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Abstract  The contraflow technique has been extensively used to evacuate people in disasters situation. By flipping the 

orientation of necessary road segments, the flow value increases, and the evacuation time decreases significantly. Contraflow 

problems with asymmetric capacity and symmetric transit time on arcs have polynomial-time solutions. But in uneven road 

network topology, transit time may not be symmetrical, even affected by time or flow dependency. Recently, the 

two-terminal maximum dynamic and earliest arrival partial contraflow problems with non-symmetric capacity and transit 

time on arcs are solved polynomially. In this paper, we introduce two flow problems with asymmetric transit time. First, we 

present the multi-source single-sink earliest arrival transshipment contraflow problem, which deals with evacuating the 

maximum number of people each time. Second, the single-source multi-sink prioritized maximum dynamic partial 

contraflow problem that evacuates the people by assigning priority to critically injured people. We also provide 

polynomial-time algorithms to solve these problems.  

Keywords  Evacuation network, Network flow, Non-symmetric transit time, Lexicographic flow, Earliest arrival 

transshipment, Contraflow 

 

1. Introduction 

The human population has been in danger due to 

increasing number of different natural and man-made 

disasters, like floods, tsunamis, landslides, earthquakes, 

chemical explosions and terrorist attacks. An efficient 

evacuation strategy is required to save lives and property   

in such a situation. The strategy incorporates the four   

steps preparedness, planning, response, and recovery. 

Preparedness deals with the reduction or elimination of the 

effects of a hazard. The planning step draws a layout for the 

efficient evacuation. The response phase involves actions, 

whereas the recovery seeks to bring back the situation into 

normalcy. The evacuation network is considered, as a 

network associated with the transmission of people or 

commodities from disaster zones (sources) to the safety 

zones (sinks). The sources, sinks, and the junction of road 

segments constitute the nodes. The connections between the 

two nodes signify the arcs. On each arc, the capacity that 

limits the flow amount (i.e., transported people or goods), 

and the travel time are allocated. Historically, the study of 

flows model on networks mainly originated from problems 

related to the transportation of materials and  
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people. 

With the outstanding work of Ford and Fulkerson [9], a 

systematic mathematical treatment of network flow theory 

started. Flow over time, that is known as dynamic flow in 

literature, is different from classical static flows without time 

component. In [10], they only consider the problem of 

sending the maximum amount of flow from a source 𝑠 to a 

sink 𝑑 for fixed time horizon T. Gale [11] comes across the 

question of whether it is possible to send the maximum 

amount of flow from a source 𝑠 to a sink 𝑑 at each time 

point. He develops a more general theory in which flow is 

maximized on each time point known as the earliest arrival 

flows, but unable to provide an algorithm to solve this 

problem. Wilkinson [28] and Minieka [15] designed the 

algorithms to solve this problem in two-terminal network. 

For the general problem in multi-source and multi-sink 

network, the earliest arrival flow does not exist. But it does 

always exist for multi-source single-sink network with given 

supplies and demands [3]. In evacuation scenarios, 

sometimes it is necessary to provide priority on the certain 

terminals. If we maximize the flow from the source(s) to the 

sink(s) with given priority on terminals, then it is known as 

lexicographic maximum flow. The lexicographic maximum 

static flow problem with the multi-source multi-sink network 

is solved in polynomial-time [15]. The dynamic version of 

this problem with given priority ordering on terminals is 

presented by Hoppe and Tardos [14,13]. They also provide a 

polynomial-time solution for this problem, which plays an 
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important role in some cases of evacuation planning. 

Contraflow or lane reversals is a technique that increases 

the capacity of the lanes by flipping the orientation of 

opposite road segments of the transportation network 

topology in a fixed direction that increase the flow value and 

decrease the time. It has been primarily used as a part of 

evacuation schemes that increase the efficiency of traffic 

movement during an evacuation process by reverting 

incoming lanes towards the disastrous area.  

Kim et al. [15] presented greedy and bottleneck relief 

heuristics to solve the contraflow problem and experimental 

result shows that evacuation time can be reduced by at least 

40% by reversing at most 30% of the arcs. Rebennack et al. 

