Bayesian, eigenvector eigen-geospace. 

Maximum likelihood or Bayesian approaches can account 

for geo-spatiotemporal classifiable dependencies in a 

parametric framework, whereas recent eigenvector spatial 

filtering approaches focus on non-parametrically removing 

autocorrelation. In this paper, we propose a semiparametric 

eigen-spatial filtering approach that allows researchers, 

epidemiologists and other infectious disease modellers to 

deal explicitly with (a) lagged autoregressive models and  

(b) simultaneous autoregressive geo-spatiotemporal models 

for optimizing forecasting empirically dependent, geo- 

spatiotemporal, spill-over, hyper/hypo-endemic, 

clustering/non-clustering,hierarchical, diffusion-oriented, 

diagnostically stratfiable, COVID-19, hot/cold spot, 

quantifiable estimator tendencies by iteratively quantitating 

trend in an empirical geosampled dataset of district-level, 

subcounty, georeferenced, epidemiological determinants in 

Bayesian eigenvector eigen-geospace.  

Our proposed iterative Bayesian filter consisted in 

recursively updating the posterior distribution of the 

sub-county, georeferenced, epidemiological, diagnostic, 

model estimators while simultaneously aggressively 

quantitating the process with new empirical, 

geo-spatiotemporal, hierarchical, diffusion-related, spilled- 

over, predictive samples (i.e., evidential likelihoods) drawn 

from a proposal density in highly probable eigenvector 

eigen-geospace. Our assumption was that over iterations the 

proposal density would progressively become localized near 

the posterior modes, and, in doing so, would allow defining 

an aggregation/non-aggregation, district-level, transmission- 

oriented, diagnostically stratifiable, subcounty, hot/cold spot, 

(e.g., hyper/hypo-endemic, zip code geolocation) using 

asymptotically normalized, (e.g., non-multicollinear, 

non-skew, non-heteroscedastic,, non-zero autocorrelatable, 

unbiased), geosampled, geo-spatiotemporal, georeferenced, 

hierarchical, diffusion-related, diagnostic determinants. The 

posterior mean and posterior mode are the mean and mode of 

the posterior distribution of Θ (Cressie 1993). 

Here, the Dirichlet process Gaussian mixture was trained 

with sparse and eigenvalues from the previous iteration to 

update the proposal density in a multivariate, subcounty, 

district-level, prognosticative, COVID-19, stratified, 

epidemiological, geo-spatiotemporal, forecast model. We 

employed the Dirichlet Process Gaussian-mixture model, 

which is a fully Bayesian non-parametric method to estimate 

probability density functions (PDF) with a flexible set of 

assumptions. Probability density function is a statistical 

expression that defines a probability distribution (the 

likelihood of an outcome) for a discrete random variable as 

opposed to a continuous random variable (Hosmer and 

Lemeshew 2002). This paper presents a novel algorithm, 

based upon the dependent Dirichlet process mixture model 

(DDPMM), for optimally capturing batch-sequential, 

normalized, time series, dependent, hierarchical, 

diffusion-related, COVID-19, stratified, epidemiological, 

empirical determinants containing an unknown number of 

evolving georeferenceable, district-level, subcounty, 

transmission-related clusters. The algorithm is derived via a 

low variance asymptotic analysis of the Gibbs sampling 

algorithm for the DDPMM and provides a hard clustering 

with convergence guarantees similar to those of the k-means 

algorithm [i.e., a method of vector quantization, originally 

from signal processing, that aims to partition n observations 

into k clusters in which each observation belongs to the 

cluster with the nearest mean, serving as a prototype of the 

cluster].  

Our assumption was that the empirical results from a 

synthetic test with moving Gaussian clusters and a test    

for unbiasing non-normality in a regressed dataset of 

diagnostically stratified, COVID-19, hierarchical, 

diffusion-oriented, georeferenced, district-level, geosampled, 

sub-county, epidemiological, data, capture points in 

Bayesian eigenvector eigen-geospace would demonstrate 

that the algorithm requires orders of magnitude less 

computational time than contemporary probabilistic and 

hard clustering uncertainty algorithms. In so doing, multiple 

varying error heterogeneities such as heteroscedastic, 

non-asymptotical, multicollinear, estimator uncertainty due 

to violations of regression assumptions would be teased out. 

In so doing the eigen-geospatial algorithm would provide 

higher estimation accuracy on the regressed, predictively 

examined, semi-parameterized, COVID-19, diagnostic 

determinant, geo-spatiotemporal, georeferenceable, 

autocorrelated, residual model output empirical, 

epidemiological datasets.  

As in one non-parametric spatial filtering approach, in  

this experiment, a specific subset of eigen-orthogonal 

eigen-spatial filter eigenvectors derived from a transformed 

spatial link matrix is employed to capture the 

geo-spatiotemporal, aggregation–oriented, non-linear 

dependencies amongst the disturbances of an 

epidemiological, diagnostically grid-stratified, 

https://www.sciencedirect.com/topics/mathematics/bayesian
https://www.sciencedirect.com/topics/engineering/posterior-distribution
https://www.sciencedirect.com/topics/computer-science/dirichlet-process
https://www.sciencedirect.com/topics/engineering/gaussian-mixture
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autocorrelated, COVID-19, specified, district-level, 

prognosticative, vulnerability-oriented, georeferenced, 

empirical, geosampled, model, estimator dataset. However, 

we assumed that the optimal subset in the proposed 

eigen-spatial filter, eigenvector, diagnostic paradigm would 

be identifiable more intuitively by an objective function that 

minimizes residual, estimator, erroneous, Bayesian, 

geo-spatiotemporally and, non-zero, autocorrelation rather 

than maximizes a diagnostic model fit. The proposed 

objective function we assumed would have the advantage of 

optimally quantitating deviant estimator variable inclinations 

[e.g., residual zero autocorrelation] for optimizing 

space-time series [i.e., inducing non-multicollinearity, 

and/or non-skew, non-heteroscedasticity] in regressed 

vulnerability-oriented, epidemiologically georeferenceable 

forecasts [e.g., geo-spatiotemporally clustering, subcounty, 

COVID-19, infected, homeless shelter, ‘hot/cold spot’ 

centroids]. We assumed employing smaller subsets of 

frugally selected, eigenfunction, eigen-spatial filters  

derived from a geographic weighted regression (GWR) 

would reveal multicollinearity, skew heteroscedasticity non- 

asymptoticalness and other non-normalities due to violations 

of regression assumptions in the COVID-19 diagnostic, time 

series, dependent determinants in Bayesian eigenvector 

eigen-geospace.  

Geographic Weighted Regression (GWR) is an extension 

of global regression models that helps to derive frequency 

estimators for each georeferenced location separately 

(Mollalo et al., 2020). Our diagnostic, district-level, 

vulnerability-oriented, subcounty, forecast GWR was 

denoted as-(Eqn 1.1) yi=βi0+∑j−1mβijXij+εi,i=1,2,…,n 

where an infected, georeferenced, COVID-19 stratified, 

potential, hot/cold spot geolocation i, yi was the value for the 

dependent variable, βi0 was the intercept, βij was the jth 

regression parameter, Xij was the value of the jth geosampled 

epidemiological estimator; and, εi was a random error term. 

It was assumable at this junction that the scale of the 

diagnostic, subcounty, district-level, time series, dependent, 

uncertainty-oriented, georeferenced, hierarchical diffusion, 

regressed determinants would not be homogenous over any 

type of eigenvector eigen-geospace.  

GWR is an outgrowth of OLS; and adds a level of 

modelling sophistication by allowing the relationships 

between the independent and dependent variables to vary by 

locality (Cressie 1993). GWR was originally developed for 

the analysis of spatial capture point data and allows for the 

interpolation of explanatory values that are not included in 

an empirical dataset. Here it was applied under the 

assumption that the strength and direction of the relationship 

between an epidemiological, georeferenceable, subcounty, 

district-level, hyper/hypo-endemic, transmission–related, 

stratified, hot/cold spot, COVID-19, dependent variable, and 

its’ geosampled hierarchical-diffusion-related, time series, 

empirical, observational, subcounty predictors may be 

modified by contextual factors. GWR has high utility in 

epidemiology, particularly for research and evaluations of 

health policies (e.g., Griffith 2005). 

We assumed that a multivariate GWR would be useful   

as an exploratory diagnostic paradigm for asymptotically 

normalizing, biased, time series, hierarchical, 

diffusion-related, explanatory, estimator relationships [i.e., 

inducing geo-spatiotemporal, non-multicollinearity and/or 

non-skew, homoscedasticity], as asymptotically optimally 

derived from an eigendecomposable, eigen-spatial filter, 

empirical dataset of, Bayesian treated, subcounty, 

district-level, COVID-19, non-normal, hyper/hypo-endemic 

transmission-related hierarchical, diffusion, georeferenced, 

determinants. This optimization included determining if/how 

their relationship varies in Bayesian eigenvector eigen- 

geospace. Further, we assumed that the GWR would account 

for proliferating non-zero, latent, geo-spatiotemporal, 

autocorrelation tendencies in the determinants.  

There are a number of software packages that can run 

GWR (ArcGIS, R, GWR 4.0) in different software programs 

and they all incorporate scale. Scale is a fundamental 

geographic concept, and substantial literature exists 

discussing the various roles that scale plays in different 

geographical contexts. Relatively little work exists, in 

literature that provides a means of measuring the geographic 

scale over which different processes operate in an 

epidemiological, aggregation/non-aggregation-oriented, 

geo-spatiotemporal, vulnerability-oriented, predictive, 

subcounty, district-level, COVID-19, diagnostic, stratified, 

hierarchical, diffusion-related, model for targeting and 

prioritizing, georeferenceable, hyper/hypo-endemic, hot / 

cold spot, transmission sites. Further, there are no 

contributions in the literature that quantitate non-normality 

due to violations of regression assumptions [e.g.., non- 

Gaussian error variance] embedded in an empirically 

grid-stratifiable, non-asymptotical, biased, empirical dataset 

of COVID-19-related, hierarchical, diffusion-related, 

georeferenced, latent, aggregation/non-aggregation-oriented 

propensities (e.g., residual non-zero autocorrelation) 

eigendecomposed in Bayesian eigenvector eigen-geospace. 

Unfortunately, in empirical, diagnostic, stratified, 

geo-spatiotemporal, hierarchical, diffusion-related, 

vulnerability-oriented, epidemiological, aggregation / 

non-aggregation-oriented, forecast models where the cases 

are geographical (e.g., locating a georeferenceable, 

COVID-19, infectious, district-level, subcounty zip code 

level nursing home) regression coefficients cannot remain 

fixed over space and time. Classical GWR assumes that all 

the processes modelled (e.g., skew heteroscedastic, 

hierarchical, diffusion-related, stochastic/non-stochastic, 

asymptotical/non-asymptotical, geospatial, temporal, 

aggregation/non-aggregation-oriented, multicollinear 

propensities) operate at the same spatial scale. The work here 

relaxed this assumption by allowing different processes to 

operate at different spatial scales in an empirical, 

diagnostically stratifiable, forecast-oriented, 

epidemiological, geo-spatiotemporal, regression-related, 

model framework. This was achieved by deriving an optimal 

bandwidth vector in which each geosampled, exogenous, 

diagnostic regressor in the epidemiological COVID-19 

https://www.sciencedirect.com/science/article/pii/S2667010021000755#bib0019
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model indicated the spatial scale. This included normalizing 

a particular time series dependent, COVID-19, 

diagnostically stratifiable, erroneous, georeferenceable, 

propagation, uncertainty-oriented, prognosticative variable, 

specification process that we assumed may be statistically 

describable in Bayesian eigenvector eigen-geospace. We 

employed a multiscale MGWR, which is similar in tent to 

inferential, Bayesian, non-separable, spatially varying 

coefficients models (VCMs).  

Varying coefficient models (VCMs) are widely used for 

estimating nonlinear regression functions for functional data. 

Their Bayesian variants using Gaussian process priors on the 

functional coefficients, however, have received limited 

attention in massive data applications, in the literature due to 

the prohibitively slow posterior computations using  

Markov chain Monte Carlo (MCMC) algorithms. In statistics, 

MCMC methods comprise a class of algorithms for sampling 

from a probability distribution (Gelman 2005). By 

constructing a Markov chain that has the desired distribution 

as its equilibrium distribution, we assumed we could obtain a 

sample of the desired distribution of the geo-spatiotemporal, 

hierarchical, diffusion-related, subcounty, scaled up, 

georeferenceable, district-level, COVID 19, diagnostic, 

stratifiable, hot/cold spot determinants oriented by recording 

states from the chain. MCMC methods are primarily used for 

calculating numerical approximations of multi-dimensional 

integrals, for example in Bayesian statistics (Gelman 2005), 

The recent development of MCMC methods has made it 

possible to compute large, aggregation/non-aggregation, 

subcounty, district-level, prognosticative, epidemiological, 

time series sensitive, hierarchical, diffusion-related, 

COVID-19, hyper/hypo-endemic models that require 

integrations over hundreds to thousands of unknown 

diagnostic parameters. Since MCMC methods create 

samples from a continuous random variable, with probability 

density proportional to a known function, we assumed that 

these samples may be usable to evaluate an integral over a 

diagnostic stratified, clinical, environmental, or clinical 

COVID-19-related, aggregation/non-aggregation-oriented, 

geo-spatiotemporal, prognosticative, vulnerability variable, 

as its expected value or variance. 

In many applications, the objective is to build regression 

models to explain a response variable over a region of 

interest under the assumption that the responses are spatially 

correlated. In all of this work, the regression coefficients are 

constant over the region. However, in some applications, 

coefficients are expected to vary at the local or sub-regional 

level. Here we focus on the local case. In this experiment we 

assume that VCM may be employable to investigate 

non-stationarity in an empirical geosampled georeferenced 

dataset of COVID-19, diagnostically stratified, aggregation / 

non-aggregation-oriented, geo-spatiotemporal, hierarchical, 

diffusion-related, probabilistic, uncertainty-oriented 

estimators summarized from a hyper/hypo-endemic, 

subcounty, district-level, prognosticative, vulnerability- 

oriented, regression model. Although parametric modelling 

of the spatial surface for the coefficient is possible, here we 

argue that it is more natural and flexible to view the surface 

as a realization from a spatial process. We show how such 

modelling can be formalized in the context of Gaussian 

responses providing attractive and powerful interpretation in 

terms of both REs and explanatory residuals. We also offer 

extensions to generalized linear models (GLMs). We 

illustrate both static and dynamic modelling employing an 

empirical, epidemiological dataset that attempts to precisely 

predict potential, subcounty, geosampled, georefernceable, 

COVID-19, stratifiable, time series dependent, district-level, 

hot/cold spots of hyper/hypo-endemic transmission. 

A Bayesian VCM model was elaborately constructed  

and introduced as a methodological alternative to 

simultaneously account for quantitating unstructured and 

spatially structured heterogeneity of the erroneous, 

hierarchical, diffusion-oriented, regression coefficients due 

to violations of regression assumptions for optimally 

predicting COVID-19, subcounty, district-level, hot/cold, 

spot frequencies. The spatially varying coefficient model 

allowed the covariates to change with the district-level, 

subcounty location, thus it helped to efficiently investigate 

the spatial nonstationary of the data. The proposed method 

was appealing in that the parameters were modelled via a 

conditional autoregressive prior distribution, which involved 

a single set of REs and a spatial correlation parameter with 

extreme values corresponding to pure unstructured or pure 

spatially correlated REs. We assumed that VCM outputs 

may be robust to residual non-asymptotical non-normality 

along with the associated inferential diagnostics rendered; 

hence, providing a deeper understanding of innate    

precise geospatial relationships (e.g., exact centroid,    

GPS coordinates of a georeferenceable, district-level, 

hyper-endemic, COVID-19, diagnostically stratifiable 

hot-spot) and their potential variable biases [e.g., 

leptokurtotic (heavy tails) /platykurtic (light tails) 

distributions] Our goal was to achieve an empirical, 

epidemiological, dataset of, non-multicollinear, non-zero 

autocorrelatable, multivariate, hyper/hypo-endemic, hot / 

cold spot, non-skew, non-heteroscedastic, asymptotically 

unbiased, semi-parameterized estimators in Bayesian 

eigenvector eigen-geospace.  

Additional consequences of potential propagation 

non-normalities in an epidemiological, geosampled, 

COVID-19, stratified, diagnostic, regression model may be 

(a) a large change or even reversal in sign in one regression 

coefficient especially after another exogenous variable     

is added to the model, or specific observations [e.g., 

georeferenceable, hyper-endemic, COVID-19, stratified, 

diffusion-oriented, subcounty, aggregation-oriented, 

environmental estimator like daily average temperature, 

daily average dew point or daily average humidity] have 

been excluded from the analysis, (b) a counterintuitive sign 

in one regression coefficient, and (c) large parameter 

standard errors. Hence, it is essential to look for these effects 

of dependence in a global, empirical, vulnerability-oriented, 

epidemiological, prognosticative, COVID-19 model and 

their local GWR counterparts especially when fitting and 

https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Markov_chain
https://en.wikipedia.org/wiki/Markov_chain#Steady-state_analysis_and_limiting_distributions
https://en.wikipedia.org/wiki/Random_variable
https://en.wikipedia.org/wiki/Probability_density
https://en.wikipedia.org/wiki/Probability_density
https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Variance
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interpreting a template model. By optimizing hierarchical, 

diffusion-related, predictive, variable non-normality in 

Bayesian eigenvector eigen-geospace we assumed we could 

optimally map aggregation/non-aggregation-oriented, hyper 

/ hypo-endemic, COVID-19, determinant propensities and 

their empirically, eigendecomposable, georeferenceable, 

eigen-estimator, attribute features. 

This experiment describes and illustrates new 

functionality for optimizing, non-asymptotical 

non-normality and other biases in varying empirically 

geosampled, prognosticative, COVID-19, regression-related, 

geo-spatiotemporal, hierarchical diffusion, aggregation / 

non-aggregation-oriented, eigendecomposable, eigen-spatial 

filter eigen-coefficients. We did so by quantitating non-, 

multicollinear, zero autocorrelated, non-skew, non- 

homoscedastic, non-asymptotical, multivariate, COVID-19, 

diagnostic parameters in an uncertainty-oriented, 

geo-spatiotemporal, hierarchical diffusion, specified model 

in Bayesian eigenvector geo-space employing the spBayes 

(version 0.4-2) R package. The new spSVC function 

employs a computationally efficient MCMC algorithm 

which extends current spBayes functions that fit only 

space-varying intercept regression models. We assumed that 

this software was employable to parsimoniously extract 

independent or multivariate, Gaussian process REs for any 

set of columns in a regression design matrix. We also 

assumed that Newly added OpenMP parallelization options 

for spSVC may describe helper functions in Bayesian 

eigenvector eigen-geospace for rendering joint and 

point-wise prediction and model fit diagnostics. A helper 

function is a function that performs part of the computation 

of another function (Freedman 2008). We assumed that   

the model would be able to quantitate non-normality    

such as multicollinearity, zero autocorrelation, non- 

asymptoticalness, non-skew, non-homoscedasticity etc. due 

to violations of regression assumptions, in any georeferenced, 

subcounty, district-level, eigendecomposed empirical 

dataset of Bayesian treated, geo-spatiotemporal, hierarchical, 

diffusion-oriented, COVID-19, diagnostically stratifiable, 

geosampled prognosticators in eigenvector eigen-geospace. 