[27] introduce the models and provide analytical solutions 

for the two-terminal maximum and quickest flow problems 

with asymmetric capacity and symmetric transit time on arcs. 

They develop strongly polynomial-time algorithms, where 

lane reversals are made at time zero and kept fixed afterward. 

With the help of natural transformation, authors in [20,22] 

extended the discrete-time dynamic contraflow solutions to 

continuous-time settings. Pyakurel et al. [23] solved these 

continuous-time problems in the abstract network. The 

complexity of quickest contraflow problem was improved by 

solving the min-cost flow problem in [25]. Pyakurel and 

Dhamala [19] investigated the lexicographic maximum  

static and dynamic contraflow problems and presented 

polynomial-time solutions. The quickest facility location 

problems with or without contraflow were investigated in 

[17]. Dhungana and Dhamala [8] presented polynomial-time 

solutions to budget constraint contraflow problems. Authors 

in [18] solved network flow problem with intermediate 

storage. Furthermore, an integrated approach in the transit 

-based evacuation was investigated in [1]. Authors in [26] 

introduced a partial contraflow technique that increase the 

flow value also minimize the time, and saves unused arc 

capacities that can be used in emergency periods.   

Dhamala et al. [6] introduced same technique in the  

quickest multi-commodity problems and presented two 

approximation algorithms in a discrete-time setting. Authors 

in [24] provided efficient algorithms to solve maximum 

multi-commodity flow over time problems by using same 

approach. Gupta et al. [12] extended the result of [6] in a 

continuous-time setting. 

In all the contraflow problems discussed above, it is 

assumed that capacity is asymmetric, but transit time is 

symmetric on anti-parallel arcs. This assumption is not true 

in all cases due to the uneven road network in urban areas 

because of many reasons, for example time and flow 

dependency of the road segments. Therefore, transit time 

may not be symmetric in all cases of contraflow configuration. 

Bhandari and Khadka [4] studied the two-terminal maximum 

dynamic contraflow problem with non-symmetric transit 

times on anti-parallel arcs such that the reversals use the 

same arc transit time as it took before. This interprets the 

case of parallel arcs on the network using algorithm of [27]. 

Recently, Nath et al. [16] investigated contraflow problem 

with asymmetric capacity and transit time on arcs and 

presented a new solution approach to solve this problem such 

that a reversed arc takes travel time as that of unreversed 

counterpart. Therefore, it uses the property of asymmetric 

arc travel times and modifies the algorithm of [27]. By  

using the approach of Nath et al. [16], we introduce      

the multi-source single-sink earliest arrival partial 

contra-transshipment (EAPCT) problem, and provide 

polynomial-time solution. With such asymmetric arc travel 

times, we also present a polynomial-time algorithm to solve 

the lexicographic maximum partial contraflow (LMPCF) for 

single-source multi-sink network. This study minimizes the 

evacuation time and casualties significantly by assigning 

priority to critically injured people on uneven network 

topology.  

In our evacuation model, we assume that arc capacity and 

transit time are constant. In reality, the transit time of an arc 

is not constant but flow-dependent. To implement the 

contraflow approach on a road network, significant quantity 

of resources are required such as, traffic police and safety 

facilities.  

The rest of the paper is organized as follows. In Section 2, 

we give some basic notations and models used throughout 

the paper. We introduce the EAPCT problem with 

non-symmetric transit times on anti-parallel arcs and present 

an algorithm to solve it in Section 3. The LMPCF problem 

with non-symmetric transit times is introduced in Section 4. 

In this section, we present a polynomial-time algorithm to 

solve this problem. Section 5 concludes the paper. 

2. Mathematical Formulations 

The necessary denotations and mathematical formulations 

are set for the flow models, where reversals of arcs are 

permitted that improves an objective value by flipping their 

orientations whenever necessary. 

2.1. Flow Models 

Let us consider a dynamic network topology 𝑁 =
 (𝑉, 𝐴, 𝑢, 𝜏, 𝑆, 𝐷, 𝑇) with node set 𝑉 , arc set 𝐴 ⊆  𝑉 ×  𝑉 . 