The utility of the proposed models is illustrated using a 

geo-spatiotemporal, regression weighted analysis over 

districts in Uganda. 

The spatial statistical methodology of interest in this paper 

is twofold: (1) generalized linear mixed modelling which is 

included in the specified, hierarchical, diffusion-related, 

COVID-19, diagnostically stratfiable, vulnerability-oriented, 

district-level, epidemiological, forecast, model RE term; and 

(2) Moran eigenvector space-time filtering (MESTF) 

coupled with a RE term.  

In linear models, a wrong specification of the RE 

distribution has modest consequences on ML estimators: 

Verbeke and Lesaffre (1997) revealed that the estimators of 

fixed effects and variance components with normality 

assumption are consistent and asymptotically normally 

distributed even if the true REs do not follow a normal 

distribution, though their asymptotic covariance matrix is 

biased. The asymptotic covariance matrix approximates the 

covariance matrix of the sampling distribution of parameter 

estimates that gets more optimal as the number of samples  

on which the parameter estimates are based increases 

(Freedman 2008). However, there may be profound 

consequences on the Bayes predictions of the regressively 

rendered RE derived from an epidemiological, empirical 

dataset of diagnostically stratified georeferenced, regressed, 

subcounty, COVID-19 specified, hierarchical, diffusion- 

oriented, district-level, forecast-oriented, for treating 

geo-spatiotemporal, multicollinear, non-asymptotical, zero 

autocorrelation, skew, non-homoscedastic, normalized 

geo-spatiotemporal, diagnostic, stratified, model, 

determinants in Bayesian eigenvector eigen-geospace. 

The objective of this paper is twofold: (1) to present a 

predictive, geo-spatiotemporal, non-multicollinear, non- 

skew, non-heteroscedastic, non-zero autocorrelatable, 

asymptotical, vulnerability-oriented, epidemiological, 

eigen-spatial filter eigen-analysis of the initial spread of 

COVID-19 across Uganda in terms of both contagion and 

hierarchical diffusion; and (2) to compare these space-time 

spreads of the virus at the subcounty, district-level. A few 

spatial analyses of COVID-19 already appear in the literature 

that furnish a backdrop for this objective. Guliyev (2020) 

tackles the issue of contagion diffusion within the context of 

China, employing a spatial panel data model for identifying 

effects pertaining to not only the spread of cases, but also 

deaths and recoveries. Leung et al. (2020) focus on its spread 

outside of Hubei Province. Meanwhile, Fanelli and Piazza 

(2020) analyse the day-to-day temporal dynamics of the 

COVID-19 outbreak in Italy, and France, also focusing 

exclusively on probabilistic, residual model, error 

autocorrelation components. Giuliani et al. (2020) furnish a 

first attempt to analytically describe and predict the 

space-time distribution of COVID-19 cases across Italy, 

again focusing on its contagion diffusion. Danon et al. (2020) 

adapts an existing national-scale model dealing with 

interacting regional groups of people to describe the 

contagion spread of COVID-19 cases across England and 

Wales, employing 2011 population census data to quantify 

the population at risk. Briz-Redón and Serrano-Aroca (2020) 

present a space-time analysis of COVID-19 across the 

provinces of Spain with special emphasis on daily 

temperature. Based upon mobile geolocation archived data, 

Piexoto et al. (2020) evaluate movements by individuals to 

predict the most probable spreading patterns of COVID-19 

across the Brazilian states of São Paulo and Rio de Janeiro 

during the March 2020 time horizon when the disease first 

appeared in that country. The author implicitly hints at the 

presence of inconspicuously embedded non-Gaussian, 

autocovariance and other non-normalities (e.g., propagation, 

spatial multicollinearity, skew, non-homoscedasticity)   
due to violations of regression assumptions embedded in  
the epidemiological data. This paper contributes to a  

similar line of scholarly inquiry especially by focusing    
on geo-spatiotemporal, error propagation due to violation   
of regression assumptions in an empirical epidemiological 
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georeferenced dataset of geosampled, geo-spatiotemporal, 

hierarchical, diffusion-oriented, eigenfunction, 

eigendecomposed subcounty, district-level eigen-orthogonal 

eigen-spatial filters in Bayesian eigenvector eigen-geospace 

for the pandemic in Uganda. To our knowledge this is also 

the first contribution in the literature on the “eigen-Bayesian” 

diffusion probability of a georeferenced, hot/cold       

spot, subcounty, district-level, transmission-related, 

COVID-19, geolocation employing an eigenfunction, 

eigendecomposable, eigen-spatial filter, eigen- 

autocorrelation eigen-algorithm.  

2. Methodology 

2.1. Study Site 

Uganda is a landlocked country in East Africa which lies 

between 1° S and 4° N latitude, and between 30° E and 35° E 

longitude. The country is bordered to the east by Kenya, to 

the north by South Sudan, to the west by the Democratic 

Republic of the Congo, to the south-west by Rwanda, and to 

the south by Tanzania..Uganda lies between the eastern and 

western sections of Africa’s Great Rift Valley with the 

capital city, Kampala, located at the shores of Lake Victoria, 

the largest lake in Africa and second-largest freshwater 

inland body of water in the world. The varied scenery 

includes tropical forest, a semi-desert area in the northeast, 

the arid plains of the Karamoja, the lush, heavily populated 

Buganda, the rolling savannah of Acholi, Bunyoro, Tororo 

and Ankole, tea plantations and the fertile cotton area of 

Teso. The country sits at an average of 900 meters above sea 

level. Both the eastern and western borders of Uganda have 

mountains. The Ruwenzori Mountain range contains the 

highest peak in Uganda, which is named Alexandra and 

measures 5,094 meters. c. The road network in Uganda is 

approximately 129,469 km (80,448 mi) long. The road 

network in Uganda is approximately 129,469 km (80,448 mi) 

long. About 4% of these roads are paved which equates to 

only about 5,300 kilometres (3,300 mi) of paved road.  

Uganda has a population of over 42 million, of which 8.5 

million live in the capital and largest city of Kampala. Urban 

centres have grown because of a rural-urban movement 

within the south itself as well as a migration from the north to 

southern towns. Uganda’s has a large rural population. A 

few northern societies, such as the Karimojong, are mainly 

pastoralists, but most northern societies combine cattle 

keeping with some cultivation. Uganda's median age of 15 

years is the lowest in the world. Uganda has the fifth highest 

total fertility rate in the world, at 5.97 children born per 

woman. The economy is basically agricultural, and it 

occupies some four-fifths of the working population. 

Uganda’s moderate climate is especially congenial to the 

production of both livestock and crop. The climate is warm, 

with average temperatures ranging between 20°C and 25°C 

(68 °F and 77 °F), and annual rainfall ranging between 900 

and 1,500 millimetres. 

2.2. Modeling Considerations 

When describing the diffusion of Culex quinquefasciatus, 

the mosquito vector of West Nile Virus (WNV) across 

Trinidad, Jacob et al. (2011) adjusted second moment    

bias in eigenvector eigen-geospace employing Bayesian 

empirical geosampled estimators, Dirichlet tessellations and 

Worldview 1 satellite data for predicting seasonal, 

georeferenceable, aquatic, breeding sites of the vector in 

Trinidad. The authors employed a temporally weighted 

regression model with a spatial autoregressive component to 

estimate residual non-linearities embedded in an immature, 

entomological, sentinel site, capture point dataset of 

georeferenced Cx. quinquefasciatus, larval habitats to help 

precisely implement WVN, larval source management 

strategies at the district-level by determining optimizable 

exogenous predictors associated to prolific, seasonal, 

sampled habitats. The authors constructed a mixed model to 

specifically incorporate residual geospatial autocorrelation 

while including the influence of other aspatial predictor 

variables. The authors compared different model 

specifications. One cardinal specification the authors of 

Jacob et al. (2011) employed was Gaussian in nature (i.e.,  

it applied normal curve statistical theory), requiring a 

logarithmic Box-Cox transformation, which unfortunately  
is inappropriate for autoregressively, grid-stratifying, 

geo-spatiotemporally, diagnostically, time series dependent, 

hierarchical, diffusion-oriented, COVID-19 determinants 

based on georeferenced, clinical, socioeconomic and 

environmental covariates geosampled across districts in 

Uganda because of the excessive number of zero cases 

occurring during the initial days of the pandemic. Jacob et al. 

(2017) gauged queryable, iterative, interpolative, estimator 

uncorrelatedness from incompatibilistic propagation, 

Poissionian noise in an empirical, geosampled, 

semi-parameterized, estimator dataset of eigen-normalized 

non-negativity constraints employing analogs of the 

Pythagorean theorem and parallelogram laws in sub-meter 

resolution pseudo-Euclidean space, in C++. The authors   

of Jacob et al. (2017) did so for optimizing synergistic, 

semi-logarithmic, mosquito vector, Aedes aegypti, 

non-ordinate, axis-scaled landscape, weightage covariance 

derived from episodical, sylvatic, Yellow Fever (YF) case 

distribution data. A suitable GLM for describing YF 

diffusion was discovered for optimizing binomial regression, 

when the response variable was deaths per number of cases 

in an agro-irrigated, pastureland, village ecosystem, 

entomological, intervention site. In contrast, a suitable GLM 

in this experiment for optimally describing diagnostically 

grid-stratifiable, COVID-19 determinants at the subcounty, 

district-level in Uganda, was the Poisson regression, as the 

response variable was case counts which was divisible by the 

country’s 2012 national census population counts. We were 

able to approximate the actual 2020 population counts 

(whose logarithmic version was a Poisson regression offset 

variable). We converted the response variable into a rate per 

100,000 people, hence adjusting for varying district size 

https://en.wikipedia.org/wiki/Landlocked
https://en.wikipedia.org/wiki/East_Africa
https://en.wikipedia.org/wiki/Kenya
https://en.wikipedia.org/wiki/South_Sudan
https://en.wikipedia.org/wiki/Democratic_Republic_of_the_Congo
https://en.wikipedia.org/wiki/Democratic_Republic_of_the_Congo
https://en.wikipedia.org/wiki/Rwanda
https://en.wikipedia.org/wiki/Tanzania
https://www.britannica.com/topic/Karimojong
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effects. The exploratory, subcounty, district-level, 

epidemiological, data analysis of the diagnostic determinants 

revealed that the negative binomial probability model had an 

equivalent specification for a Poissonian random variable 

with a gamma distributed mean which we assumed could 

account for excess non-normal variation in a COVID-19 

diagnostic, stratified, vulnerability-oriented, subcounty, 

hierarchical, diffusion-related, district-level, regression 

paradigm. However, the model failed to furnish a 

satisfactory alternative for COVID-19 cases geosampled at 

the district-level in Uganda most likely because an excessive 

number of zeros occurred in the empirical epidemiological 

dataset during the first 14 days of diffusion. This resulted in 

overdispersion, hence necessitating a quasi-likelihood 

estimation of the sampled diagnostic estimators. In statistics, 

overdispersion is the presence of greater variability 

(statistical dispersion) in a dataset than would be expected 

based on a given statistical model (Hosmer and Lemeshew, 

2002). 

A common task in applied statistics is choosing a 

parametric model to fit a given set of empirical observations. 

This necessitates an assessment of the fit of the chosen  

model. It is usually possible to choose the model parameters 

in such a way that the theoretical population mean of the 

model is equal to the sample mean. However, especially   

for a complex model with multiple parameters [e.g., an 

epidemiological georeferenced dataset of subcounty, 

district-level, diagnostic, stratified, geosampled, COVID-19, 

hierarchical, diffusion-oriented, determinants], we assumed 

that the theoretical predictions may not match empirical 

observations for higher moments. When the observed 

variance is higher than the variance of a theoretical model, 

overdispersion has occurred. Conversely, underdispersion 

means that there is less variation in the data than predicted. 

Overdispersion is a common feature in public health, applied, 

epidemiological, time series, data analysis because in 

practice, viral infected populations are frequently 

heterogeneous (non-uniform) contrary to the assumptions 

implicit within widely used simple parametric 

epidemiological models in the literature. 

Suppose the expected value of a response variable Y is 

written h(Xβ +γ(T)) where X and T are geosampled 

sub-county, district-level, empirical, grid-stratifiable, 

COVID-19, specified, hierarchical, diffusion-related, 

georefernceable, transmission-related, diagnostic 

determinants each of which may be vector-valued, where β is 

an unknown parameter vector, γ is an unknown smooth 

function, and h is a known function. In this experiment we 

outline a method for estimating the parameter β, γ of this 

type of a semiparametric, estimator model employing a 

quasi-likelihood function. Algorithms for computing the 

estimates are given and the asymptotic distribution theory for 

the estimators is developed. The generalization of this 

approach to the case in which Y is a multivariate response is 

also considered. The methodology is illustrated employing 

an epidemiological, normalized, time series, dependent, 

empirical, georeferenced dataset of epidemiological, 

geosampled eigendecomposed, COVID-19, socioeconomic, 

environmental, and clinical, diagnostic stratified, 

geo-spatiotemporal, dependent determinants and the results 

of a small Monte Carlo study are presented.  

A quasi-likelihood method has been proposed by 

Wedderburn (1974) for the estimation of parameters in 

regression models when there is some assumed relationship 

between the mean and variance of each observation but not 

necessarily a fully specified likelihood. If the underlying 

distribution derives from a natural exponential family, the 

quasi-likelihood estimates maximize the likelihood and 

quantitates asymptotic efficiency; under more general 

distributions there is some loss of efficiency, which is 

investigated here. Three types of models are discussed in 

detail: models with constant variance, models with constant 

coefficient of variation and models with overdispersion 

relative to an exponential family. The asymptotic efficiency 

of quasi-likelihood estimation is calculated under some 

distributions, and then more generally via an approximation 

for 'small departures' from the corresponding natural 

exponential family in an uncertainty-related, hierarchical 

diffusion-related, predictive, geo-spatiotemporal, 

COVID-19, specified, grid-stratified, district-level, 

epidemiological, aggregation/non-aggregation-oriented, 

transmission-related, vulnerability, model framework. The 

possibility of refinement of the quasi-likelihood approach to 

incorporate additional information about the underlying 

distribution is considered for constructing a normalized 

series of stratifiable, epidemiological, non-heteroscedastic, 

non-multicollinear, COVID-19, asymptotical, diagnostic, 

estimation model determinants for optimizing forecasting 

high, endemic, potential, aggregation/non-aggregation   

sites (i.e. “hot/cold spots”). The prognosticative model    

is based on empirically regressed datasets of georeferenced, 

hierarchical, diffusion-related,, district-level stratified, 

geo-spatiotemporal, multivariate, subcounty, 

epidemiological, clinical, socioeconomic, and environmental, 

uncertainty-oriented, diagnostic determinants geosampled in 

Uganda.  

To investigate how overdispersion might affect the 

outcome of various mitigation strategies, Jacob et al. (2014) 

developed an agent-based model for implementing a social 

networking system in San Juan de Lurangcho, Lima, Peru 

which allowed multi-drug resistant tuberculosis (MDR-TB) 

transmission to be through contact in three sectors: “close”  

(a small, unchanging group of mutual contacts as might be 

found in a household), “regular” (a larger, unchanging group 

as might be found in a workplace or school), and “random” 

(drawn from the entire model population and not repeated 

regularly). The authors of Jacob et al. (2014) assigned 

individual infectivity derived from a gamma distribution 

employing dispersion parameters. The authors found that 

when k was low (i.e., greater heterogeneity), more 

super-spreading events occurred reducing random sector 

contacts which had a far greater impact on the epidemic 

trajectory than did reducing regular contacts; when k was 

high (i.e., less heterogeneity, no super-spreading events). 
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These results suggest that overdispersion of COVID-19 

transmission may provide the virus an Achilles’ heel: 

Reducing contacts between people who do not yearly meet 

would substantially reduce the pandemic, while reducing 

repeated contacts in defined social groups may be less 

elucidative. Hence, we assumed that modifications might be 

necessitated for optimally deriving geo-spatiotemporal 

regression-related propagation non-normalities due to 

violations of regression assumptions in georeferenced 

empirical datasets of stratified, COVID-19, multivariate, 

georeferenced, clinical, environmental, and socioeconomic, 

diagnostic determinants in Bayesian eigenvector 

eigen-geo-space. 

Analyses summarized in this section employed two 

publicly available, daily, georeferenced, COVID-19, 

diagnostically stratified, empirical, datasets, one for Uganda 

(https://dataverse.harvard.edu/dataset.xhtml?persistentId=d) 

and a second dataset, retrieved from the National Bureau of 

Statistics of Uganda 2010 population census website: 

http://www.stats.gov.cn/english/Statisticaldata/CensusData

The second dataset contained 2010 population size, area, 

demographic characteristics, and other provincial attributes. 

Although these counts and measures do not constitute the 

exact Ugandan population exposed (e.g., the number of 

people at risk), their district magnitudes furnish current 

factual but unknown attribute measures [closely paralleling 

the type of quantification utilized by Danon et al. (2020). 

Recall that the assumption of normality can be relaxed 

when sample size n is large enough; the errors need not 

follow a normal distribution because of the Central limit 

Theorem CLT (see Freedman 2008). The CLT states that the 

distribution of sample means approximates a normal 

distribution as the sample size gets larger, regardless of the 

targeted population's distribution. Irrespective of the 

distribution of ϵ, the CLT assures that the sampling 

distribution of the estimates in an epidemiological, 

forecast-related, geosampled, geo-spatiotemporal, 

vulnerability-oriented, subcounty, district-level, COVID-19, 

parameter estimator model will converge toward a normal 

distribution as n increases to infinity, when ϵ are independent 

and identically distributed (i.d.d.) and when σ2 is finite. 

Stated differently, the assumption of normality is inessential 

an epidemiological, forecast, COVID-19 model with large 

enough n. By employing the CLT, inference should 

technically be based on the z-distribution instead of the 

t-distribution. One practical question is, how large should n 

be such that the CLT can be invoked in an epidemiological 

prognosticative, district level, COVID-19, vulnerability 

model for optimally predictively targeting and prioritizing 

subcounty, hyper/hypo-endemic, hot/cold spot, stratifiable, 

aggregation/non-aggregation-oriented determinants? For the 

limited case of a dependent variable (i.e., district-level 

prevalence) without independent variables the reviewed 

textbooks have suggested a range of n ≥ 15 to n ≥ 50 (e.g., 

Hanna and Dempster, 2013). Such rules of thumb tend to be 

inaccurate because the size of n for the CLT to be in place is 

a function of the number of independent variables and the 

extent of non-normality of the errors (e.g., Pek et al., 2017b). 

In general, larger n is required when regression-related errors 

depart more from normality; specifically, convergence due 

to the CLT is faster when errors are symmetric in distribution 

(i.e., less skewed; Lange et al., 1989). 

When non-normality in e is observed in an 

epidemiological, prognosticative, district level, hierarchical, 

diffusion-oriented, COVID-19 model, two assumptions in 

the linear model are potentially unmet. First, non-normality 

in e suggests non-normality in ϵ (i.e., the assumed structure 

of ϵ is misspecified), which results in inaccurate inferential 

results regarding p-values and CI coverage. Second, the 

relationship between X and y may not be linear, and the 

misfit could be observed from regressed non-normal 

residuals. Additionally, if the unknown population 

functional form between X and y is non-linear and a linear 

model is fit, instead, the estimates of the linear model are 

biased estimates of the unknown population parameters. 