We take 𝑛 and 𝑚 to denote the number of nodes and arcs in 

𝑁. The capacity function 𝑢𝑒 : 𝐴 →  𝑅+ restricts the flow 

that can enter the arc and a transit time function 𝜏𝑒 : 𝐴 →
 𝑅+ measures the arc traversal time. The time period 𝑻 is 

denoted by 𝑻 =  {0, 1, . . . , 𝑇} in discrete and 𝑻 =  [0, 𝑇) 
in continuous-time settings. We assume 𝑆 =  {𝑠}  and 

𝐷 =  {𝑑} for single-source single-sink flow problem. 

For a given 𝑁 , the corresponding auxiliary network is 

denoted by 𝑁𝑎  =   𝑉, 𝐴𝑎 , 𝑢𝑎 , 𝜏𝑎 , 𝑆, 𝐷, 𝑇 , with undirected 

edges in 𝐴𝑎  =    𝑣, 𝑤 :  𝑣, 𝑤 𝑜𝑟  𝑤, 𝑣 ∈  𝐴 , where 

𝑒𝑟  =   𝑤, 𝑣  is the reversed arc of 𝑒 =  (𝑣, 𝑤) . The 

capacity of the auxiliary arc is the sum of capacities of arcs e 

and er such that 𝑢𝑎 =  𝑢𝑒  +  𝑢𝑒𝑟 , where 𝑢𝑒  =  0 if 𝑒 ∉  𝐴. 

Due to uneven road network, transit time from 𝑣 to 𝑤 of an 

arc (𝑣, 𝑤)  is different from 𝑤  to 𝑣  that means it is 

non-symmetrical as shown in Figure 1(a). The transit time of 
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auxiliary arc 𝜏𝑎  depends on its orientation as shown in 

Figure 1(b) and 1(c). In the case of a one-way road network 

between two nodes, we assume that 𝜏𝑎
𝑒  =  𝜏𝑒  =  𝜏𝑒𝑟  for 

contraflow configuration. Other network parameters are 

unaltered. 

The classical network without the time dimension is      

a static network denoted by 𝑁 =  (𝑉, 𝐴, 𝑢, 𝑆, 𝐷) . Many 

properties developed based on static network topology are 

the foundation for most of the real-world dynamic flow 

problems. By considering the auxiliary network 𝑁𝑎  as a 

two-way directed one, we use it as the network 𝑁 in the 

following models. 

 

Figure 1.  (a) Represents a two-way road network, (b) represents the 

network, if arc 𝑒𝑟  is reversed in the direction of arc e, and (c) represents the 

network, if arc e is reversed in the direction of arc 𝑒𝑟 

Static flow with lane reversals. A static flow 𝑦 for the 

given static network 𝑁 without time dimension is defined 

by the function 𝑦: 𝐴𝑎  →  𝑅+ with flow value 𝜉 satisfying 

𝐻𝑦 =  

−𝜉 𝑖𝑓 𝑣 = 𝑠

0 ∀ 𝑣 ∈ 𝑉 ∖  𝑠, 𝑑 

𝜉 𝑖𝑓 𝑣 = 𝑑

          (1) 

 0 ≤  𝑦𝑒  ≤  𝑢𝑒  +  𝑢𝑒𝑟 , ∀ 𝑒 ∈  𝐴𝑎        (2) 

where the net flow at node v is 

𝐻𝑦 =  𝑦𝑒
𝑒∈𝐴𝑣

𝑖𝑛

−  𝑦𝑒
𝑒∈𝐴𝑣

𝑜𝑢𝑡

 

The sets 𝐴𝑣
𝑖𝑛  =  {(𝑤, 𝑣) | 𝑤 ∈  𝑉}  and 𝐴𝑣

𝑜𝑢𝑡  =
 {(𝑣, 𝑤) | 𝑤 ∈  𝑉} denote incoming arcs to node v, and 

outgoing arcs from node v respectively, such that 𝐴𝐷
𝑜𝑢𝑡 = ∅ 

and 𝐴𝑆
𝑖𝑛 = ∅ , except in the lane reversal network. The 

second condition of the constraints in (1) is flow 

conservation constraints at intermediate nodes. The 

constraints in (2) are capacity constraints bounded by 

capacities of the auxiliary network. Rebennack et al. [27] 

presented a polynomial-time algorithm for a single-source 

single-sink maximum static contraflow problem which is  

the backbone for further study. They also provided a 

polynomial-time solution of multi-source multi-sink static 

network problem. 

Dynamic flow with lane reversals. For a given dynamic 

network 𝑁 with constant transit time, a flow over time 𝑥 

defined by 𝑥𝑒 : 𝐴𝑎  ×  {0, 1, . . . , 𝑇}  →  𝑅+  with flow value 

𝑋 satisfies the constraints (3-5). 

𝐻𝑣
−(𝑇) − 𝐻𝑣

+ (𝑇) =  

−𝑋, 𝑖𝑓 𝑣 = 𝑠

0 ∀ 𝑣 ∈ 𝑉 ∖  𝑠, 𝑑 

𝑋, 𝑖𝑓 𝑣 = 𝑑

       (3) 

𝐻𝑣
− 𝜓 − 𝐻𝑣

+ 𝜓 ≥  0, ∀ 𝜓 ∈   0, 1, . . . , 𝑇 , 𝑣 ∈  𝑠  (4) 

Let  

𝐻𝑣
− 𝜓 =    𝑥𝑒(𝜃 − 𝜏𝑒)

𝜓

𝜃=𝜏𝑒𝑒∈𝐴𝑣
𝑖𝑛

 

and  

𝐻𝑣
+ 𝜓 =    𝑥𝑒(𝜃)

𝜓

𝜃=0𝑒∈𝐴𝑣
𝑜𝑢𝑡

 

 0 ≤  𝑥𝑒 𝜃 ≤  𝑢𝑒  +  𝑢𝑒𝑟 , ∀ 𝑒 ∈  𝐴𝑎 , 𝜃 ∈  𝑻    (5) 

The earliest arrival flow problem with arc reversal 

capability maximizes the value 𝑣𝑎𝑙 X, ψ , ∀ ψ ∈ 𝑻,  in (6) 

satisfying the constraints (3-5). 

𝑣𝑎𝑙max  𝑋, 𝜓 =    𝑥𝑒 𝜃 − 𝜏𝑒 
𝜓
𝜃=𝜏𝑒𝑒∈𝐴𝑑

𝑖𝑛   

=    𝑥𝑒(𝜃)
𝜓
𝜃=0𝑒∈𝐴𝑠

𝑜𝑢𝑡          (6) 

The maximum dynamic flow problem with arc reversal 

capability, maximize the value in (6) for given time horizon 

𝑻. 

Here, the second condition of the constraints in (3) are 

flow conservation constraints at time horizon T, whereas  

the constraints in (4) represent non-conservation of flow    

at intermediate time points 𝜓 ∈ 𝑻 = {0, 1, … , 𝑇}  in 

discrete-time setting. Similarly, the capacity constraints in (5) 

are bounded above by the capacities with lane reversals. 

Maximum dynamic partial contraflow with 

non-symmetric capacity and transit time. Maximum 

dynamic partial contraflow is the maximization of an 𝑠 − 𝑑 

flow in a given time horizon 𝑻 if the direction of arcs can be 

switched at time zero. This approach saves the unused arc 

capacities that can be used in case of emergency. The authors 

in [26] presented a polynomial-time algorithm for the 

maximum dynamic partial contraflow problem with 

asymmetric capacities and symmetric transit times. Nath   

et al. [16] presented an algorithm and proved the correctness 

for both parameters as asymmetric. Their algorithm modifies 

the network with arc capacity as the sum of two-ways 

capacities and the transit time taken as that of non-reversed 

arcs of the auxiliary network (cf. Figure 1(b), 1(c)). If there  

is a one-way arc, then 𝜏𝑒
𝑎  =  𝜏𝑒  =  𝜏𝑒𝑟  holds. Then a 

maximum dynamic flow is calculated by using a temporally 

repeated flow algorithm and flow is decomposed into paths 

and cycles. A removal of positive flows on cycles ensures 

that the flow moves in only one direction but not in both. 