Stated succinctly, the observed non-normality in e in an 

epidemiological, empirical COVID-19, prognosticative, 

district-level, vulnerability model constructed from 

multivariate, sub-county, diagnostically stratified, 

hierarchical diffusion-related estimators may indicate model 

misspecification in terms of the linear relationship between 

X and y. 

Violating the assumption of normal ϵ is, however, not 

necessarily fatal in an epidemiological, prognosticative, 

COVID-19, diagnostic risk model for the CLT to be at work. 

Besides invoking the argument of robustness of model 

results due to the CLT, several other methods have suggested 

among the 61 reviewed textbooks to take into account 

propagation non-normality of observed regression-related 

estimators. These methods remain within the linear 

modelling framework, modify the data, and treat the 

presence of non-normality as informative or a nuisance. In 

general, other than the CLT and bootstrap, methods, the 

linear framework are implicitly small sample alternatives. 

The CLT relies on the robustness of the solution when n is 

large, requiring no changes in the application of the linear 

model to data. (Hosmer and Lemeshew 2002) Using 

heteroscedasticity-corrected covariance matrices (HCCM), 

or the bootstrap changes only the estimator in terms of 

determining the sampling distribution of the estimates 

(Griffith 2003). Trimming and Winsorizing involve changes 

to the data, by removing or modifying outliers, which 

necessitates a change in the estimator although the linear 

model continues to be applied to the data (Jacob et al. 2017). 

Depending on the transformation used, non-normality is 

either treated as a nuisance or informative in viral, infectious 

disease, epidemiological, forecast-related, vulnerability 

models in the literature. When rank-based non-parametric 

and non-linear models are applied to data, the linear model is 

abandoned (Cressie 1993). Rank-based non-parametric 

methods circumvent the issue of non-normality of the 

residuals by analysing ranks of the data. In non-linear models, 

the non-normality in the residuals is explicitly modelled-  

Given homoscedasticity and the Gauss Markov theorem, 

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/MR5IJN
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OLS is the best linear unbiased estimator (BLUE) for the 

linear model, and βˆ= (X′X)−1X′y. Further, the asymptotic 

covariance matrix of βˆ, Σβˆ=(X′X)−1X′ΣϵX(X′X)−1 

(Hayes and Cai, 2007), reduces to σ2(X′X)−1 because 

Σϵ=σ2IN. Here, σ2 was estimated by the mean squared 

residual, σˆ2=∑Ni=1e2i/df, where df = (N − K) was the    

df. Standard errors of βˆ were the square root of the diagonal 

elements of Σβˆ in the epidemiological, forecast, 

vulnerability model. When homoscedasticity is violated, βˆ 

remains unbiased but p-values reflecting NHSTs and CI 

coverage about β will be incorrect (Long and Ervin, 2000),  

as βˆ no longer retains the property of BLUE. As such, βˆ 

will not have the smallest variance among all the linear 

unbiased estimators of β. We assumed that when n may not 

have to  be large, in an epidemiological, district-level, 

prognosticative, subcounty, COVID-19, diagnostic, 

stratified, vulnerability-oriented, model, parameter estimator 

dataset for optimally, optimizing, targeting, and prioritizing, 

aggregation-oriented, hot/cold spot, hyper/hypo-endemic, 

transmission sites. We also assumed homogenous variance 

(when independent groups have equal variance0 in the 

presence of CI coverage.  

We present here a specific parameterization of the 

negative binomial distribution which we assumed could be 

employable to approximate overdispersed Poissonian 

processes while robustly quantitating an output using a wide 

range of mean–variance relationships extracted from an 

empirical, hierarchical, diffusion-related, district-level, 

COVID-19, stratified, epidemiological, prognosticative, 

geo-spatiotemporal, risk, model output. We investigate 

different scenarios of observational processes that are likely 

to render overdispersion in a regressed, epidemiological, 

geosampled, subcounty, empirical dataset of time series, 

dependent, georeferenced, hierarchical, diffusion–related, 

COVID-19 stratified, non-normal, (e.g., non-homoscedastic, 

geo-spatiotemporally multicollinear potentially zero 

autocorrelated) determinants and report the resulting 

mean–variance relationships. Further, we present an 

empirical example where the proposed error structures are 

applied to fit models to count data extracted from a 

subcounty, empirically geosampled, district-level, 

COVID-19, stratified, regressively specified, prevalence, 

georeferenced parameter estimator dataset with special 

regard to the time sensitivity of the hierarchical, 

diffusion-oriented, spill-overtime series, dependent, 

forecastable, diagnostic, determinant, feature attributes. 

Finally, we propose how to handle situations where the  

type of overdispersion is difficult to specify in such 

regression-related, viral, infectious disease, aggregation / 

non-aggregation-oriented, vulnerability-related, hyper / 

hypo-endemic, epidemiological, prognosticative, model 

outputs. 

Consequently, we specified a zero-inflated, Poissonian, 

probability, regression model specification. Jacob et al. 

(2014) compared two alternative means for dealing with 

such mechanisms: the hurdle Poisson regression suggested 

by Mullahy (1986) and King (1989a) and the zero-inflated 

Poisson (ZIP) regression of Lambert (1992) and Greene 

(1994). These models were shown to be variants of a more 

general "dual regime" data-generating process. Further, this 

process is itself was shown to result in the appearance of 

overdispersion, suggesting a link to "variance function" 

negative binomial models in which the dispersion parameter 

is allowed to vary as a function of independent variables.  

In this experiment underlying the rates random variable  

Y for the sub-county, district-level, epidemiological, 

empirical, prognosticative, hierarchical diffusion-related, 

vulnerability-oriented, regression, model analysis was 

written as follows: 

Pr(Y = 0) = π + (1 – π)e–μμ0/(0!) = π + (1 – π)e–μ , and 

Pr(Y = c > 0) = (1 – π)e–μμc/(c!), for positive count c, 

where Pr denoted probability, μ denoted the mean, 

sub-county, COVID-19, infection rate, and π was the 

Bernoulli random variable representing the probability of an 

excess zero occurring. In probability theory and statistics, the 

Bernoulli distribution, is the discrete probability distribution 

of a random variable which takes the value 1 with probability 

p and the value 0 with probability q=1-p (Uspensky 1937). 

Theoretically, this mixture formulation required the 

plausibility that some district-level, regional, intervention, 

subcounty geolocations in Uganda were not ineligible    

for a nonzero count; however, this condition technically held 

as COVID-19 originally did not appear in all districts 

simultaneously in Uganda, and once a zero-case day ended 

for a subcounty geolocation, it could not become a 

non-zero-case day. Because the diffusion of COVID-19 

displayed latent, positive spatial autocorrelation (PSA), a 

conventional auto-Poisson model specification, which 

accommodated only negative autocorrelation was not 

suitable here.  

The auto-Poisson model can describe georeferenced   

data consisting of counts exhibiting spatial dependence  

[e.g., georeferenced, dataset of district-level, subcounty, 

geo-spatiotemporal, COVID-19, hierarchical, diffusion– 

oriented, diagnostic, determinant, discrete, integer values], 

(Griffith 2003), however the conventional specification is 

not restricted to only situations involving non-zero spatial 

autocorrelation, and an intractable normalizing constant. The 

normalizing constant is used to reduce any probability 

function to a PDF with total probability of one (Hosmer  

and Lemeshew 2002). Work summarized here accounts   

for spatial autocorrelation in the mean response  

specification  by incorporating non-normal, aggregation   

/ non-aggregation-oriented, time series, dependent, 

epidemiological, map, pattern components in the 

geosampled, georeferenced, hierarchical, diffusion–oriented, 

diagnostically stratified, COVID-19, parameterizable, 

estimator dataset.  

Wang (2021) employed global spatial autocorrelation to 

confirm that there was a spatial correlation amongst 

confirmed cases of COVID-19 in China. In the literature 

contribution, the correlation characteristics were first 

increased and then decreased. However, considering 

localized, residual, unbiased, non-zero, geo-spatiotemporal 
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autocorrelation, the characteristics tended to stabilize with 

the passage of time. The final, COVID-19, forecast, 

diagnostic, epidemiological, risk map revealed high/low 

aggregation regions. Wang (2021) models revealed PSA 

stratified hot spots stabilized over time in the provinces 

surrounding Hubei (Henan, Hunan, Anhui, and Jiangxi). 

Substituting its modified version devised by Kaiser and 

Cressie (1997), we assumed we could also accommodate 

residual PSA in a district-level, georeferenceable, subcounty, 

hierarchical, diffusion-related, diagnostically stratifiable, 

COVID-19 geo-spatiotemporal, non-zero, autocorrelatable, 

homoscedastic, unbiased, asymptotically normalized, 

non-multicollinear, vulnerability model. We did so for 

precisely predictively targeting georeferenceable, 

grid-stratifiable, potential, prolific, hyper/hypo-endemic, 

aggregation/non-aggregation-oriented, subcounty, 

district-level, hype/hypo-endemic, transmission, sites but it 

was unappealing because of its property that the sum of all 

possible probabilities was not one (a fundamental axiom of 

probability theory). 

Jacob et. al. (2013) initially, employed case, as counts, 

which were subsequently employed as a response variable  

in an exploratory, Poisson, probabilistic, model framework 

for regressively quantitating propagation uncertainty in an 

empirical, georeferenced, time series, dependent, 

district-level, parameter, estimator dataset of malaria 

mosquito, Anopheles gambiae s.l., funestus s.s. and 

arabiensis s.s. aquatic, larval, habitat covariates (i.e., 

meteorological data, densities, distribution of health centres, 

etc.) geo-spatiotemporally geosampled in Uganda. The 

authors did so for predicting hyper/hypo-endemic, 

aggregation / non-aggregation oriented, subcounty 

geosampled covariates related to varying district-level areas 

of higher prevalence. Results from both a Poisson and a 

negative binomial (i.e., a Poissonian random variable with a 

gamma distrusted mean) revealed that the potentially 

discrete, integer, explanatory, count variables rendered from 

the model were significant, but furnished no predictive 

power. Inclusion of indicator variables denoting the time 

sequence and the district geolocation spatial structure of 

previous infection cases was subsequently articulated   

with Thiessen polygons in ArcGIS which also failed to 

reveal meaningful covariates. Thereafter, an ARIMA model 

in PROC ARIMA was constructed which revealed a 

conspicuous but not very prominent, first-order, temporally 

sensitive, autoregressive structure in individual, geosampled, 

district-level, empirical, time-series, aquatic, Anopheles, 

larval habitat, land cover, classified, entomological data, 

capture points. The model’s forecasted residual error 

variance implied substantial variability embedded in the 

regressed, seasonal, prevalence rates. Thereafter, a series of 

digital elevation models (DEMs) were constructed in 

ArcGIS which geospatially adjusted the non-linear 

derivatives from the ARIMA model. A final risk model was 

subsequently calculated as: exp [a + re+ LN (population)],  

Y ~Poisson +DEM (zonal statistic). The mixed-model 

estimation results included: a = -3.1876 re ~ n (0, s2) mean re 

= -0.0010 s2= 0.2513 where P(S-W)= 0.0005 and the 

Pseudo-R2= 0.3103.  

In this experiment, finite memory, multivariate, 

district-level, geosampled, COVID-19, grid-stratified, time 

series, dependent, epidemiological, diagnostic determinants 

of georeferenceable, hierarchical, diffusion-related, 

subcounty, epicentres (e.g., geolocations of multivariate 

interaction) were estimated by ML and exact nonlinear least 

squares. Infinite memory forecasts were employed for 

models estimated by conditional least squares. The ARIMA 

procedure provided the identification, parameter estimation, 

and uncertainty forecasting of the autoregressive integrated 

moving average (Box-Jenkins) models, ARIMA models, 

transfer function models, and intervention models. The 

ARIMA procedure offered a variety of model diagnostic 

statistics, including AIC, Schwarz's Bayesian criterion (SBC 

or BIC), Ljung-Box chi-square test statistics for optimally 

quantitating white noise residuals and stationarity tests in the 

empirical geosampled, diagnostically stratified, COVID-19, 

regression-related, parameterizable, estimator datasets.  

We conducted tests including Augmented Dickey-Fuller 

(ADF) and seasonal unit root for minimizing non- 

homoscedastic, multicollinear, and other error probabilities 

in the aggregation-oriented, empirical, geosampled, 

COVID-19, subcounty, district-level, epidemiological data. 

In statistics and econometrics, an ADF tests the null 

hypothesis that a unit root is present in a time series sample 

(Sargan and Bhargava 1983). In probability theory and 

statistics, a unit root is a feature of stochastic processes (such 

as random walks) which can cause problems in statistical 

inference involving time series, regressively forecastable, 

model estimators. (Fuller 1976) A linear stochastic process 

has a unit root if 1 is a root of the process's characteristic 

equation. Such a process is non-stationary but does not 

always have a trend. Here the %DFTEST macro performed 

Dickey-Fuller tests for simple unit roots and seasonal unit 

roots were able to derive the null hypothesis that a unit root 

was present in an autoregressive time series COVID-19 

model. Hence, the non-trend stationarity of the empirical, 

COVID-19, specified, diagnostic, stratified aggregation / 

non-aggregation-oriented, prognosticative, epidemiological 

regressors were quantifiable. The minimum number of 

clinical, socioeconomic, and environmental, determinants 

required by the %DFTEST macro was dependent on the 

value of the DLAG= option. We let s be the sum of the 

differencing orders specified by the DIF= option, let t be the 

value of the TREND= option, and let p be the value of the 

AR= option.  

Here the ADF test employed the following regression 

model: ɛ where Δ = the first difference operator; ΔYt−i    

= lagged values of the dependent/response variable 

(district-level, COVID-19 prevalence), for instance, ΔYt−1 

= (Yt−1 − Yt−2), ΔYt−2 = (Yt−2 − Yt−3), and so forth; 

where ɛt was a white noise error term; β1 was a constant;  

β2 was a slope coefficient on time trend t; δ was a coefficient 

of lagged Yt−1; and Yt was the logarithm of the subcounty, 

district-level, geosampled, COVID-19, stratified, 

https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Econometrics
https://en.wikipedia.org/wiki/Null_hypothesis
https://en.wikipedia.org/wiki/Null_hypothesis
https://en.wikipedia.org/wiki/Unit_root
https://en.wikipedia.org/wiki/Time_series
https://en.wikipedia.org/wiki/Sample_(statistics)


 American Journal of Mathematics and Statistics 2023, 13(1): 1-43 19 

 

 

hierarchical, diffusion-related, aggregation-oriented hyper / 

hypo-endemic, parameter estimators. When forecast errors 

are white noise, it means that the model has harnessed all the 

signal information in the time series to make predictions 

(Freedman 2008). 

Recall that under Eqn. 1.1, it was asserted that there was  

a unit root if β = 1. Statistically, however, it is arguable   

that this regression equation cannot be estimated employing   

the OLS method when constructing a homoscedastic, 

asymptotical, non-multicollinear, residually normalized, 

aggregation/non-aggregation-oriented, prognosticative, 

sub-county, vulnerability-related, epidemiological, 

COVID-19, diagnostic, parameter, estimation model for 

optimally rendering non-zero autocorrelatable, 

geo-spatiotemporally spilled over hierarchical diffusion of 

the virus at the district-level. In addition, the hypothesis    

β = 1 such as frequently found in epidemiological, 

vulnerability-oriented, predictive, viral, infectious, disease 

models cannot be tested using the standard t-distribution 

since the test is based on the residual terms, which may be 

highly autocorrelated; hence, leading to biased estimation  

of δ. Instead, here, the ADF test was employed to examine 

the returns (ΔYt) in order to take into account,          

the non-normality (i.e., residual zero autocorrelation,    

skew non-homoscedasticity, geo-spatiotemporal, multi- 

collinearity non-asymptoticalness etc.) embedded in the, 

hierarchical, diffusion-oriented, COVID-19, diagnostic 

stratified, estimator terms. In this specification, the tested 

unit root hypothesis was δ = 0 (where δ = β − 1). As the 

literature suggests (e.g., Cressie 1993), in order to attain the 

white-noise structure in ɛt and the unbiased estimate of δ, it 

is important to select the appropriate lag length by including 

enough terms. The choice of the lag length in our 

georeferenced, district-level, hierarchical, diffusion-related, 

COVID-19, stratified, epidemiological, forecast model was 

based on the Schwarz information criterion (SIC).  

The SIC/BIC is a well-known general approach to model 

selection that favors more parsimonious models over more 

complex models (i.e., it adds a penalty based on the number 

of parameters being estimated in the model) (Schwarz, 1978; 

Raftery, 1995). Here, we employed one form for calculating 

the BIC which was quantifiable when Tm was the chi-square 

statistic for the hypothesized, hierarchical, diffusion-related, 

epidemiological, georeferenced model. 

The BIC was given by the formula: BIC = -2* 

loglikelihood + d * log(n), where n was the sample size of the 

training set and d was the total number of geosampled 

hierarchical, diffusion-related, geo-spatiotemporal, stratified, 

COVID-19, diagnostic determinants. To use BIC for model 

selection, we simply chose the model giving smallest BIC 

over the complete set of candidates. The lower BIC score 

signals a better model (Gelman 2015). The BIC attempted to 

mitigate the risk of over-fitting by introducing the penalty 

term d * log(N), which grew with the number of geosampled, 

COVID-19, `stratified, diagnostic parameters. This allowed 

us to filter out unnecessarily complicated models which had 

too many time series, dependent parameters to be estimated 

accurately on a given dataset of size n. BIC has preference 

for simpler models compared to Akaike Information 

Criterion (AIC) (Schwarz, 1978).  

In our epidemiological, prognosticative, vulnerability- 

oriented, subcounty, district-level model, a BIC greater than 

0 favored the saturated model (i.e., the model that allows all 

uncertainty estimators to be inter-correlated with no assumed 

model structure), while a BIC less than 0, we assumed, 

would favor the hypothesized model. Further, the BIC here 

was employable to assess two competing COVID-19 

iterative, interpolative, models. Following Jeffrey-Raftery's 

(1995) guidelines, if the difference in BICs between the two 

models is 0–2, this constitutes ‘weak’ evidence in favor of 

the model with the smaller BIC; a difference in BICs 

between 2 and 6 constitutes ‘positive’ evidence; a difference 

in BICs between 6 and 10 constitutes ‘strong’ evidence; and 

a difference in BICs greater than 10 constitutes ‘very strong’ 

evidence in favor of the model with smaller BIC. 

In this experiment it was also hypothesized that: H0: the, 

geosampled, hierarchical, diffusion–oriented, COVID-19, 

stratified, RE indices at the DSE would follow a random 

walk process (i.e., δ = 0). A random walk is defined as a 

process where the current value of an exogenous variable is 

composed of the past value plus an error term defined as a 

white noise (Cressie 1993). Here we defined the random 

walk as a normalized, time series, diagnostically stratifiable, 

COVID-19, hierarchical, diffusion-oriented, prognosticative, 

exogenous variable which revealed zero mean and variance 

one. We assumed that compilation of inferential, time series, 

dependent, Bayesian-treated, epidemiological, diagnostic, 

determinant data could allow updating the RE term of    

the, hierarchical, diffusion-related, geo-spatiotemporal, error 

estimates as rendered from the district-level, georeferenced, 

subcounty, stratified, COVID-19, vulnerability-oriented, 

forecast model. Our assumption was this type of 

epidemiological forecast modelling would allow research 

intervention teams to bolster the quality of diagnostically, 

regressively rectifiable, (e.g., quantified non-homoscedastic, 

residual, zero autocorrelation, non-asymptoticalness, 

multicollinearity etc.,) in an empirical dataset of hierarchical, 

diffusion-related, georeferenced, epidemiological forecasts 

of district-level, hyper/hypo-endemic transmission sites).  

In so doing, the model output would quantitatively    

render future, infectious, disease, hyper/hypo-endemic, 

transmission-related, subcounty geolocations which could 

aid in treatment and prioritization efforts of COVID-19. 

Bayesian estimation and MCMC methods were 

subsequently employed to model the georeferenced, 

sub-county, district-level, epidemiological, hierarchical, 

diffusion-related, diagnostic determinants. MCMC methods 

are primarily used for calculating numerical approximations 

of multi-dimensional integrals, for instance in Bayesian 

statistics, computational physics, (Kasim et al. 2019) and 

computational linguistics (Robert & Casella 2004). In 

Bayesian statistics, the recent development of MCMC 

methods has made it possible to compute large, integrative 

datasets [e.g., georeferenced, district-level subcounty, 
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aggregation/non-aggregation-oriented, geo-spatiotemporal, 

dependent, hierarchical, diffusion-related, epidemiologically 

regressively, forecastable, stratified, time series, dependent, 

diagnostic, model estimators] that require integrations over 

hundreds to thousands of unknown parameters. 

This paper deals with a computational aspect of the 

Bayesian analysis of statistical models with intractable 

normalizing constants. We propose here a general approach 

to sample from such posterior distributions that bypasses the 

computation of the normalizing constant. Our method can be 

thought as a Bayesian version of the MCMC-ML estimation 

approach of Geyer and Thompson (1992). We illustrate our 

approach on asymptotic behaviour of the algorithm and 

obtain normalized, asymptotically generalizable, inferential 

models in PROC MCMC. These paradigms were used to 

quantitate heterogeneity of variances and other propagation 

non-normalities in the COVID-19, stratified, hierarchical, 

diffusion-related, diagnostically specified, parameter, 

estimator dataset. The natural logarithms of variances were 

modelled employing a linear model to account for 

heterogeneity of the variances (on a logarithmic scale), in 

terms of the diagnostic, epidemiological variables. In the 

model, the specific variance parameter was an independent 

draw from a random sampling distribution.  

The MCMC sampling began with determining conditional 

(marginal) probability distributions. Subsequently iterative, 

space-time, diagnostically stratifiable, COVID-19, 

semi-parameterizable estimates were obtained using 

pseudo-likelihood estimation (i.e., an autoregressive term 

estimated with a conventional regression procedure). This 

involved approximating the regression-related coefficients 

(β) and ρ as though the epidemiological diagnostic 

determinants were independent. MCMC outputs can sample 

values for a parameter drawn from the joint posterior 

probability distribution (Gelman 2005). In the first stage of 

the inferential Bayesian analyses, a likelihood model was 

specified for the epidemiologic, COVID-19, case, count data. 

At the second stage, the georeferenced, geo-spatiotemporal, 

geosampled, hierarchical, diffusion-related, time series, 

dependent, explanatory, predictor variables were analyzed 

for specifying a prior model. 

PROC MCMC was subsequently employed to recognize 

conjugate specifications (e.g., Poisson-gamma), in the, 

stratified, COVID-19, diagnostic, epidemiological data. The 

model assumed that the number of case counts in an 

intervention, Ugandan, subcounty, district-level, study site 

geolocation, i, Yi, had a conditional, independent, Poisson 

distribution with mean Ei exp (μi). The variable Ei was 

employed as the expected number of sampling events, which 

in this experiment was proportional to the corresponding 

known case count, population, ni. The expression exp (μi) 

was the relative risk based on the potentially geosampled, 

case count, discrete, integer values: regions with exp (μi) > 1 

having greater numbers of observed, COVID-19-related, 

count values than expected, and vice versa for specified, 

georeferenceable, subcounty, district-level regions with exp 

(μi) < 1. The log-relative term was μi which modelled the 

epidemiologically specified, empirical, time series, 

dependent, diagnostic, stratified, vulnerability, COVID-19, 

prognosticative, hierarchical, diffusion-oriented, 

explanatory variables, linearly as: 

    (2.1) 

In this experiment, x'i was the propagation-related, 

aggregation/non-aggregation-oriented, diagnostic, 

COVID-19 stratified, regression estimators and β was a 

vector of fixed effects in the model output. Additionally,   

the terms θi and φi were employed for capturing 

georeferenceable, site-specific dependence, in the empirical, 

diagnostic, subcounty, district-level estimators. In   

previous research, Jacob et al (2014) employed an MCMC 

algorithm and an autocovariate uncertainty matrix to 

geo-spatiotemporally quantitate stochastic error propagation 

rendered from a Bayesian parametric, variable, estimator 

dataset approximated from multivariate, time series, 

regressed, epidemiologically geosampled MDR-TB, 

explanatory parameters which were grid-stratified by 

prevalence in the district of San Juan de Lurigancho Lima, 

Peru. Initially, a SAS-based hierarchical agglomerative, 

polythetic, clustering algorithm was employed to forecast 

high and low, georeferenced, MDR-TB, grid-stratified, 

geospatial clusters. Univariate statistics and Poisson count 

variable regression models were then constructed in R and 

PROC NL MIXED, respectively. Durbin-Watson statistics 

were derived. An inferential, generalizable, Bayesian, 

uncertainty estimation matrix was constructed employing 

normal priors for each of the error coefficients which 

revealed both spatially structured random effects (SSRE) and 

spatially unstructured random effects (SURE). The residuals 

in the time series, MDR-TB, georeferenced clusters revealed 

two major uncertainty interactions: 1) as the number of 

bedrooms in a house in which infected persons resided 

increased and the percentage of isoniazid-sensitive infected 

persons increased, the standardized rate of TB tended to 

decrease; and, (2) as the average working time and the 

percentage of streptomycin-sensitive persons increased,  

the standardized rate of MDR-TB tended to increase. In the 

low MDR-TB, cluster, the covariates “Single marital status” 

and “Building material used for house construction” were 

important predictors. 

In this experiment, we assumed that quantitating latent, 

non-normality (multicollinearity non-asymptoticalness, zero 

autocorrelation, heteroscedasticity) error probabilities in an 

empirical geosampled dataset of regressed, georeferenced, 

COVID-19, diagnostic, stratified determinants could be 

non-heuristically optimizable, by employing a second-order, 

autoregressive, uncertainty-related, residual, vulnerability- 

oriented, prognosticative model and a probabilistic, 

eigen-Bayesian, generalizable, estimation matrix. In this 

experiment the georeferenced, subcounty, district-level, 

diagnostically grid-stratifiable, COVID-19 specifiable, 

hierarchical diffusion-oriented, geo-spatiotemporally 

geosampled characteristics were robustly parsimoniously 

imposed employing the equations: 
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   (2.2) 

This paper examined the behaviors of regression methods 

(the Poisson regression, OLS and the inferential Bayesian) 

employing geo-spatiotemporally spilled over, hierarchical, 

diffusion-related, hyper/hypo-endemic, aggregation / 

non-aggregation-oriented, COVID-19, subcounty, 

district-level, georeferenced, epidemiological, data, capture 

points with inherent collinear structure. Datasets with 

reasonable degrees of multicollinearity at some selected 

sample sizes were simulated. The regression types were 

fitted to various, geosampled, COVID-19, stratified, 

epidemiological data, capture points and the performances of 

both the Poisson and OLS estimators were compared with 

that of the Bayesian model employing Normal-Gamma 

conjugate prior. In probability theory and statistics,      

the normal-gamma distribution (or Gaussian-gamma 

distribution) is a bivariate four-parameter family of 

continuous probability distributions (Hosmer and Lemeshew, 

2002). In this experiment we used the conjugate prior of a 

normal distribution with unknown mean and precision. In 

Bayesian probability theory, if the posterior distribution p is 

in the same probability distribution family as the prior 

probability distribution p(θ), the prior and posterior are then 

called conjugate distributions, and the prior is called a 

conjugate prior for the likelihood function p, (Cressie   

1993) The goal was to examine the relative efficiency     

of the aggregation/non-aggregation-oriented, non-zero, 

autocorrelatable, non-skew, non-heteroscedastic, non- 

multicollinear, asymptotical, semi-parametrizable, Bayesian, 

eigen-decomposable, eigen-orthogonal, eigen-spatial filter, 

eigen-estimators integrated with some prior information  

with the information available from the epidemiological, 

geosampled, georeferenced, COVID-19, subcounty, 

district-level, geo-spatiotemporal, stratified, diagnostic 

determinants using varying regression techniques.  

Results from Monte Carlo studies were established. 

Discarding the first set of "burn-in" iterations, in this 

experiment ensured that the chain had reached steady state 

and had optimally estimated the Monte Carlo parameters 

(such as posterior means) from the georeferenced, diagnostic 

determinants. A posterior mean probability, in Bayesian 

statistics, is the revised or updated probability of an event 

occurring after taking into consideration current information 

(Gelman 2005). The posterior probability here was 

calculated by updating the prior probability using Bayes' 

theorem. After the model had converged, samples from the 

conditional distributions were employed to summarize the 

posterior distribution of the model. 

Various non-informative prior distributions were 

approximated for scale parameter estimation in the Bayesian 

model. An uninformative prior or diffuse prior expresses 

vague or general information about a variable (Cressie 1993). 

We constructed conditionally conjugate priors for standard 

deviation parameters, and subsequently considered 

non-informative and weakly informative priors in this family. 

Jacob et al. (2014) illustrated serious problems with      

the inverse-gamma family of "non-informative" prior 

distributions in an empirical, geosampled, epidemiological 

dataset of semi-parameterized, time series, sensitive, 

grid-stratifiable, aggregation/non-aggregation-oriented, 

MDR-TB, uncertainty estimators. Various non-informative 

prior distributions were suggested for scale parameters in  

the hierarchical, diffusion-related, epidemiological models. 

The authors constructed a new folded non-central family of 

conditionally conjugate priors for optimally quantitating 

hierarchical standard deviation parameters, and then 

considered non-informative and weakly informative priors  

in this family. For mathematical convenience in this 

experiment, π(θj∣ϕ) was selected to be conditionally 

conjugate, that is, conditionally on ϕ the posterior 

distribution of θj of the same type as π(θj∣ϕ).  

Use of a conditionally conjugate prior in our 

epidemiological, geo-spatiotemporal, hierarchical 

diffusion-related, district-level, subcounty, COVID-19, 

stratified, hyper/hypo-endemic, transmission-oriented, 

vulnerability model allowed deriving and simulating the 

marginal posterior density π(ϕ∣y). A conjugate prior is an 

algebraic convenience, giving a closed-form expression for 

the posterior; otherwise, numerical integration may be 

necessary (Gelman 2015). Further, according to chapter 3 of 

Gelman's Data Bayesian Analysis [DBA], when we have 

yi∼N(μ,σ2)yi∼N(μ,σ2) ,and p(μ,σ2)∝(σ2)−1p(μ,σ2)∝(σ2)−1. 

Subsequentlyp(μ,σ2|y)∝σ−n−2exp(−12σ2(n−1)s2+n(y¯−μ)2

)p(μ,σ2|y)∝σ−n−2exp(−12σ2(n−1)s2+n(y¯−μ)2). We were 

interested in p(μ|y)=∫p(μ,σ2|y) dσ2p(μ|y)=∫p(μ,σ2|y) dσ2, for 

which Gelman states the following in page 66 of the third 

edition of DBA. We assumed that integral may be optimally 

weighed in the stratified, COVID-19 using the substitution;

We recognized that the result in the geo-spatiotemporal 

COVID-19, stratified, aggregation/non-aggregation-oriented, 

epidemiological, forecast-related, vulnerability-orientedy 

model used an un-normalized gamma integral hence we 

deduced: 

 

Our assumption was conjugate priors may give intuition, 

by more transparently revealing how a likelihood function 

updates a prior distribution in an epidemiological, 

geo-spatiotemporal, hierarchical diffusion-related, 

district-level, vulnerability, regression model for unbiasedly 

predictively targeting and prioritizing subcounty, hyper / 

hypo-endemic, aggregation/non-aggregation-oriented, 

https://en.wikipedia.org/wiki/Probability_theory
https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Probability_distribution
https://en.wikipedia.org/wiki/Conjugate_prior
https://en.wikipedia.org/wiki/Normal_distribution
https://en.wikipedia.org/wiki/Mean
https://en.wikipedia.org/wiki/Precision_(statistics)


22 Benjamin G. Jacob et al.:  Approximating Non-Asymptoticalness, Skew Heteroscedascity and Geo-spatiotemporal  

Multicollinearity in Posterior Probabilities in Bayesian Eigenvector Eigen-Geospace for Optimizing 

Hierarchical Diffusion-Oriented COVID-19 Random Effect Specifications Geosampled in Uganda 

 

diagnostically grid-stratifiable, prognosticative, COVID-19, 

geo-spatiotemporal, geosampled, epidemiological, 

exogenous estimators.  

Interestingly, the authors of Jacob et al. (2014) discovered 

serious problems with the inverse-gamma family of 

“non-informative” prior distributions. They even considered 

some proposed non-informative prior distributions in the 

literature, including uniform and inverse-gamma families, in 

the context of an expanded conditionally conjugate family. 

The appropriate specification of priors still contained 

minimal information. Jacob et. al. (2014) suggests instead to 

use a uniform prior on the hierarchical standard deviation, 

employing the half-t family especially when the number of 

infectious groups is small (e.g., potential “cold spot” 

geosampled, time series, dependent, subcounty, district-level, 

viral case data) and in other settings where a weakly 

informative prior is undesirable.  

Hence, in this experiment we illustrated the use of the 

half-t family for geo-spatiotemporal, epidemiological, 

forecast modelling multiple variance diagnostic, 

geo-spatiotemporal, hierarchical diffusion-related, 

COVID-19, diagnostic stratified, epidemiological 

parameters derived from the hyper/hypo-endemic, 

aggregation / non-aggregation-oriented determinants such as 

those that arose in the analysis of variance (ANOVA). We 

employed a uniform prior on the standard deviation, when 

the number of diagnostic, hierarchical, diffusion-related, 

discrete, integer, count values in a Ugandan district was 

small. A uniform function is simply a function that takes  

the same value for all its arguments (Gelman 2005). For 

example, in the geo-spatiotemporal, COVID-19 subcounty, 

district-level, prognosticative, vulnerability model f(θ)=1,θ

∈[0,1] qA was a uniform function. When you take such 

function as a prior distribution for an unknown parameter   

θ, you have a uniform prior, also called a flat prior. We   

also illustrated the usage of time series, predictive, 

vulnerability-oriented modelling of the variance parameters 

such as those that arise in the ANOVA. 

We present a new framework for prior selection based on a 

hierarchical decomposition of the total variance along a tree 

structure to the individual geosampled, COVID-19, stratified, 

epidemiological, forecast-related, subcounty, district-level, 

aggregation/non-aggregation-oriented, vulnerability model, 

uncertainty components. The variance parameters in additive 

models are commonly assigned independent priors that do 

not account for model structure in an epidemiological, time 

series, dependent, viral infection, estimation model (Jacob et 

al. 2014). Hence for each split in the tree, an analyst may be 

ignorant, or may have a sound intuition on how to attribute 

variance to the branches. In the former case, a Dirichlet prior 

may be appropriate to use, while in the latter case a penalized 

complexity (PC) prior may be assumed to provide robust 

shrinkage. A bottom-up combination of the conditional 

priors we further assumed would result in a proper joint  

prior in our geo-spatiotemporal, epidemiological, forecast- 

oriented, iterative, interpolation model for optimizing, 

predictively targeting and prioritizing, aggregation-oriented, 

COVID-19, district-level, subcounty, hyper-endemic, hot 

spots. Jacob et al. (2014) suggests default values for the 

hyperparameters and offers intuitive statements based on 

expert knowledge for transmission-oriented, hyper / 

hypo-endemic, prognosticative models. Hyperparameters 

are parameters whose values control the learning process and 

determine the values of model parameters (Gelman 2013). 

The prior framework is applicable for R packages for 

Bayesian inference such as INLA and RStan. 

Three simulations showed that, in terms of the 

application-specific measures of interest, priors improved 

inference over Dirichlet priors when employed to penalize 

different levels of complexity in splits in an epidemiological 

geo-spatiotemporal, forecast-related, vulnerability model for 

simulating targeting and prioritizing hyper/hypo-endemic, 

COVID-19 estimators. The parameters were determined 

using a binomial distribution along with an a priori 

distribution, and the results had a high degree of accuracy. 

We assumed that assigning current state-of-the-art default 

priors for each variance parameter individually may be less 

transparent in an epidemiological, geo-spatiotemporal, 

hierarchical, diffusion, forecast-related, vulnerability- 

oriented, subcounty, COVID-19 stratified model and hence 

would perform better than using the proposed joint priors. 

We demonstrate practical use of the new framework by 

analysing propagation, spatial non-normality (i.e., non- 

homoscedasticity, non-Gaussianity non-asymptoticalness, 

geo-spatiotemporal multicollinearity etc.,) heterogeneity in 

the complex, geosampled, hierarchical, diffusion-oriented, 

COVID-19,diagnostic, stratified, georeferenced, subcounty, 

district-level, epidemiological, survey dataset. 

The Monte Carlo method of error propagation assumed 

that the distribution of error variables for each of the input 

data layers generated in PROC MCMC from the regressed, 

non-homoscedastic, multicollinear, non-asymptotically 

biased, georeferenced, COVID-19, diagnostically stratified, 

geosampled, subcounty, district-level determinants were 

known. To employ PROC MCMC, we needed to specify a 

likelihood function for the epidemiological data and a prior 

distribution for the parameters. Since we were fitting 

hierarchical models, we had to specify a hyperprior 

distribution and distributions for the RE parameters.  

In Bayesian statistics, a hyperprior is a prior distribution 

on a hyperparameter, that is, on a parameter of a prior 

distribution (Gelman 2013). As with the term 

hyperparameter, the use of hyper is to distinguish it from a 

prior distribution of a parameter of the model for the 

underlying system. Hyperpriors, like conjugate priors, are a 

computational convenience – they do not change the process 

of geo-spatiotemporal, generalizable, hierarchical, Bayesian 

inference, but simply allow one to more easily describe and 

compute with the prior. ( Lee, Se Yoon; Mallick, Bani 2021). 

Firstly, we employed a hyperprior which allowed 

expressing uncertainty in a hyperparameter in the COVID-19, 

diagnostic, stratified epidemiological, prognosticative model. 