This approach can be extended to the EAPCT and LMPCF 

problems, that we propose in the next sections. 

3. EAPCT Problem with Asymmetric 
Capacity and Transit Time 

In the evacuation, it is not possible to calculate the exact 

evacuation time in advance. So, it is better to send a 

maximum number of evacuees at each time 𝜃, ∀ 𝜃 ∈  𝑻 . 

Authors in [4,16] solved 𝑠 − 𝑑 earliest arrival contraflow 

problem with asymmetric capacity and transit time. But the 

earliest arrival contraflow problem for multi-source 
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multi-sink network is NP-hard as the MDPCF problem for 

multi-source multi-sink network is NP-hard. Pyakurel and 

Dhamala [21] presented an efficient algorithm to solve the 

multi-source single-sink earliest arrival contraflow problem 

with given supplies and demands at terminals and having the 

asymmetric capacity and symmetric transit time. We extend 

this result for EAPCT problem in this section. 

Problem 1. Consider a multi-source single-sink network 

𝑁 =  (𝑉, 𝐴, 𝑢, 𝜏, 𝑆, 𝑑, 𝑇) with given supplies and demand at 

the terminal nodes and having the constant non-symmetric 

capacity and transit time on each arc 𝑒 ∈  𝐴. The EAPCT 

problem is to compute a maximum 𝑆 − 𝑑 flow at each time 

satisfying the demands and supplies within time T such that 

the direction of arcs can be switched without any cost. 

Algorithm 1: The EAPCT algorithm with asymmetric arc 

parameters 

Input: Given a dynamic network 

𝑁 =  (𝑉, 𝐴, 𝑢, 𝜏, 𝑆, 𝑑, 𝑇) with constant and non-symmetric 

transit time and source-sink supply-demand vector (µ, 𝜈). 

Output: An EAPCT 

1.  The given network is transformed into the auxiliary 

network 𝑁𝑎
 
=  (𝑉, 𝐴𝑎 , 𝑢𝑎 , 𝜏𝑎 , 𝑆, 𝑑, µ, 𝜈, 𝑇 ) by adding 

two-way arc capacities such as 

𝑢𝑎  =  𝑢𝑒  +  𝑢𝑒𝑟  

𝜏𝑒
𝑎 =  

𝜏𝑒 , if arc erreversed towards 𝑒, 𝑒 ∈ 𝐴
𝜏𝑒𝑟 , 𝑖f arc e reversed towa𝑟𝑑𝑠 𝑒𝑟 , 𝑒𝑟 ∈ 𝐴.

  

2.  Construct the extended network 𝑁∗𝑎  of 𝑁𝑎  by 

adding super source and connect other sources to super 

source by an arc. 

3.  Compute maximum dynamic flow on extended 

network 𝑁∗𝑎  by using algorithm of Pyakurel and 

Dhamala [21]. 

4.  Decompose the flow 𝑦 along paths and cycles and 

remove the flow in cycles. 

5.  Reverse 𝑒𝑟 ∈  𝐴  up to the capacity 𝑦𝑒  −  𝑢𝑒  iff 

𝑦𝑒 >  𝑢𝑒 , 𝑢𝑒  replaced by 0 whenever 𝑒 ∉  𝐴. 

6.  For each 𝑒 ∈  𝐴, if 𝑒𝑟  is reversed, 𝑠𝑐(𝑒𝑟)  =  𝑢𝑎  −
 𝑦𝑒  and 𝑠𝑐(𝑒)  =  0. If neither e nor 𝑒𝑟  is reversed, 

𝑠𝑐(𝑒)  =  𝑢𝑒  −  𝑦𝑒  >  0 , where 𝑠𝑐(𝑒)  is the saved 

capacity of e. 

7.  Transform the solution to the original network. 

Theorem 1. Algorithm 1 solves the EAPCT with 

asymmetric capacity and transit time on network 𝑁 
optimally. 

Proof. The proof of the theorem consists of two steps. First, 

we show the feasibility. For this, we only have to show that 

Step 5 of the algorithm is feasible. Step 3 is feasible as shown 

in [21]. After applying Step 4 the flow is either along with arc 

e or er, but not in both implies feasibility of Step 5. All other 

steps are feasible saving arc capacities as in [26] in Step 6. 