Quantitating variability in a hyperparameter of the prior 

allowed conducting a sensitivity analysis and determining a 
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distribution of the hyperparameters which subsequently 

allowed us to express uncertainty in the geo-spatiotemporal, 

hierarchical diffusion hyper/hypo-endemic, aggregation / 

non-aggregation-oriented, propensities in the stratified, 

clinical, environmental, and socioeconomic, COVID-19, 

diagnostic determinants.  

More abstractly, if one employ a hyperprior, then the  

prior distribution (on the parameter of the underlying  

model) itself is a mixture density in any epidemiological, 

geo-spatiotemporal, hierarchical diffusion, aggregation / 

non-aggregation-oriented, hyper/hypo-endemic, transmissio

n-related, COVID-19, stratified, forecast, vulnerability 

model for targeting and prioritizing georeferenceable, 

subcounty, district-level, hot/cold spots: it is the weighted 

average of the various prior distributions (over different 

hyperparameters), with the hyperprior being the weighting. 

This adds additional distributions (beyond the parametric 

family one is using), because parametric families of 

distributions are generally not convex sets – as a mixture 

density is a convex combination of distributions; it will in 

general lie outside the family. For instance, the mixture of 

two empirically regressed epidemiological, forecast-related, 

vulnerability-oriented, subcounty, district-level, COVID-19, 

diagnostically stratified models’ normal distributions is not a 

normal distribution: if one takes different means (sufficiently 

distant) and mix 50% of each, one obtains a bimodal 

distribution, which is not normal. In fact, the convex hull of 

normal distributions is dense in all distributions, so in some 

cases, an infectious disease modeller or researcher can 

arbitrarily closely approximate a given prior for robustifying 

geo-spatiotemporal, empirical, hierarchical diffusion-related, 

vulnerability-oriented, prognosticative, epidemiological, 

COVID-19, stratifiable, model uncertainty-related, 

non-normal, estimators for optimally targeting and 

prioritizing georeferenceable, district-level, subcounty, 

aggregation-oriented, hyper/hypo-endemic, transmission- 

related geolocations by using a family with a suitable 

hyperprior. 

What makes this approach particularly useful in an 

aggregation/non-aggregation-oriented, subcounty, district- 

level, geo-spatiotemporal, hierarchical, diffusion-oriented, 

COVID-19, stratifiable, hyper/hypo-endemic, diagnostically 

stratifiable, epidemiological, prognosticative, uncertainty- 

related model is individual conjugate priors have easily 

computed posteriors, and thus a mixture of conjugate priors 

would be the same mixture of posteriors: one only needs to 

know how each conjugate prior changes in the model to 

allow for quantitating heteroscedastic, multicollinear or, 

other biased, variable, uncertainty estimates. Using a single 

conjugate prior may be too restrictive but using a mixture of 

conjugate priors may give an infectious disease modeller or 

other researchers, the desired distribution in a geosampled 

dataset of regressed diagnostic determinants, a form that   

is easy to compute with. In this experiment we assumed  

that the uncertainty non-normal estimator quantification  

was effective for optimizing diagnostic testing and for 

eigen-decomposing a function in terms of eigen-spatial filter 

eigenvectors for determining zero autocorrelated latent 

estimates and other non-normalities in an epidemiological, 

stratifiable, COVID-19, prognosticative, aggregation / 

non-aggregation-oriented, hyper/hypo-endemic, model 

output. 

Further, Bayes' theorem calculated the renormalized 

pointwise product of the prior and the likelihood function,  

to produce the posterior probability distribution, which    

in the geosampled, COVID-19, stratified, predictive, 

vulnerability-oriented model was representable by the 

conditional distribution of the uncertainty-oriented biased, 

non-normal quantities derived from the epidemiological, 

geo-spatiotemporal, subcounty, district-level, regressed, 

epidemiological data. Similarly, the prior probability or an 

uncertain proposition in our model was the unconditional 

probability that was assigned before any relevant evidence 

was considered. The parameters of the prior distributions 

were a kind of hyperparameter in the model. Since we 

employed a beta distribution to model the georeferenced, 

district-level, time series, dependent, epidemiological, 

diagnostic, COVID-19 parameters (p) of a Bernoulli 

distribution, then: p in our model was a parameter of the 

underlying system (Bernoulli distribution), and α and β were 

the parameters of the prior distribution (beta distribution); 

hence hyperparameters. Hyperparameters themselves may 

have hyperprior distributions expressing beliefs about their 

values (Gelman et. al. 2013). Since our inferential, 

subcounty, district-level, georeferenced, vulnerability- 

oriented, epidemiological, COVID-19, diagnostically 

stratifiable, prognosticative model had more than one level 

of prior it was a hierarchical uncertainty-oriented Bayes 

model.  

Markovian chains obtained residual, asymptotical, 

samples from the corresponding posterior distributions, 

produced summary and diagnostic statistics, and saved the 

posterior samples in an output dataset which we used for 

further analysis. Although PROC MCMC supports a suite of 

standard distributions, we only analysed the district-level, 

subcounty, COVID-19 stratified, hierarchical, diffusion- 

oriented estimators employing likelihood priors, and 

hyperpriors, since these functions were programmable using 

the SAS DATA step functions. There were no constraints on 

how the diagnostic, epidemiological parameters would enter 

the model, in either, linear or any nonlinear, functional form. 

The MODEL statement in PROC MCMC automatically 

displayed potential non-homoscedastic, non-asymptotical 

and multicollinear, aggregation/non-aggregation-oriented, 

hyper/hypo-endemic, response variable data, in the empirical, 

estimator, epidemiological, model dataset. In releases before 

SAS/STAT 12.1, observations with missing values were 

discarded prior to the analysis. Fortunately PROC MCMC 

treated the missing values in the COVOD-19 model as 

unknown parameters and incorporated the sampling of the 

missing values as part of the simulation. This included 

quantifying uncertainty about input distribution parameters.  

PROC MCMC selected a sampling method for each 

geosampled, hierarchical, diffusion-related COVID-19 
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stratified, potential, residually skew, non-homoscedastic, 

non-asymptotical, and or multicollinear, non-normal, 

parameter estimator from the block of iteratively, 

interpolated, georeferenced, district-level, diagnostic 

determinants. Since conjugacy was available, samples were 

drawn directly from the full conditional distribution by 

employing standard random number generators. In most 

cases, PROC MCMC employs an adaptive blocked random 

walk Metropolis algorithm that employs a normal proposal 

distribution. In this experiment we were able to choose 

alternative sampling algorithms [e.g., slice sampler]. 

Metropolis–Hasting methods form a widely used class of 

MCMC methods for sampling from complex probability 

distributions (Gelman 2005). It was, therefore, of 

considerable interest for us to develop mathematical analyses 

which explained the structure inherent in these algorithms, 

especially for articulating erroneous structure in our 

prognosticative, epidemiological, Bayesian, subcounty, 

district-level, stratifiable, COVID-19, vulnerability-related, 

geo-spatiotemporal, parameter, estimation model which   

we assumed would be pertinent to understanding the 

computational complexity of the uncertainty algorithm. We 

further assumed that quantifying computational complexity 

of an MCMC method would be most naturally undertaken by 

studying the behavior of the method on a family of 

probability distributions indexed by our autoregressive, 

semi-parameterizable, COVID-19, diagnostically stratifiable, 

georeferenced, geo-spatiotemporally dependent, hierarchical, 

diffusion-oriented, vulnerability-related prognosticative, 

epidemiological estimators. Doing so we assumed would 

allow studying the cost of the algorithm in terms of 

uncertainty generation while quantitating the propagation 

non-normality (i.e., biased, non-homoscedasticity geo- 

spatiotemporal multicollinearity, zero autovariance), in the 

aggregation/non-aggregation-oriented, hyper / hypo- 

endemic, asymptotical, estimator, empirical dataset. In this 

experiment we studied the cost as a function of dimension for 

algorithms applied to a family of probability distributions 

derived from finite dimensional approximation of a measure 

on an infinite-dimensional space for optimally quantitating 

hyper/hypo-endemic, heteroscedastic, multi-collinear, and 

other non-normal, COVID-19, stratified, hierarchical 

diffusion-transmission-oriented subcounty, district-level, 

determinants. 

We also proposed a more efficient version of the slice 

sampler for Dirichlet process mixture models. The Dirichlet 

process is a stochastic process employed in Bayesian 

nonparametric models of data, particularly in Dirichlet 

process mixture models (also known as infinite mixture 

models). It is a distribution over distributions, i.e., each draw 

from a Dirichlet process is itself a distribution. (Cressie 1993) 

We assumed this sampler would allow the fitting of infinite 

mixture, vulnerability-related, epidemiological, district-level, 

COVID-19, diagnostically stratified, geo-spatiotemporal, 

regressively forecastable, hierarchical, diffusion-oriented, 

model estimators with a wide–range of prior specification for 

optimally prioritizing and targeting hyper/hypo-endemic, 

georefernceable, subcounty, hot/cold spot, transmission- 

related, aggregation/non-aggregation, hyper/hypo-endemic 

sites. We then stepped through the various constructions of 

the Dirichlet process, outlined a number of the basic 

properties of this process and moved on to the mixture of 

Dirichlet processes model. To illustrate this flexibility, we 

developed a nonparametric prior for the mixture model by 

normalizing a sequence of independent, hierarchical, 

diffusion-oriented, COVID-19, diagnostic variables and 

showed how the slice sampler can be applied to make 

inference in a normalized, subcounty, district-level, 

transmission-related, vulnerability model constructed in R. 

The bayes4psyR package provided a state-of-the art 

framework for our, geo-spatiotemporal, hierarchical 

diffusion, uncertainty-oriented, Bayesian autocorrelation, 

analysis using the subcounty, district-level, empirical, 

georeferenced, epidemiological, diagnostic data. The 

analyses incorporated a set of probabilistic, forecast-oriented, 

vulnerability-related, uncertainty, estimation models for 

inspecting the non-homoscedastic, multicollinear parameters 

and other non-normal epidemiological data. All models were 

pre-compiled, meaning that we did not need any specialized 

software or skills (e.g., knowledge of probabilistic 

programming languages). The only requirements for 

building our time series, estimation, Bayesian model was 

inputting the empirical georeferenced dataset of aggregation 

/non-aggregation-oriented, COVID-19, stratified, diagnostic 

determinants into R programming language. R is one of the 

most powerful and widespread programming languages for 

statistics and visualization. The package incorporated the 

diagnostic, analytic and visualization tools required for 

conducting the time series, Bayesian data analysis in 

eigenvector eigen-geospace.  

For statistical computation (sampling from the, 

georeferenced, COVID-19 stratified, district-level, predicted, 

posterior distributions) in the bayes4psy package, we utilized 

Stan. Stan is a state-of-the-art platform for statistical 

modelling and high-performance statistical computation 

which offers full Bayesian statistical inference with MCMC 

sampling. Visualizations in the bayes4psy package for 

constructing our epidemiological, geo-spatiotemporal, 

hierarchical, diffusion-oriented, hyper/hypo-endemic, 

prognosticative, georeferenced, empirical, aggregation / 

non-aggregation-oriented, district-level, subcounty, 

COVID-19 model was based on the ggplot2 package. 

Two sub-models were studied in detail. The first one 

assumed that the positive random variables generated from 

the regressed, time series, dependent, aggregation / non- 

aggregation-oriented, COVID-19, stratified, hierarchical, 

diffusion-related, epidemiological data, georeferenced, 

capture points were Gamma distributed and the second 

assumed that they were inverse–Gaussian distributed. Both 

priors had two hyperparameters and we considered their 

effect on the prior distribution based on  the total number  

of non-normal, grid-stratifiable COVID-19, specified, 

“hot/cold spot”, district-level, subcounty, diagnostic 

determinants. Extensive computational comparisons with 
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alternative “conditional” simulation techniques for mixture 

models were applied using the standard Dirichlet process 

prior and a new prior was generated. The properties of the 

new prior generated from the model were illustrated for 

implementing a density error estimation procedure. We show 

that the discreteness of the Dirichlet process can have a large 

effect on inference (posterior distributions and Bayes factors) 

in an epidemiological geo-spatiotemporal, hierarchical, 

diffusion-oriented, COVID-19, diagnostically stratified, 

sub-county, district-level epidemiological, forecast model, 

for prioritizing and targeting district-level, subcounty, 

hyper/hypo-endemicity leading to conclusions that can be 

different from those that result from a reasonable 

semi-parametric model. When the observed data are all 

distinct, the effect of the prior on the posterior is to favor 

more evenly balanced partitions, and its effect on Bayes 

factors is to favour more groups (Gelman et.al,2013). 

Henceforth, when constructing an epidemiological, 

hierarchical, diffusion-oriented, diagnostic, COVID-19, 

stratified, forecast-related, vulnerability model with a 

Dirichlet process as the second-stage prior, the prior can 

have a large effect on inference, but in the opposite direction, 

towards more unbalanced partitions. 

Subsequently, each of the data layers and an error surface 

was simulated by drawing, at random, from an error pool as 

defined by the geographic distribution of the district-level, 

georeferenced, COVID-19, epidemiological, grid-stratified, 

diagnostic variables. Error surfaces were added to the input 

data layers and to the parameter estimators. A model was run 

using the resulting data error layers as input. The process was 

repeated so that, for each run, a new realization of an error 

surface was generated for each input data layer. The results 

of each run were accumulated and a running mean and 

standard deviation surface for the output was calculated. 

This process continued until the running mean stabilized. 

Since the random error visualizations were both positive and 

negative, the stable running mean were taken as the true 

model output surface, and the standard deviation surface  

was employable as a residual measure of relative 

non-normality in the aggregation/non-aggregation-oriented, 

prognosticative, variable, estimation error. A simple 

summary was generated, showing posterior mean, median 

and standard deviation, with a 95% posterior credible 

interval. 

Models were compared employing the Deviance 

Information Criterion (DIC) in PROC MCMC where 

, was the sum of the posterior mean of the 

deviance, (D), a measure of goodness-of-fit, and the 

effective number of diagnostic, georeferenced geosampled, 

district-level, subcounty, epidemiological, time series, 

dependent, normalized, hierarchical diffusion, hyper / hypo- 

endemic, aggregation/non-aggregation-oriented, COVID-19 

stratified, diagnostic parameters (pD). A measure of 

goodness-of-fit based on the DIC values was applied and an 

R2DIC was calculated in line with the standard R2 measure 

for the geo-spatiotemporal, iterated, residual forecasts (i.e., 

subcounty, temporally targeted, district-level, hyper / 

hypo-endemic, aggregation / non-aggregation-oriented 

hot/cold spots). These were optimally definable employing: 

 

when DICk was the DIC value for sub-model k under 

evaluation and when DICmax was the DIC value for one-fixed 

parameter model; and,  was the posterior deviance as 

derived iteratively from the model. 

Model checking of all data input and compilation was 

conducted in PROC MCMC. The number of chains had to be 

specified before compilation. For constructing our 

vulnerability-oriented, prognosticative, epidemiological, 

time series, hierarchical, diffusion-related, district-level, 

georeferenceable, Bayesian, uncertainty model, three 

parallel chains were run. Syntax checking was employed, 

which involved highlighting the entire model code and then 

choosing the sequence model specification. The 

uncertainty-related non-normal quantities in the estimates 

derived from the MCMC sequence of the random, 

epidemiological, time series, dependent, COVID-19, 

stratified, diagnostic samples were subsequently determined 

by Nk and vk. These estimates also revealed a PDF [i.e., a 

statistical expression that defined a probability distribution 

and the likelihood] of the district-level, aggregation / 

non-aggregation-oriented, transmission-related, subcounty 

site being a hyper/hypo-endemic, COVID 19, hot/cold   

spot based on a regression outcome. Here every individual, 

discreetly, exogenously geosampled, hierarchical, diffusion- 

related, explanatory variable [e.g., a grid-stratifiable, 

georeferenced, endemic, transmission-oriented, clinical, 

environmental, or socioeconomic diagnostic determinant 

was invasively examined (as opposed to quantitating a 

continuous random variable) using a scalar quantity v. The 

estimated value of v in the vulnerability-oriented, 

COVID-19, subcounty, district-level model was provided by 

the sample mean,  

We then addressed the problem of upper bounding the 

MSE of the MCMC estimators. Our analysis was asymptotic. 

We first established a general result valid for all ergodic 

Markov chains encountered in the Bayesian computation  

and at multiple unbounded target functions. The bound was 

sharp in the sense that the leading term was exactly 

σ2(P,f)/nσas2(P,f)/n, where σ2 was(P,f)σ2(P,f) which was the 

CLT asymptotic variance. In probability theory, the CLT 

establishes that, in situations when independent random 

variables are summed up, their properly normalized sum 

tends toward a normal distribution even if the original 

variables themselves are not normally distribute. 

Next, we proceeded to specify additional assumptions and 

generated explicit computable bounds for geometrically and 

polynomial ergodic Markov chains under quantitative drift 

conditions. We generated quantitative bounds on the 

convergence rates of Markov chains, under conditions 

implying polynomial convergence rates. This paper extends 

an earlier work by Roberts and Tweedie (Stochastic Process. 

Appl. 80(2) (1999) 211), which provides quantitative bounds 
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for the total variation norm under conditions implying 

geometric ergodicity. Explicit bounds for the total variation 

norm were obtained for the subcounty, district-level, 

COVID-19, stratified, epidemiological, prognosticative, 

vulnerability model by evaluating the moments of an 

appropriately defined coupling time, employing a set of  

drift conditions, adapted from an earlier work by Tuominen 

and Tweedie (Adv. Appl. Probab. 26(3) (1994) 775). 

Applications of the model result were then presented to study 

the convergence of random walk Hastings Metropolis 

algorithm for generating super-exponential target functions 

and general state-space models. Like the MCMC, the 

Metropolis-Hastings algorithm is used to generate serially 

correlated draws from a sequence of probability distributions. 

The sequence converges to a given target distribution. 

Explicit bounds for f-ergodicity were given for the 

COVID-19 model for an appropriately defined control 

function f. As a corollary, we provided results on confidence 

estimation. 

The expected variance  was the expectation for the 

ensemble of the sequences as robustly parsimoniously 

rendered from the georeferenced, aggregation / non- 

aggregation-oriented, hyper/hypo-endemic, regressed, geo- 

spatiotemporal, epidemiological, geosampled, hierarchical, 

diffusion-related, endemic, diagnostic, MCMC estimators 

which in this experiment we expressed as: 

 

where . The autocovariance of the 

sequence was definable as: . 

The asymptotical normalized, non-zero autocovariance was

, where σ2 

was the variance of v and ρ (l) did not depend on k. The 

length of the non-zero, derived, normalized, autocovariance 

geo-spatiotemporal values was then optimally determined by 

. Here 

the normalized autocovariance was a symmetric function, 

i.e., ρ (-l) = ρ (l). The sequence sufficiently converged to the 

target PDF. The variance of the distribution of the, non-skew, 

homoscedastic, non-multi-collinear, asymptotically 

normalized, aggregation / non-aggregation-oriented, 

hierarchical, diffusion-related, COVID-19, stratified, 

diagnostic estimators was generated employing 

 The normalized 

autocovariance was derivable from the sequence employing: 

for lag l ≥ 0. 

Henceforth, an MCMC sequence derived from an 

empirical geosampled dataset of georeferenced, skewed, 

non-homoscedastic, and or multicollinear, multivariate, 

non-asymptotical, aggregation/non-aggregation-oriented, 

geo-spatiotemporal, COVID-19, biased, hierarchical, 

diffusion-related, geo-spatiotemporal, non-normal paradigm 

is definable as the reciprocal of the ratio of the number of 

MCMC trials needed to achieve homogenous variance in any 

estimated uncertainty quantity. In this experiment the 

MCMC sampled were synthesizable from independent 

draws from the target PDF as quantitatively iterated from the 

georeferenced, uncertainty-oriented, COVID-19 model, 

specified, diagnostic prognosticators. The estimation of   

the mean and the variance for independent, time series, 

dependent, empirical estimators were calculable by: 

After compilation, the 

files contained a portion of the initial geosampled values for 

the parameters selected in the model. After careful 

inspection of the data, no aberrant values, leading to 

numerical overflow were found. 

The aggregation/non-aggregation-oriented, normalized, 

residual estimates as extracted from the diagnostic, 

hierarchical, diffusion-related, COVID-19, stratified, district 

-level, georeferenced, asymptotical, vulnerability-related, 

epidemiological, sub-county, hyper/hypo-endemic model 

forecasts were subsequently evaluated in a spatial error 

model. An autoregressive model was incorporated that 

employed the geo-spatiotemporal, indexable, hierarchical 

diffusion-oriented, homoscedastic, non-multi-collinear, 

exogenous predictors, Y, as a function of nearby diagnostic, 

clinical, socioeconomic or environmental, grid-stratifiable, 

georeferenceable, COVID-19, stratifiable, parameter 

estimator geosampled, Y values [i.e., an autoregressive 

response (AR), or spatial linear (SL) specification], and/or 

the residuals of Y as a function of nearby district-level Y 

residuals [i.e., an AR or SE specification]. Distance between 

the georeferenced, sub-county, epidemiological, capture 

points was subsequently definable in terms of an n-by-n 

geographic weights matrix, C, whose cij values were 1 if the 

specified, time series dependent, district-level geolocations i 

and j were deemed nearby, and 0 otherwise. Adjusting this 

matrix by dividing each row entry by its row sum, with the 

row sums given by C1, converted this matrix-to-matrix W.  

The n-by-1 vector x = [x1 ⋯ xn]
 T contained measurements 

of quantitative, potential, hierarchical, diffusion-related, 

homoscedastic, non-multicollinear, asymptotical diagnostic 

determinants for n spatial units and n-by-n weighting matrix 

W. The formulation for the Moran's I of spatial 

autocorrelation for the time series, epidemiological, 

diagnostic model was subsequently computed employing 
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where  

with i ≠ j. The values wij were spatial weights stored in the 

symmetrical matrix W [i.e., (wij = wji)] that had a null 

diagonal (wii = 0). Here, the matrix was initially fit to an 

asymmetrical matrix W. Matrix W was generalizable by a 

non-symmetric matrix W* by rigorously employing W = 

(W* + W*T)/2. Subsequently, the Moran's I was rewritten 

employing the matrix notation: 

 where H = (I - 11T/n) was an 

orthogonal projector verifying that H = H2, (i.e., H was 

independent). 

A spatially autoregressive (SAR) model specification was 

subsequently employed to describe the autoregressive 

variance, geo-spatiotemporal, non-zero autocorrelatable, 

non-multicollinear, asymptotical, unbiased, forecasted, 

aggregation/non-aggregation-oriented estimates. A spatial 

filter model specification was employed to describe both 

heterogeneous, Gaussian and Poisson, random, diagnostic, 

COVID-19 stratified, hyper/hypo-endemic hierarchical, 

diffusion-related, diagnostic, determinant effects. The 

resulting SAR model specification took on the following 

form: 

       (2.1a) 

where μ was the scalar conditional mean of Y, and ε was   

an n-by-1 error vector whose elements were statistically 

independent and identically distributed (i.i.d.) normally 

random variates. The spatial covariance matrix for equation 

(2.1), fit the geosampled, COVID-19, subcounty, 

district-level, diagnostic,, eigendecomposed i.d.d. covariates 

using E [(Y - μl)' (Y - μl)] = Σ = [(I - ρ W') (I - ρ W)]-1σ2, 

where E (●) denoted the calculus of expectations, I was the 

n-by-n identity matrix denoting the matrix transpose 

operation, and σ2 was the error variance. However, when a 

mixture of PSA and negative spatial autocorrelation (NSA) 

is present in a time series, dependent, viral infection model, a 

more explicit representation of both effects leads to a more 

accurate interpretation of empirical results (Jacob et al. 2019, 

Griffith 2006). Alternatively, the excluded values may be set 

to zero, although if this is done then the mean and variance 

must be adjusted. 

Here, two varying, geo-spatiotemporally indexable, 

homoscedastic, non-multicollinear, prognosticative, 

asymptotically normalized, aggregation / non-aggregation- 

oriented, non-skewed, autoregressive, hyper/hypo-endemic, 

COVID-19, stratified, parameter estimators appeared in the 

covariance matrix, eigenvector, eigen-spatial filter, model 

specification. The model specification then transformed to  

 (2.2a) 

where the diagonal matrix of the geosampled parameters,   

< ρ >diag, contained the uncertainty-oriented autoregressive 

parameters: ρ+ for those georeferenced, variable pairs 

displaying positive spatial dependency, and ρ for those pairs 

displaying negative dependency. For example, by letting σ2 = 

1 and employing a 2-by-2 regular square tessellation,  

 

 

 

parsimoniously enabled positing a positive relationship 

between the grid-stratified, time series, dependent, 

georeferenced, COVID-19, diagnostically stratifiable, 

hierarchical, diffusion-related, non-zero, autocorrelated 

covariates when y1 and y2, had a negative relationship 

between covariates, y3 and y4, and no relationship between 

covariates y1 and y3 and between y2 and y4. This covariance 

specification yielded: 

(2.3a) 

when I+ was a binary 0-1, indicator, explanatory variable The 

specification also denoted those geosampled, time series, 

dependent, district-level, observational, georeferenceable, 

epidemiological, subcounty, uncertainty-free, normalized 

predictors displaying positive spatial dependency when I- 

was a binary 0-1 variable while denoting those estimators 

displaying negative spatial dependency, employing I+ + I- = 1. 

Expressing the preceding 2-by-2 example in terms of 

equation (2.3) yielded: 
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If either ρ+ = 0 (and hence I+ = 0 and I- = I) or ρ- = 0 (and 

hence I- = 0 and I+ = I), then equation (2.3) reduced to 

equation (2.1). This indicator variable classification was 

made in accordance with the quadrants of the corresponding 

Moran scatterplot created using the georeferenced, 

district-level, COVID 19, stratified hierarchical, diffusion- 

related, geo-spatiotemporal, transmission-oriented, hyper / 

hypo-endemic, subcounty, aggregation / non-aggregation- 

oriented, empirical, diagnostic determinants in PROC 

AUTOREG. 

If PSA and NSA processes counterbalance each other   

in a mixture, the sum of the two spatial autocorrelation 

parameters--(ρ+ + ρ.) will be close to 0 (Griffith 2003). Here, 

Jacobian estimation was implementable by utilizing the 

non-homogenous, diagnostic, indicator values derived from 

the eigendecomposed, eigen-orthogonal, eigen-spatial filter 

geosampled, aggregation/non-aggregation-oriented, district- 

level, hyper/hypo-endemic, temporally stratified, COVID-19, 

hierarchical diffusion-related, exogenous variables (I+ - γ I-) 

in eigenvector eigen-geospace which required estimating ρ+ 

and γ with ML techniques, and setting . 

Most of the literature to date proposes approximations   

to the determinant of a positive definite n × n spatial 

covariance matrix (i.e., the Jacobian term) for Gaussian 

spatial autoregressive models that fail to support the  

analysis of non-normal estimator quantification in massive, 

georeferenced, geo-spatiotemporal, epidemiological, 

variable, estimator datasets. We employed a much simpler 

Jacobian approximation whereby selected eigenvalue 

estimation techniques summarized validation results for 

approximating the eigne-orthogonal eigen-spatial, filter, 

non-zero, synthetic, eigenvalues in eigenvector 

eigen-geospace. Jacobian approximations, and an estimation 

of a spatial autocorrelation parameter was usable to illustrate 

the spatial autocorrelation, stratified, parameter in the 

autoregressive, aggregation/non-aggregation-oriented,  

hyper/hypo-endemic, hierarchical, diffusion-related, 

epidemiological, district-level, prognosticative, COVID-19, 

model specification. One of the principal contributions of 

this paper was the implementation of an autoregressive 

model specification for any size empirical dataset of 

non-skew, homoscedastic, non-multicollinear, non— biased. 

non-zero autocorrelatable, geo-spatiotemporally forecastable, 

asymptotically normalized, uncertainty–free, geo- 

spatiotemporal, vulnerability-oriented, hyper/hypo-endemic, 

transmission-related, COVID-19, diagnostic determinants. 

Its specific additions to the literature henceforth include   

(1) new, more efficient estimation algorithms; (2) an 

approximation of the Jacobian term for epidemiological 

geosampled data forming complete rectangular regions [i.e., 

hyper-endemic, georeferenceable, subcounty, district-level, 

hot spots; (3) issues of inference; and (4) timing results. 

The Jacobian generalized the gradient of a scalar-valued 

function of multiple, georeferenced, district-level, 

hierarchical, diffusion-related, COVID-19 stratified sub- 

county, aggregation/non-aggregation-oriented, non-skewed, 

non-zero autocorrelated, predictor variables which itself 

generalized the derivative of a scalar-valued function of a 

scalar. A more complex specification was subsequently 

posited by generalizing these binary indicator, time    

series, dependent, explanatory variables in eigenvector 

eigen-geospace. We employed F: Rn → Rm as a function  

from Euclidean n-space to Euclidean m-space, which was 

derivable employing the Euclidean, distance between the 

hierarchical, diffusion-related, epidemiologically specifiable, 

clinical, environmental and socioeconomic, diagnostic 

determinants and a hyper/hypo-endemic, forecasted, 

district-level, subcounty, hot/cold spot estimator. Such a 

function was given by m covariate (i.e., component 

functions), y1(x1, xn), ym(x1, xn). The partial derivatives of 

all these functions were organized in an m-by-n matrix; the 

Jacobian matrix J of F, which was parsimoniously 

displayable as follows:  This 

matrix was denotable by JF (x1, xn) and . 

The ith row (i = 1, m) of this matrix was the gradient of the  

ith component function yi: (∇ yi). In this experiment, p    

was an empirical epidemiological, geo-spatiotemporally, 

dependent, hierarchical, diffusion-related, eigendecomposed, 

eigenfunction, eigen-spatial filtered, non-skew, 

homoscedastic, non-multicollinear, asymptotically unbiased, 

non-zero autocorrelatable, determinant in Rn, but only when 

F (i.e., geosampled, district-level, COVID-19, diagnostically 

stratified, subcounty case count) was differentiable at p; its 

derivative was hence subsequently extractable by JF(p). The 

model described by JF(p)) was the best linear approximation 

of F near a georeferenced, sub-county, district-level, 

geo-spatiotemporal, COVID-19 stratifiable, epidemiological, 

sentinel site, capture point p, in the sense that: 

 (2.4) 
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The spatial structuring in the subcounty, district-level, 

prognosticative, COVID-19, epidemiological model was 

achieved by constructing a linear combination of a subset of 

the eigenvectors of a modified GWR employing (I - 11'/n) C 

(I - 11'/n) that appeared in the numerator of the Moran’s 

Coefficient (MC). Spatial autocorrelation can be indexable 

with a MC, a product moment correlation coefficient 

(Griffith 2003). A subset of eigenvectors was subsequently 

selected with a stepwise regression procedure. Because (I - 

11'/n) C (I - 11'/n) = E Λ E', where E was an n-by-n matrix 

of eigenvectors and Λ was an n-by-n diagonal matrix of the 

corresponding eigenvalues, the resulting model specification 

was definable by: 

         (2.5) 

when μ the scalar mean of Y, Ek was an n-by-k matrix 

containing the subset of k <<n eigen-orthogonal, 

eigen-spatial filter eigenvectors as selected with a stepwise 

regression technique, and β was a k-by-1 vector of regression 

coefficients. 

A number of non-normal, residually skewed, 

non-homoscedastic, multicollinear, biased, 

eigendecomposed, aggregation/non-aggregation-oriented, 

hyper/hypo-endemic, eigen-orthogonal, eigen-spatial filter 

eigenvectors were asymptotically extractable from (I - 11'/n) 

C (I - 11'/n), which were affiliated with geographic  

patterns of the geosampled, georeferenceable, COVID-19, 

diagnostically stratified, hierarchical, diffusion-related, 

subcounty, district-level determinants portraying a 

negligible degree of latent, non-zero, autocorrelation. 

Consequently, only k of the n eigenvectors was of interest  

for generating a candidate set for a stepwise regression 

procedure. Candidate eigenvector represents a level of 

geospatial autocorrelation which can account for the 

redundant (i.e., pseudo-replicated) information in eigenized, 

time series dependent, eigen-orthogonal map patterns 

(Griffith 2003). The preceding eigen-orthogonal, 

geo-spatiotemporal, eigen-spatial filter, synthetic, 

eigenvector properties resulted in  and  

for equation (2.3). Expressing equation (2.3) in terms of the 

preceding 2-by-2 example yielded 

 

 
 

 

Of note is that the 2-by-2 square tessellation rendered a 

repeated eigenvalue in the COVID-19, vulnerability- 

oriented, epidemiological, residual, prognosticative, model 

output. 

To identify subcounty, georeferenceable, district-level, 

clusters of, asymptotically normalized, non-zero 

autocorrelatable, geo-spatiotemporal, hierarchical, diffusion- 

related, diagnostically stratified, COVID-19, homoscedastic, 

non-multicollinear, hyper/hypo-endemic, determinants, 

Thiessen polygon surface partitionings were generated       

in ArcGIS ProTM for constructing neighbour matrices,  

which also were employable in the probabilistic, latent, 

autocorrelation eigenvector, eigen-spatial, filter, eigen- 

analysis. Entries in matrix were 1, if two georeferenced, 

explanative, grid-stratifiable, COVID-19, geosampled, 

diagnostic covariates shared a common Thiessen polygon 

boundary and 0, otherwise. Next, the linkage structure for 

each surface was edited to remove unlikely geographic 

neighbours to identify pairs of dependent, explanatory, 

hierarchical, diffusion-related, georeferenced, diagnostic, 

aggregation/ non-aggregation- oriented determinants sharing 

a common district-level Thiessen polygon boundary. 

Attention was restricted to those map patterns associated 

with at least a minimum level of spatial autocorrelation, 

which, for implementation purposes, here, was optimally 

definable by |MCj/MCmax| > 0.25, when MCj denoted the jth 

value and MCmax, the maximum value of MC. This threshold 

value allowed two candidate sets of eigenvectors generated 

by the eigenfunction eigen-decomposition of the district- 

level, subcounty, time series, hierarchical, diffusion-oriented, 

geosampled, diagnostic estimators to be considered for 

substantial PSA and NSA respectively. These statistics 

indicated that the detected NSA in the time series, dependent, 

epidemiological, COVID-19, diagnostically stratified, 

hierarchical, diffusion-related, estimator dataset could be 

statistically non-significant, based upon a randomization 

perspective. Of note, is that the ratio of the PRESS (i.e., 

predicted error sum of squares) statistic to the sum of squared 

errors from the MC scatterplot trend line was 1.21 which was 

well within two standard deviations of the average standard 

prediction error value (roughly 1.11) for a georeferenced, 

diagnostic, COVID-19, stratified, subcounty, district-level, 

geosampled, hierarchical, diffusion-oriented, asymptotically 

unbiased, non-skew, homoscedastic, geo-spatiotemporal, 

normalized, non-multicollinear, non-zero, autocorrelatable, 

aggregation/non-aggregation-oriented, hyper/hypo-endemic, 
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transmission-related, asymptotical, explanatory variable. 

Because counts were being analysed, a Poisson     

spatial filter model specification was employed to fit     

the district-level, COVID-19, estimators. Detected 

overdispersion (i.e., extra-Poisson variation) results in its 

mean being specified as gamma distributed (Haight 1967). 

The model specification was written subsequently as: 

 where μi was 

the expected mean, derived from the COVID-19, specified 

case count, district-level, geolocation i, μ was an n-by-1 

vector of expected case counts, LN denoted the natural 

logarithm (i.e., the GLM link function), α was an intercept 

term, and η was the negative binomial dispersion parameter. 

This log-linear equation had no error term; rather, estimation 

was executed assuming a negative binomial random 

variable. 

The upper and lower bounds for a spatial matrix generated 

employing Moran’s I was subsequently deduced by λmax 

(n/1TW1) and λmin (n/1TW1) where λmax and λmin which in  

this experiment were the extreme eigenvalues of Ω = HWH 

in the geosampled, COVID-19, stratified, epidemiological 

model, eigen-decomposed eigen-spatial, filter, synthetic, 

eigen-orthogonal eigenvectors. The eigenvectors of Ω   

were vectors with unit norm maximizing Moran's I. The 

eigenvalues of this matrix were asymptotically synthesizable 

from the geo-spatiotemporal, semi-parameterized, 

diagnostic, empirical geosampled dataset which was equal in 

value to the Moran's I coefficients derived from the residual 

autocorrelation post-multiplied by a constant. Eigenvectors 

associated with high positive (or negative) eigenvalues  

have high positive (or negative) autocorrelation (Griffith 

2003). The synthetic, eigen-function, eigen-decomposed, 

eigen-orthogonal, eigenvectors associated with extremely 

small hierarchical, diffusion-related, discrete, integer values 

corresponded to 0 autocorrelation, subcounty geolocations, 

(i.e., z scores =0) and were not suitable for defining spatial 

structures corresponding to district-level, aggregation / 
non-aggregation-oriented sites (i.e., subcounty, hot/cold 

spots of hyper/hypo-endemic, COVID-19 infection rates). 

The diagonalization of the geospatial uncertainty-oriented, 

weighting matrix generated for non-heuristically 

quantitating the autocovariance of the georeferenced, time 

series, dependent, potential, spatially biased, non- 

homoscedastic, multicollinear, hyper/hypo-endemic, 

hot/cold spot aggregation/non-aggregation-oriented, 

transmission-related geosampled, hierarchical, 

diffusion-related, COVID-19 stratified, asymptotical, 

diagnostic determinants consisted of finding the normalized 

vectors ui stored as columns in the matrix U = [u1 ⋯ un],  

This satisfied Λ = diag (λ1 ⋯ λ n),  and 

 for i ≠ j. Note that double centering of Ω  

implied that the geo-spatiotemporal, eigen-spatial filter, 

eigen--orthogonal eigenvectors rendered from the 

eigen-decomposed, COVID-19 stratified, subcounty, 

district-level, exogenous, regressors were centered and at 

least one eigenvalue was equal to zero. Introducing these 

eigenvectors in the original formulation of Moran's I led to: 

 

            (2.6) 

probability theory and statistics, given a stochastic process, 

The autocovariance is a function that gives the covariance of 

the process with itself at pairs of time points. is closely 

related to the autocorrelation We centered vector z = Hx and 

employed the properties of idempotence of H, equation 

which was then equivalent to  

(2.7) 

As the eigenvectors ui and the vector z were centered in the 

aggregation/non-aggregation-oriented, hyper/hypo-endemic, 

district-level, vulnerability-oriented, sub-county, regression 

model, forecast equation (2.7) was rewritten: 

 

           (2.8) 

where was the number of null eigenvalues of Ω (r ≥ 1). These 

eigenvalues and corresponding eigenvectors were removed 

from Λ and U respectively. Equation (2.8) was strictly 

equivalent to: 

    (2.9) 

Moreover, it was demonstrated that Moran's I for        

a given eigen-spatial filter eigenvector ui was equal to    

I(ui) = (n/1T W1)λi so the equation was rewritten 

 in PROC AUTOREG. The 

term cor2 (ui, z) represented the part of the variance of z that 

was explainable by ui in the COVID-19, forecast model when 

z = β i ui+ ei. This quantity was equal to . By 

definition, the eigenvectors ui were eigne-orthogonal, and 

therefore, regression coefficients of the linear models z = β i 
ui+ ei were those derivable from the regression model z = Uβ 

+ ε = β iui + ⋯ + β n-r un-r + ε. 