Therefore, all the steps of Algorithm 1 are feasible. Second, 

we prove the optimality of the algorithm. By adding super 

source, a single-source single-sink extended network of 

reconfigured 𝑆 −  𝑑  network is formed. Any optimal 

solution of the earliest arrival flow problem with lane 

reversal on network 𝑁  is also a feasible solution of the 

earliest arrival problem on the transformed network 𝑁∗𝑎   as 

in [21]. According to [3,21], we can compute minimum cost 

circulation on the transformed network 𝑁∗𝑎 . The solution 

obtained in transformed network 𝑁∗𝑎  is the same as in the 

auxiliary network 𝑁𝑎 . As the optimal flow obtained is not 

changed and the capacity of unused arcs are saved, we can 

transform the solution to the original network. Thus, the 

earliest arrival flow on the transformed network is equal to 

the EAPCT for the original network 𝑁. 

Corollary 1. The EAPCT with asymmetric capacity and 

transit time on arcs can be computed in polynomial-time 

complexity. 

Proof. The complexity of the algorithm is dominated by 

Steps 3 and 4. The remaining steps can be computed in linear 

time. The earliest arrival flow problem can be computed on 

the auxiliary network in polynomial-time in Step 3 according 

to [3,21]. This solution is equivalent to the earliest arrival 

contraflow problem on the given network. The flow can be 

decomposed in 𝑂(𝑚𝑛) time in Step 4. Hence, the EAPCT 

with asymmetric capacity and transit time can be computed 

in polynomial-time. 

4. LMPCF with Non-Symmetric 
Capacity and Transit Time 

Given an evacuation network 𝑁 =  (𝑉, 𝐴, 𝑢, 𝜏, 𝑆, 𝐷, 𝑇 ) 

with non-symmetric capacity and transit time on each arc 

with fixed priority ordering at terminals, the LMPCF 

problem is to find a feasible dynamic flow at each priority 

terminal with arc reversals of only necessary capacities.  

The LMPCF problem with given supplies and demands at 

sources and sinks has been solved in polynomial-time 

[13,14]. However, if supplies and demands are unknown, 

then it is also solvable in the same complexity due to priority 

on terminals. In this section, we introduce LMPCF problem 

with non-symmetric capacity and transit time on 𝑁 =
 (𝑉, 𝐴, 𝑢, 𝜏, 𝑠, 𝐷, 𝑇)  and present Algorithm 2 to solve 

Problem 2. The solution of LMPCF in the reconfigured 

network 𝑁𝑎 =  (𝑉, 𝐴𝑎 , 𝑢𝑎 , 𝜏𝑎 , 𝑠, 𝐷, 𝑇 )  of Algorithm 2 is 

computed by calculating minimum cost flow in Step 2 by 

saving unused arc capacities after δ iterations within time 

horizon T. 

Problem 2. Given a multi-terminal network 𝑁 =
 (𝑉, 𝐴, 𝑢, 𝜏, 𝑠, 𝐷, 𝑇 )  with terminals priority, the LMPCF 

problem with non-symmetric capacity and transit time is to 

find a feasible flow that lexicographically maximizes the 

amount of flow at each priority terminals if the arc direction 

can be reversed. 

Algorithm 2: The LMPCF algorithm with non-symmetric 

transit time 

Input: Given a dynamic network 

𝑁 =  (𝑉, 𝐴, 𝑢, 𝜏, 𝑠, 𝐷, 𝑇) with constant and non-symmetric 

transit time. 

Output: An LMPCF 

1.  Given network is transformed into the auxiliary 

network 𝑁𝑎 =  (𝑉, 𝐴𝑎 , 𝑢𝑎 , 𝜏𝑎 , 𝑠, 𝐷, 𝑇 ) such that 
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𝑢𝑒 =  𝑢𝑒  +  𝑢𝑒𝑟  

𝜏𝑒
𝑎 =  

𝜏𝑒 , if arc erreversed towards 𝑒, 𝑒 ∈ 𝐴
𝜏𝑒𝑟 , if arc e reversed towards 𝑒𝑟 , 𝑒𝑟 ∈ 𝐴.