The maximum value of 1 was quantifiable by all of the 

variation of z, as parsimoniously expounded by the 

eigenvector u1, which corresponded to the highest 

eigenvalue λ1 in the weighted, autocorrelation, uncertainty 

matrix constructed from the georeferenced, time series. Here, 

cor2 (ui, z) = 1 (and cor2 (ui, z) = 0 for i ≠ 1) and the maximum 

value of I, was intuitively deducible for Equation (2.9), 
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which was equal to Imax = λ1(n/1TW1). The minimum value 

of I in the error matrix was obtainable as with all the 

variation of z which in this experiment was definable by the 

eigenvector un-r corresponding to the lowest eigenvalue λn-r 

extractable in the forecast model renderings. This minimum 

value was equal to Imin = λn-r (n/1TW1). If the geosampled, 

district-level, georeferenced, hierarchical, diffusion-related, 

explanatory, predictor variable was not definable due to 

presence of heteroscedasticity multicollinearity, or 

non-asymptoticalness, the part of the variance explained by 

each eigenvector was equal, on average, to cor2 (ui, z) = 1/n-1. 

Because the forecasted explanatory, COVID-19, diagnostic, 

subcounty, district-level, georeferenceable, epidemiological 

variables in z were randomly permuted, it was assumed that 

we would obtain this result. 

3. Results 

We considered a Poisson model for count data, 

y∼Poisson(θ), θ≥0. The parameter θ was interpreted as the 

prevalence of district-level, COVID-19, and importantly, 

E[y]=Var(y)=θ. An unfortunate property of the Poisson 

model is that it cannot model overdispersed data or data in 

which the variance is greater than the mean (Haight 1967). 

This is because Poisson regression has one free parameter. 

However, we placed a gamma prior on θ, yθ 
∼Poisson(θ)∼gamma(r,1−pp), and then marginalized out θ, 

in PROC REG which rendered a negative binomial (NB) 

distribution, which has the useful property that its variance 

can be greater than its mean. The derivation for the 

sub-county, district-level epidemiological regression model 

was calculable as:  

p(y)=∫0∞p(y∣θ)p(θ)dθ 

=∫0∞(y!θye−θ)(Γ(r)1−ppr1θr−1e−θ(1−p)/p)dθ 

=y!Γ(r)(1−p)rp−r∫0∞θr+y−1e−θ/pdθ 

=⋆y!Γ(r)(1−p)rp−rpr+yΓ(r+y)=Γ(r)y!Γ(r+y)py(1−p)r 

=†(r−1)!y!(r+y−1)!py(1−p)r=yy+r−1py(1−p)r=NB(r,p). 

This held in the hierarchical diffusion, epidemiological, 

COVID-19, count, variable model because of the following 

equality, ∫0∞xbe−axdx=ab+1Γ(b+1). The Gamma Poisson 

Distribution PDF for the epidemiological model was 

 

We acclaim that this is part of the usefulness of the gamma 

function: integrals of expressions of the form f(x)e−g(x),  

can model exponential decay, in an epidemiological, 

prognosticative, risk-related, diagnostically stratifiable, 

COVID-19, explanatory, count variable, regression equation 

for optimally targeting sub-county, district-level, diagnostic 

covariates of hierarchical diffusion of the virus which in this 

experiment was solved using Γ(x)=(x−1)!.in a closed form. 

The grid-stratified, COVID-19, subcounty, district-level, 

epidemiological, count data had incidence of zeros greater 

than expected for the underlying probability distribution 

which we modelled with a zero-inflated distribution. The 

district population was considered to consist of two 

sub-populations. Hierarchical diffusion–related, subcounty, 

district-level, epidemiological observations drawn from the 

first subpopulation were realizations of a random variable 

that typically in this experiment had either a Poisson or 

negative binomial distribution, which contained zeros. 

Observations drawn from the second sub-population 

provided a zero count. Suppose the mean of the underlying 

Poisson or negative binomial distribution is  and the 

probability of an observation being drawn from the constant 

distribution that always generates zeros is ; the parameter 

 then will have zero-inflation probability (Haight 1967). 

The probability distribution of a zero-inflated, Poissonian, 

random variable Y in our epidemiological, COVID 19, 

vulnerability-related, prognosticative model was given by

 The 

mean and variance of Y for the zero-inflated Poissonian was 

given by  The parameters  

and  was subsequently modelled as functions of linear 

predictors,  where  was one of the 

binary link functions: logit, probit, or complementary 

log-log. The log link function is typically used for  

(Freedman 2008). In our subcounty, district-level, 

COVID-19 epidemiological, forecast model, the underlying 

Poissonian distribution for the first subpopulation was 

assumed to have a variance that was equal to the 

distribution’s mean. However, this was an invalid 

assumption, as the data exhibited overdispersion. 

A useful diagnostic tool that can aid in detecting 

overdispersion is the Pearson chi-square statistic (Freedman 

2008). In this experiment Pearson’s chi-square statistic was 

defined as  in PROC FREQ. Pearson's 

chi-squared test was used to assess three types of comparison: 

goodness of fit, homogeneity, and independence in the 

COVID19 estimators. A test of goodness of fit established 

whether an observed frequency distribution in the 

sub-county, district-level, COVID-19, stratified 

epidemiological, forecast, vulnerability model differed from 

a theoretical distribution. This statistic had a limiting 

chi-square distribution, with df equal to the number of 

stratified, hierarchical, diffusion-oriented, geosampled 

observations minus the number of diagnostic parameters 

estimated. Comparing the computed Pearson chi-square 

statistic to an appropriate quantile of a chi-square 

distribution with  df constituted in this experiment as a 

test for overdispersion. 

If overdispersion is detected, the ZINB model often 

provides an adequate alternative (Haight 1967). The 

probability distribution of our subcounty, district-level, 

epidemiological, zero-inflated, negative binomial, random 
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variable Y in the COVID-19 model was given by

 where  was 

the negative binomial dispersion parameter. 

The mean and variance of Y for the zero-inflated  

negative binomial was subsequently given by

 and  

Because our ZINB model assumed a negative binomial 

distribution for the first component of the mixture, it had a 

more flexible variance function. Thus, it provided a means to 

account for overdispersion which was not due to the excess 

zeros geosampled in the empirical dataset. However, the 

negative binomial, and thus the ZINB model, achieved this 

additional flexibility at the cost of an additional parameter. 

Henceforth, if an epidemiologist, viral infectious disease 

modeller, or research collaborator fits a subcounty, 

district-level, potentially residually non-homoscedastic, 

multi-collinear, prognosticative, vulnerability-oriented, 

COVID-19, epidemiological, ZINB model and there is no 

overdispersion, the diagnostic non-asymptotical parameter 

estimators may be deemed less efficient compared to the 

more parsimonious ZIP model.  

The district-level, epidemiological, COVID-19, stratified, 

hierarchical diffusion, specified, explanatory, parameterized 

estimator, zero-inflated, Poisson probability model fitting 

exercise first estimated an RE term together with an intercept 

and a coefficient for the time covariate number-of-days, 

given by equation (2.3), and then decomposed this RE term 

into a SSRE and a SURE component. Consequently, we 

were able to portray the scatterplot of predicted versus 

observed values for the combination of contagion and the 

hierarchical, diffusion-related, parameter estimator, residual 

effects.  

Once the independent variables that you wish to retain in 

the model are identified, and there is a theoretical basis for 

thinking that the relationships may differ by space, GWR 

may be an appropriate next step (Griffith 2003). We 

attempted to exam the empirical, georeferenced dataset of 

epidemiological time series, dependent, non-homoscedastic, 

multicollinear, aggregation-oriented, geo-spatiotemporal, 

variables (e.g., “Median household income’) at the census 

tract subcounty, georeferenceable, district level using 

various GWR related paradigms. OLS models were initially 

run to determine the global regression coefficients (β) for the 

independent variables: yi = β0 + β1x1i + β2x2i +…+ βnxni + 

Ɛi with the estimator: β’ = (XT X)-1 XT Y The regression 

models that underlie our GWR were formulated as yi = β0 + 

β1x1i + β2x2i +…+ βnxni + Ɛi with the estimator: β’(i) = 

(XTW(i) X)-1XTW(i)Y where W(i) was a matrix of weights 

specific to the epidemiological, geo-spatiotemporal, 

hierarchical, diffusion-related, COVID-19, forecast-oriented, 

vulnerability model. The prognosticated regression residuals 

revealed the raw, geosampled, hierarchical, diffusion-related, 

epidemiological subcounty district data was non-normal.  

The following models were then studied: (i) GWR with a 

fixed distance or (ii) an adaptive distance bandwidth 

(GWRa), (iii) flexible bandwidth GWR (FB-GWR) with 

fixed distance: and (iv) adaptive distance bandwidths 

(FB-GWRa), (v) eigenvector spatial filtering (ESF), and   

(vi) RE-ESF (RE-ESF). Results revealed that the 

epidemiological, district-level, prognosticative COVID-19 

models designed to capture scale dependencies in local 

relationships (FB-GWR, FB-GWRa and RE-ESF) most 

accurately estimated the simulated VCMs where RE-ESF 

was the most computationally efficient. Conversely GWR 

and ESF, where SVC estimates are naively assumed to 

operate at the same spatial scale for each relationship, 

performed poorly. Results also confirm that the adaptive 

bandwidth GWR models (GWRa and FB-GWRa) were 

superior to their fixed bandwidth counterparts (GWR and 

FB-GWR) for predictively targeting and prioritizing, 

hierarchical diffusion-related, district-level, sub-county, 

aggregation-oriented, potential, hyper/hypo-endemic, 

transmission-related, georeferenceable, stratified, 

COVID-19 hot/cold spots. 

The scatterplot revealed classical V-shaped dispersion 

capture points [i.e., georeferenced, subcounty, diagnostic, 

hyperendemic, aggregation sites] with increasing infectious 

rates that was characterized by a Poissonian random variable. 

Because the mean and variance were the same in the 

vulnerability-oriented, COVID-19, district-level, forecast 

model, the deviations from the trend line tended to increase 

with increasing rates. Matrix (I – 11
T/27) Cs(I – 11

T/27)  

had five, whereas matrix (I – 11
T/31)CH(I – 11

T/31) had 

eight, eigenvectors with PSA satisfying the condition 

MCj/MC1 > 0.25. Table 1 summarizes results for these two 

cases, revealing that a hierarchical structure potentially 

non-homoscedastic, multicollinear, non-asymptotical, 

eigen-orthogonal eigenvector was very prominent, and that 

its contagion spatial structure component exhibited strong 

PSA in the hierarchical diffusion-related, time series, 

dependent, geosampled, district-level, subcounty, gridded, 

COVID-19, diagnostically stratifiable, georeferenceable, 

vulnerability-oriented, epidemiological, prognosticative, 

model output Eigen-autocorrelation played a prominent role 

in the derivation of the RE term. Positive geo-spatiotemporal 

autocorrelation (PSA0 means that geographically nearby 

values of a variable tend to be similar on a map: values tend 

to be located near values, (e.g., socio-economic values near 

other similar attribute feature values). (Griffith 2003) 

Results of zero-inflated Poisson regression appearing in 

Table 2 confirm that the addition of a hierarchical, 

diffusion-related, variable element to the analysis merely 

redistributed statistical explanation and facets between the 

SSRE and SURE terms without impacting upon their 

combined model outcome which was represented by their 

composite RE term alone. The AIC and BIC each decreased 

by a factor of 24 with the addition of a SSRE plus SURE 

term, confirming that autocorrelation plays an important role 

in models of COVID-19. Expansion of the SSRE alone to 

include covariate contributions in addition to latent 

geo-spatiotemporal autocorrelation reduced those terms 

contribution by a factor of three in our model, indicating the 

presence of PSA. 
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Table 1.  Spatial autocorrelation index and linear regression R2 values for selected Uganda RE decompositions 

Contagion diffusion onlay Contagion plus hierarchical diffusion 

eigenvector 
MCj/M

Cmax 

linear regression R2 
eigenvector 

MCj/M

Cmax 

linear regression R2 

SSRE SURE SSRE SURE 

Es,1 1.0000 0.3093 

 

Es,1 1.0000 0.3093 

 
Es,3 0.7040 0.1398 EH,6 0.4926 0.1543 

Es,8 0.2771 0.0946 Es,3 0.7040 0.0540 

Es,4 0.6734 0.0630  

Cumulative 0.7852 0.6066 0.3934 Cumulative  0.5176 0.4823 

NOTE: contiguity MC1 = 0.93024; hierarchical MC1 = 0.99280. 

 
Table 2 discloses that space-time RE specification derived 

from a RE term estimate, with its mean deviating from   

zero and its frequency distribution noticeably. In models 

describing a space-time autoregressive process y an 

important concept is that of separability (Anselin et al. 2008). 

This implies that the space-time covariance matrix can be 

decomposed to a Kronecker product of time and space 

covariance matrices (Fuentes 2006; Ma 2003). This allows 

for the application of a matrix polynomial in the lag operator 

L and finding time-stationarity conditions as intervals     

for serial autoregressive terms depending on space 

autoregressive terms (Debarsy et al. 2012; Elhorst 2001). 

Here the results were based on the covariance-stationarity. 

Table 2.  Selected Poisson regression results for the simple Uganda 
space-time RE specification 

feature 
DAY 

(M-1) 

DAY + 

SSRE 

DAY + SSRE + 

SURE (M-2) 

spatial autocorrelation only 

intercept −2.716 −3.473 −4.043 

deviance 28.61 7.11 2.56 

pseudo-R2 0.038 0.749 0.965 

AICc 65,606 12,149 4,135 

BIC 65,619 12.166 4,153 

𝜋 : zero inflation 0.207 0.040 0.020 

spatial plus hierarchical autocorrelation 

intercept −2.716 −4.043 −4.043 

deviance 28.61 2.56 2.56 

pseudo- R2 0.038 0.965 0.965 

AICc 65,606 4,136 4,135 

BIC 65,619 4,153 4,153 

𝜋 : zero inflation 0.207 0.020 0.020 

NOTE: the RE = SSRE + SURE arithmetic mean is −1.122, with its 

Pr(S-W) = 0.002, where S-W denotes the Shapiro-Wilk normality 

diagnostic statistic; −1.122 − 2.921 = −4.043 The means of SSRE and 

SURE are 0. 

NOTE: AICc denotes the corrected Akaike Information Criterion; BIC 

denotes the Bayesian Information Criterion. 

The hierarchical diffusion component in the MESTF 

model specification did more than merely redistribute effects 

within a limiting composite term like a RE ( βH = 0). Rather, 

it augmented contagion diffusion within the residual, 

hierarchical, diffusion-related, potential, non-homoscedastic, 

multicollinear, non-asymptotical, eigen-decomposed, 

aggregation-aggregation/-oriented, district-level, 

eigen-spatial, filter eigenvectors; although the estimators 

within each of these sets were orthogonal and uncorrelated, 

they did not necessarily possess this property Because    

this spatial analysis involved a complete space-time series, 

with nT = 611, the number of eigenvectors with  

MCj/MCmax > 0.25 was substantially larger than that for   

the simple space-time RE model specification: 141 for the 

geo-spatiotemporal, residual, autocorrelation component, of 

which the stepwise MESTF zero-inflated Poisson regression 

selected 43 of the geosampled, diagnostic, COVID-19 

stratified, explanatory, hierarchical, diffusion-oriented, 

potentially aggregation/non-aggregation--oriented, 

erroneous, non-normal components. Subsequently the 

stepwise regression selected 31 additional vectors (i.e., a 

total of 74), with these selections being simultaneous. Our 

model output portrayed an outcome of the hierarchical 

diffusion in Uganda (Figure 1) demonstrating that the 

MESTF specification shrinks the prediction dispersion 

vis-à-vis the simple space-time RE specification; Table 3 

corroborates this contention.  

The COVID-19 model portrays selected map patterns of 

the constructed MESTF, which was denoted as a linear 

combination of eigenvectors selected from two respective 

space-time weights matrices. This structural covariate 

captured a changing role displayed by the contagion and the 

hyper/hypo-endemic, aggregation/non-aggregation-oriented, 

georeferenced, hierarchical, diffusion-related, predictor, 

variable components, hence shifting from a hierarchically 

dominated mixture for the first day (R2 = 0.611, with one 

contagion and four hierarchical eigenvectors), to a purely 

hierarchical component for the 14th day (R2 = 0.487, with two 

eigenvectors), back to a hierarchically dominated mixture  

for the 20th day (R2 = 0.604, with two contagion and seven 

geo-spatiotemporal, geosampled, hierarchical diffusion- 

related, COVID-19, stratified, eigen-orthogonal, 

eigen-spatial filter, eigen-synthetic eigenvectors.  

The simple, space-time, RE, model specification (Table 3) 

rendered a description of the district-level, subcounty, 

COVID-19 diffusion that already had taken place (i.e.,     

a retrospective description). Including an additional 
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time-invariant RE term essentially did little more than 

replace several the selected eigen-spatial filter, eigenvectors 

(i.e., 43) with a common factor description; this term had 

both a SSRE and a SURE component but accounted for less 

than 3% of the space-time variance through a redistribution 

from the ESTF term which was accompanied by noticeable 

improvements in many of the model diagnostics. Both of the 

AICc and BIC decreases corroborate this finding. 

Table 3 also reveals that the various specifications yielded 

roughly the same slope coefficient for the global, time 

sensitive, aggregating/non-aggregating-oriented, COVID-19 

specified, multivariate, socio-economic, clinical and 

environmental, diagnostic determinants. In addition, the 

bivariate regression coefficients, whose theoretical values 

were 0 for the intercept (α) and 1 for the slope coefficient (β), 

implied that the zero-inflated, MESTF, Poisson specification 

included a covariate component. This model rendered the 

closest overall correspondence model results. Of note is  

that, based upon exploratory simulation experiments,    

zero inflation appears to induce deviations in bivariate 

regression-related coefficients optimally derived from their 

respective values in an epidemiological, district-level, 

COVID-19, subcounty, hot spot, predictive model. The 

models proposed in this study had several advantages for 

modelling hierarchical diffusion COVID-19 estimators. The 

models have flexible forms of marginal mean–variance 

relationship, the models can be fitted to bivariate 

zero-inflated count data with positive or negative 

correlations, and the models allow overdispersion of 

dependent variable (district-level COVID-19 prevalence). 

In part, the specifications in this paper parallel the IHME 

statistical forecasting model (IHME COVID-19 health 

service utilization forecasting team, 2020), whose negative 

critiques emphasize its lack of epidemiological content (for 

which the RE term substitutes). Nevertheless, the 

specification in this paper not only incorporates the 

SIR/SEIR conceptualization (Stehlé et al., 2011), including 

susceptible (i.e., total population), exposure (i.e., contagion 

and hierarchical components), and infectious (i.e., new cases) 

compartments, but also includes a mechanism for mitigation 

impacts, namely the time-varying, national, aggregate mean 

describing the epidemiological curve of subcounty, 

district-level, COVID-19. Social distancing, for example, 

can alter this curve, modifying regression parameter 

estimates of equation (2.3) to describe a flattened version of 

it. 

The outcome of our inferential Bayesian analyses was a 

systematic segment partitioned into two sub-segments, 

namely, the SSRE, which in the epidemiological, 

vulnerability-oriented, COVID-19, stratified, subcounty, 

district-level model was related to the spatially varying 

models which represented contagion and hierarchical 

diffusion mechanisms, and the unstructured SURE. Our 

SURE output was geographically random in nature. The 

SURE furnished clues about aspatial, omitted, potentially 

significant, epidemiological, diagnostic, indicator variables 

for controlling for district-level, higher rates [e.g., subcounty, 

hierarchical, diffusion-oriented, geo-spatiotemporally 

spilled-over, stratified regions with higher average daily 

Particulate Matter (PM2.5) exposure saw significantly 

higher rates of COVID-19 mortality]. The SURE term in our 

model constituted an explanatory response variable in a 

linear regression, with substantive attribute, homoscedastic, 

normalized, aggregation-oriented, diagnostic determinants 

(i.e., independent variables), which precisely revealed, the 

geolocation of the spilled over, hierarchical, 

diffusion-related, geo-spatiotemporal, determinant, attribute 

features (e.g., stratifiable, COVID-19,epidemiological, 

hyperendemic, hot spots) for some district-level populations 

in Uganda. 

Table 3.  Selected summary statistics for Uganda model parameter estimation results 

Numerical 

characteristic 

RE specification 

(M-2) 

MESTF versions 

ESTF, βH 

= 0 (M-3) 

ESTF 

(M-3) 

ESTF + 

SSREESTF 

ESTF + SSREESTF + 

SUREESTF (M-4) 

Scaling factor 1 1/5 1 1 

# eigenvectors 
2 contagion + 1 

hierarchical 

47 

contagion 

56 contagion + 

50 hierarchical 

ESTF: 34 contagion + 31 hierarchical; 

SSREESTF: 4 contagion + 0 hierarchical 

Deviance statistic 2.58 5.32 1.54 7.68 1.25 

Pseudo-R2 0.965 0.979 0.997 0.988 0.998 

AICc 4,135 5,591 2,647 5,112 2,498 

BIC 4,153 5,800 3,804 5,398 2,785 

𝜋 : zero inflation 0.019 0.050 0.006 0.032 0.008 

𝛼  from Y = α + β𝑌  −0.003 −0.010 −0.001 −0.004 −0.000 

𝛽  from Y = α + β𝑌  1.034 1.112 1.012 1.075 1.009 

𝛽 day (standard error) 0.7383 (0.0076) 
0.7752 

(0.0372) 

1.1039 

(0.0343) 

1.0772 

(0.0270) 

0.9742 

(0.0249) 

NOTE: AICc denotes the corrected Akaike Information Criterion; BIC denotes the Bayesian Information Criterion. 
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Figure 1.  The MESTF map of COVID-19 transmission due to, hierarchical diffusion diagnostic covariates at the district level in Uganda 

A conventional SURE term in the epidemiological, 

vulnerability-oriented, forecast model represented not only 

aspatial, hierarchical, diffusion-related co-factors that were 

in play in Uganda [e.g., crowding in food market places], but 

also connected geographic influences, such as demographic 

linkages at the district-level [i.e., georeferenceable 

geospatial cluster of non-contiguous, geosampled, subcounty 

covariates such as Euclidean distance measurements from 

peri-domestic and rural, agro-pastureland homesteads to a 

potential, hot spot, like a health facility, church, community 

well, primary school etc.]. The Bayesian paradigm achieved 

the SSRE-SURE partitioning by including repeated, 

epidemiological, georeferenced measures, which for the 

geosampled, diagnostic, COVID-19, district-level viral 

infection rates were characterizable in second order, 

eigen-autocorrelation, eigenvector eigen-geospace in PROC 

AUTOREG. The daily counts of cases for a georeferenced, 

district-level, COVID-19, stratified, aggregation-oriented 

geolocation, coupled with additional geosampled, residual, 

asymptotically normalized, non-heteroscedastic, 

non-multicollinear, unbiased, hierarchical, diffusion-related, 

information identified multiple, subcounty, hot spot, 

hyper-endemic, transmission geolocations [e.g. extensive, 

seasonal, climatic flooding conditions causing unnecessary 

crowding in internally displaced refugee campsites] were 

robustly, parsimoniously autoregressively interpretable. 

A key ingredient of our Bayesian approach for 

determining non-normality in the epidemiological estimator 

feature attributes in the hyper/hyperendemic, subcounty, 

district-level, hot/cold spot, diagnostic geo-spatiotemporal, 

geosampled, hierarchical, diffusion, related determinants 

was the choice of the prior distribution. We derived two 

versions of Jeffreys prior, the Jeffreys rule prior and the 

Independence Jeffreys prior, which has not yet been 

developed in the literature for non-normal, diagnostic, 

uncertainty-oriented, semi-parametric, non-asymptotical 

non-zero, geo-spatiotemporal, autocorrelation models. These 

priors can be employed for generating a Bayesian analysis of 

an aggregation-oriented, hierarchical, diffusion-related, viral 

infection, vulnerability–related, epidemiological, subcounty, 

district-level, diagnostic model when prior information    

is completely unavailable. Moreover, we propose an 

informative as well as a weakly informative prior for     

the autocorrelation parameter that are both based on an 

extensive literature review of empirical applications of the 

autocorrelation model and our experimental findings. Finally, 

we provide efficient MCMC algorithms to sample from the 

resulting posterior distributions from iteratively simulated, 

aggregation-oriented, hierarchical, diffusion-related, 

geo-spatiotemporally, spilled over, subcounty, district-level, 
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semi-parameterized, hyper/hypo-endemic, COVID-19, 

stratified diagnostic determinants in Bayesian eigenvector 

eigen-geospace. Simulation results here suggest that the 

model outperformed the ML model with respect to bias and 

frequentist coverage of credible and confidence intervals. 

Frequentist methods do not demand construction of a    

prior and depend on the uncertainty-oriented potential 

probabilities of observed and unobserved data (Cressie 

1993). 

The Bayesian estimation matrix was constructed 

employing normal priors for each of the error coefficient 

estimates which revealed both SSRE and SURE diagnostic 

effects in PROC MCMC. The residuals in the district-level, 

COVID-19, epidemiological, hot spot, prevalent, geospatial 

clusters revealed two major uncertainty estimate interactions: 

1) as the number of people in a subcounty geolocation in 

which infected persons resided increased and the percentage 

of infected persons increased, the COVID-19 rate tended to 

increase; and, (2) as the average time and the percentage of 

infected persons increased in a georeferenced geolocation, 

the standardized rate of COVID-19 tended to increase. In the 

low, stratified, COVID-19, georeferenced, geospatial 

clusters “Employment status” was an important predictor of 

disease transmission. The determinants, ‘Number of people 

living in a subcounty residence’ and ‘Older age’ were 

significant, transmission-oriented, hierarchical, diffusion- 

related, explanatory eigenvectors. SSRE, SURE, and RE (the 

sum of SSRE and SURE), explanatory, COVID, stratified, 

diagnostic, model components reflected the potential, 

non-unbiased, multicollinear, skew, non-homoscedastic, 

non-asymptotical, uncertainty estimators. SSRE was related 

to contagion and probabilistic, latent, geo-spatiotemporal 

autocorrelation. As noted previously, construction of this 

geographic structure built upon district-level, subcounty, 

population density, flows in geospace and established 

infrastructure. The amount of living space per person was a 

prominent, diagnostic, stratifiable, socio-economic covariate 

of the simple mixed model SSRE term, accounting for  

more than 40% of its geographic variance. The ratio of 

non-agricultural to agricultural population, a type of 

urban-rural index, accounted for roughly 25% of the simple 

mixed model SURE term. In combination, as a RE term, the 

male-to-female ratio supplemented these two, explanatory, 

aggregation/non-aggregation-oriented, hyper/hypo-endemic, 

hierarchical-diffusion-related, model estimators which 

increased the amalgamated geographic variance, thereby 

accounting for the linear combination of the two types     

of determinants (environmental and socioeconomics) to 

nearly 40%. The screening of numerous other subcounty, 

district-level geosampled determinants (e.g., age, health 

status, population density) failed to identify other possible, 

omitted, diagnostic, hierarchical, diffusion-related, 

regression variables, this topic merits subsequent future 

research. Because the two MESTF-RE components 

accounted for such a small proportion of space-time 

variation in the number of new georeferenceable subcounty, 

district-level COVID-19 cases, they were left as synthetic 

variates signifying minor omitted variable effects in that 

specification. 

The prognosticative, georeferenced, district-level, 

subcounty, epidemiological, vulnerability-oriented, model, 

deviations from the trend line tended to increase with 

increasing rates. Matrix (I – 11
T/27)Cs(I – 11

T/27) had five, 

whereas matrix (I – 11
T/31)CH(I – 11

T/31) has eight, 

eigenvectors with PSA satisfying the condition MCj/MC1 > 

0.25. The AICc and BIC each decreased by a factor       

of roughly 24 with the addition of a SSRE plus SURE term, 

confirming that latent, non-zero, geo-spatiotemporal 

autocorrelation plays an important role in asymptotically 

deriving semi-parametrizable diagnostic variables optimally 

reflecting district-level, subcounty, iteratively, forecastable, 

COVID-19, stratified, unbiased, aggregation-oriented, 

hierarchical diffusion tendencies. 

The time series portion of each georeferenced, 

geosampled, district-level geolocation in Uganda furnished 

repeated measures for optimally estimating the hierarchical, 

diffusion-related, hyper/hypo, endemic aggregation / 

non-aggregation-oriented, determinant tendencies in each 

time-invariant RE term in the two analyses which we 

summarized in this paper. For Uganda, the individual, 

subcounty, geolocation-specific, estimator optimally 

quantitated the RE term, in the diagnostically stratified, 

COVID-19, clinical, socioeconomic, and environmental, 

geosampled, time series, dependent variable values which 

were indistinguishable from their fixed effects (FE) term 

counterparts, except for Kampala whose CIs for both 

discrete output values included the other value. Because the 

number of cases increased over time with a trajectory 

initially tracking S-shaped exponential growth, immediately 

followed by a decline in number of cases, a logistic 

expression coupled with a quadratic function of the number 

of days since the first case of COVID-19 appeared in the 

country was a significant covariate (i.e., the daily average 

rate is cast as a function of time, and entered in its 

logarithmic form as a Poisson regression covariate, as for the 

Uganda analysis) of the following form: μ ̂_day = 

–[22.18609/(1+e^6.97888 )]^2 + [-0.00037day^2+22.18609 
/(1+e^(6.97888-0.18220×day) )]^2. 

4. Discussion 

This paper initially investigates multicollinearity, 

skew-heteroscedasticity and other non-normalities 

embedded in local Poissionian and GWR coefficients at    

a single, district-level, subcounty, grid-stratified geolocation, 

employing an empirical geosampled dataset for precisely 

identifying geo-spatiotemporal, hierarchical, diffusion- 

oriented, COVID-19, stratified, epidemiological, diagnostic, 

hyper/hypo-endemic determinants In this experiment, GWR 

constructed a separate OLS equation for every potential, 

geo-spatiotemporal, hierarchical, diffusion, district-level, 

geolocation in the Ugandan, empirical estimator dataset, 

which incorporated the dependent, explanatory, diagnostic, 
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determinants falling within the bandwidth of each target, 

georeferenced, subcounty, geospatial cluster (i.e., potential 

hyper-endemic hot spot), transmission-oriented geolocation. 

Bandwidth can be manually entered by the user (based    

on previous literature (e.g., Griffith 2003)), or it can be 

determined by the statistical software. Here, a first set of 

OLS models were initially run in R, to determine the 

bandwidth. If the bandwidth is not manually entered by an 

investigator, or epidemiologist most software problems 

allow the investigator to select the default or “adaptive” 

bandwidth, which is recommended in the literature (e.g., 

Chen 2014). 

Here OLS, hierarchical, diffusion-oriented models were 

run to determine the global regression coefficients (β) for the 

independent variables: yi = β0 + β1x1i + β2x2i +…+ βnxni + 

Ɛi with the estimator: β’ = (XT X)-1 XT Y [Eqn1.5]. Once 

the epidemiologically, diagnostic, time series, dependent, 

COVID-19, stratified, independent variables were retained 

in the district-level, subcounty, forecast-oriented, 

vulnerability model and identified, we noted that the 

relationships between the coefficients differed in regression 

space. The models that underlie GWR were subsequently 

written as yi = β0 + β1x1i + β2x2i +…+ βnxni + Ɛi with the 

estimator: β’(i) = (XTW(i) X)-1XTW(i)Y [Eqn1.7] where 

W(i) was a matrix of weights specific for a georeferenced, 

subcounty, district-level, geosampled geolocation i such that 

the diagnostically stratified COVID-19 determinant nearer to 

i were given greater weight than observations further away.  

We employed a divide-and-conquer Bayesian approach. 

We first created many data subsamples with much smaller 

sizes using the empirical epidemiologically geosampled 

dataset of eigendecomposed, hierarchical, diffusion-oriented, 

aggregation/non-aggregation-oriented, geo-spatiotemporal, 

COVID-19, diagnostic, stratified determinants. Then, we 

formulated the VCM as a linear mixed-effects model and 

developed a data augmentation algorithm for obtaining 

MCMC draws on all the subsets in parallel. Finally,      

we aggregated the MCMC-based estimates of subset 

posteriors into a single posterior, which we employed as a 

computationally efficient alternative to the true posterior 

distribution. We derived optimal posterior convergence rates 

for the posteriors of both the varying coefficients and     

the mean regression function in the vulnerability-related, 

prognosticative, district-level model. We provided a 

quantification on the orders of subset sample sizes and the 

number of subsets. The empirical results revealed that the 

combination schemes satisfied our assumptions, including 

the customized posterior, which had a better estimation 

performance than their main competitors across diverse 

uncertainty simulations and in the predictive, regression- 

related, epidemiological, data analysis of the geo- 

spatiotemporal spill-over, hierarchical diffusion of the virus 

at the subcounty district, level. Our geo-spatiotemporal, 

epidemiological, COVID-19, stratified, subcounty, district- 

level, eigen-decomposed, eigen-spatial filter, eigen- 

autocorrelation model revealed a flexible and scalable, 

heterogeneous, iterative framework which revealed 

multiscale propagation of asymptotical, multicollinear, zero 

autocorrelatable, skew, non-homoscedasticity and/ or, other 

propagation-oriented, erroneous, hierarchical diffusion- 

related estimator, attribute features due to violations of 

regression assumptions. 

The hierarchical diffusion of COVID-19 was summarized 

initially by two principal analytical space-time descriptions 

of the initial diffusion of the virus across Uganda the   

initial period of 19 (through 22/3/2020) and (through 

4/5/2021) days, respectively. The first model frequentist  

RE description, involving a time invariant spatially 

autocorrelated common factor captured zero autocorrelation, 

whereas the second model, a MESTF-RE description, 

involved synthetic space-time covariates which was 

augmented with a minor time invariant common factor, 

accounting for not only contagion but also the variable 

non-normality of the COVID-19 district-level, 

geo-spatiotemporal, hierarchical diffusion estimators. 

Because the number of cases increased over time with a 

trajectory initially tracking an S-shaped curve describing 

exponential growth, and overall tracking a bell-shaped type 

curve, a logistic transformation of a quadratic function of the 

number of days since the first case of COVID-19 appeared in 

the country was a significant determinant (i.e., the daily 

average rate was cast as a function of time, and entered in its 

logarithmic form as a Poisson regression covariate). This 

equation described the superimposed nonlinear trend line 

and the country-wide national trend [i.e., the curve 

governments seek to bend]. The model yielded a linear 

multiple correlation R2 of 0.43; removing extreme outliers 

attributable to a definitional change for case reporting 

increases this R2 to 0.87. In the space-time, district-level, 

subcounty, hierarchical diffusion data, 2% was attributable 

to redundant information. 

Thereafter the overall correlation between eigen- 

decomposed, GWR coefficients associated with the different 

empirically diagnostic, non-normal determinants in 

Bayesian eigenvector eigen-geospace were determined. 

Results indicate that the local non-asymptotical COVID-19, 

stratified, regression coefficients are potentially collinear, 

heteroscedastic, and/or zero autocorrelatable even if the 

underlying exogenous variables in the data generating 

process are uncorrelated. Based on these findings, applied 

GWR research may need to practice caution in substantively 

interpreting the spatial patterns of local, GWR-related 

COVID-19, time series, diagnostic stratifiable, determinants 

for removing geo-spatiotemporal non-asymptoticalness   

and other non-normalities for optimizing forecasting 

aggregation-oriented, hype/hypo-endemic district-level, 

subcounty, georeferenceable, COVID-19, hot/cold spots. An 

empirical disease-mapping example may be usable to 

motivate the GWR non-normality problem in subcounty, 

district-level, vulnerability-oriented, geo-spatiotemporal, 

hierarchical, diffusion-related, COVID-19 aggregation / 

non-aggregation-oriented models for controlling biased 

estimators in Bayesian eigenvector eigen-geospace. 

Our model variance implied a substantial variability in the 
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forecasted prevalence of COVID-19 across districts in 

Uganda based on hierarchical diffusion of the virus. Possible 

reasons for this spatial pattern in the geosampled COVID-19 

data include: (1) that geographic distributions of subcounty, 

district-level cases display some degrees of global, regional, 

and local map patterns, which potentially arise from a 

collocation of skew, non-homoscedastic, multicollinear, 

hyper/hypo-endemic aggregation/non-aggregation--oriented, 

asymptotically non-normal, time series, dependent, clinical, 

socio-economic and environmental, stratified, determinant 

characteristics in Bayesian eigenvector eigen-geospace.  

In conclusion site-specific, semi-parametric, Bayesian 

treated, eigen-spatial filter, eigen-orthogonal eigenvectors 

are useful in revealing the influence of unobserved, 

diagnostic, COVID-19, observational, variable non- 

normality due to violations of regression assumption and are 

more accurate in predictively mapping hierarchical 

diffusion-related compared with a global model in which   

the estimators and their evidential uncertainty-oriented 

probabilities do not vary across Bayesian eigenvector 

eigen-geospace. 
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