  

2.  Compute lexicographic maximum flow on 

transformed network 𝑁𝑎   by using the algorithm of 

Hoppe and Tardos [14]. 

3.  Decompose the flow 𝑦 along paths and cycles and 

remove the flows in cycles. 

4.  Reverse er ∈ A up to the capacity 𝑦𝑒  −  𝑢𝑒  iff 

𝑦𝑒  >  𝑢𝑒 , 𝑢𝑒  replaced by 0 whenever 𝑒 ∉  𝐴. 

5.  For each e ∈ A, if 𝑒𝑟  is reversed, 𝑠𝑐(𝑒𝑟)  =  𝑢𝑎  −
 𝑦𝑒  and 𝑠𝑐(𝑒)  =  0. If neither e nor 𝑒𝑟  is reversed, 

𝑠𝑐(𝑒)  =  𝑢𝑒  −  𝑦𝑒  >  0 , where 𝑠𝑐(𝑒)  is the saved 

capacity of e. 

6.  Transform the solution to the original network. 

Theorem 2. An optimal solution to LMPCF with 

non-symmetric capacity and transit time on arcs can be 

computed in polynomial-time. 

Proof. To prove the theorem, we have to prove the 

feasibility, optimality, and complexity of the algorithm. All 

steps of Algorithm 2 are feasible since Step 2 of the 

algorithm is feasible according to Hoppe and Tardos [14]. 

Now, we prove the optimality of the algorithm. From the 

feasibility, any optimal solution of the LMPCF problem on 

network 𝑁 is also a feasible solution to the lexicographic 

flow problem on the corresponding auxiliary network 𝑁𝑎 . 

An LMPCF problem can be solved in polynomial-time    

by using the algorithm of [14]. A temporally repeated 

lexicographic flow solution can be obtained optimally on the 

auxiliary network 𝑁𝑎 . Moreover, any optimal solution on 

𝑁𝑎  is equivalent to a feasible solution to given network 𝑁. 

The partial lane reversals approach saves the unused 

capacities of the arcs. Thus, the solution of the LMPCF on 

each arc of the network 𝑁 can be computed optimally. 

The complexity of Algorithm 2 is dominated by Steps    

2. According to [14,19], Step 2 is solved in 𝑂(𝛿 ×

 𝑀𝐶𝐹 (𝑚, 𝑛))  time, where 𝑀𝐶𝐹 (𝑚, 𝑛)  =  𝑚 𝑙𝑜𝑔 𝑛(𝑚 +
 𝑛 𝑙𝑜𝑔 𝑛), the complexity of minimum cost flow problem. 

Since flow can be decomposed in 𝑂(𝑚𝑛)  times and 

remaining steps can be solved in linear time 𝑂(𝑚) , the 

problem can be computed in polynomial-time complexity. 

 

(a) Network with (capacity, transit   time) 

 

(b) Modified network with (capacity, transit   time) 

Figure 2.  (a) Two-way road network with arc capacity and transit time (b) 

Transformed network of (a) 

Table 1.  LMPCF solution with priority on sinks 𝑑2 ⊆ 𝑑1  ⊆  𝑑3 

Time Horizon Paths Flow at 𝑑1 Flow at 𝑑2 Flow at 𝑑3 Total flow 

2 𝑠 −  𝑎1  −  𝑑2 - 3 - 3 

3 

𝑠 −  𝑎1 − 𝑑2 

𝑠 −  𝑎3 − 𝑑1 

𝑠 −  𝑎4 − 𝑑3 

- 

3 

- 

3 

- 

- 

- 

- 

1 

6 

9 

10 

4 

𝑠 −  𝑎1 − 𝑑2 

𝑠 −  𝑎3 − 𝑑1 

𝑠 −  𝑎4 − 𝑑3 

- 

3 

- 

3 

- 

- 

- 

- 

1 

13 

16 

17 

5 

𝑠 −  𝑎1 − 𝑑2 

𝑠 −  𝑎2 − 𝑑2 

𝑠 −  𝑎3 − 𝑑1 

𝑠 −  𝑎3  −  𝑎2  −  𝑑1 

𝑠 −  𝑎4 − 𝑑3 

- 

- 

3 

3 

- 

3 

3 

- 

- 

- 

- 

- 

- 

- 

1 

20 

23 

26 

29 

30 

6 

𝑠 −  𝑎1 − 𝑑2 
𝑠 −  𝑎2 − 𝑑2 
𝑠 −  𝑎3 − 𝑎2 − 𝑑2 
𝑠 −  𝑎3 − 𝑑1 
𝑠 −  𝑎3  −  𝑎2  −  𝑑1 
𝑠 −  𝑎4 − 𝑑3 

- 

- 

- 

3 

1 

- 

3 

3 

2 

- 

- 

- 

- 

- 

- 

- 

- 

1 

33 

36 

38 

41 

42 

43 
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Example 1. Consider a network with single source s and 

multiple sinks 𝑑1 , 𝑑2 and 𝑑3. The first and second numbers 

on the arcs represent capacity and transit time on the arcs, 

respectively. We wish to find lexicographic maximum 

dynamic flow by giving priority to sinks, i.e., 𝑑2  ⊆  𝑑1  ⊆
 𝑑3. The auxiliary network is shown in Figure 2.  

According to Step 2 of the algorithm, add super source 

node 𝑠∗, and arc having infinite capacity and transit time 

−(𝑇 +  1)  from 𝑑2  to 𝑠∗ . Joining an arc 𝑠∗ − 𝑠  having 

infinite capacity and zero transit time and time horizon T = 6, 

we find minimum cost circulations. 

(i) 𝑠 − 𝑎1  −  𝑑2  −  𝑠∗  −  𝑠 

(ii) 𝑠 − 𝑎2  −  𝑑2  −  𝑠∗  −  𝑠 

(iii) 𝑠 − 𝑎3  −  𝑎2  −  𝑑2  −  𝑠∗  −  𝑠 

Choose minimum cost cycle 𝑠 − 𝑎1  −  𝑑2  −  𝑠∗  −  𝑠, 
the feasible flow along this path is 𝑥𝑖  =  3  units. After 

sending 3 units flow along this path, we calculate the 

residual network. The next min-cost circulation cycle is 

𝑠 − 𝑎2  −  𝑑2  −  𝑠∗  −  𝑠. The feasible flow along this path 

is 𝑥  𝑖+1  =  3. After sending 3 units flow along this path, 

again we calculate residual network. The next min-cost 

circulation cycle is 𝑠 − 𝑎3  −  𝑎2  −  𝑑2  −  𝑠∗  −  𝑠 . The 

feasible flow along this path is 𝑥  𝑖+2  =  2. Now, there is no 

path from s to 𝑑2. So, deleting the edge from 𝑑2 to 𝑠∗ and 

adding the edge from the next priority sink, i.e., 𝑑1  to super 

node 𝑠∗, we repeat the same process until there is no path 

remaining from the source to any sinks. Hence the algorithm 

terminates with the lexicographic maximum flow as shown in 

Table 1. 

5. Conclusions 

The application of the contraflow approach in an existing 

transportation network has been increased during the last 

decades to save the lives of people and their property. The 

polynomial-time solution of contraflow problems with 

asymmetric capacity and symmetric transit time on arcs has 

been presented. Due to uneven road network topology, the 

maximum dynamic, earliest arrival contraflow problems 

with asymmetric capacity, and transit time on arcs has been 

studied. The contraflow problems with asymmetric transit 

time on lanes are the generalization of the problem with 

symmetric transit time and have the same time complexity.  

We introduced an EAPCT problem with asymmetric 

capacity and transit times on arcs and presented an algorithm 

to solve it in polynomial-time. During the evacuation, it is 

beneficial to assign priority to certain terminals to save the 

lives of injured people. So, we also extended this approach 

and presented a polynomial-time algorithm to solve LMPCF. 

As we have investigated the problems in single-commodity, 

we want to extend it for multi-commodity flow problems and 

generalized dynamic flow problems. Furthermore, we are 

interested in testing the performance of the algorithm by 

taking the real data set of the road network of Kathmandu 

metropolitan city. 
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