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Abstract  Initially, we provide basic knowledge of definitions and concepts related to the concept of matching in the 

graph. We are studying a model of games based on two players who take turns adding edges to G, this process eventually 

produces a maximal matching of the graph. We call the first Maximizer and second player Minimizer. The first aims to get a 

final matching to be large while the second one wants to reduce it. Maximizer wins if he manages a maximal matching while 

Minimizer wins if he can prevent him from doing this. The matcher number αg  G  is the number of edges chosen when both 

players play optimally, while the matching number α   G  is the number of maximum matching edges. In this research we 

study the relationship between αg  G  and α   G . And we also prove some results on types of graph. 
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1. Introduction 

As the title suggests, this research is about games on 

graphs. At first sight, the topic may suggest lots of fun since 

games are widely recognized as amusing. But the reader 

should keep in mind that this is a collection of mathematical 

results and as such has a moderate fun impact. 

Matching in graphs has been an important topic and has a 

lot of applications for solving problems. It is used to solve 

Important problems. This can be generalized to solve any 

problem that can represented as a graph, we will discuss the 

general matching idea and Matching in graphs. 
The matcher game is related to the growing family of 

competition parameters or competitive optimization games 

on graphs and hypergraphs. For example, Phillips and Slater 

introduced a game where two players alternate adding 

vertices of  G  to an independent set until it becomes a 

maximal independent set. One player wants the final set to be 

large; the other wants it to be small. More recently, Cranston 

et al. [1] introduced a game where the players alternate 

adding edges of G to a matching until it becomes a maximal 

matching. Theirs is equivalent to the game of played on the 

line graph and is a very different game to ours. Probably the 

best-known such parameter is the game chromatic number, 

which was introduced by Brams for planar graphs (cf. [2]) 

and independently by Bodlaender [3] for general graphs, and 

for list colorings by Borowiecki et al. [4]. There is also work  
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on domination [5,6], transversals in hypergraphs [7,8] and 

more. 

We denote the matching number of graphs  G by α  G , 
and define the lower matching number α L G  as the 

minimum cardinality of a maximal matching of G. 
The main goal is to study the values of the game that fall 

between α L G  and α  G . where we have two cases either 

Minimizer starts and the two values are equal and therefore 

the matching number is not interesting so our focus in this 

research is on the Max-start matcher number which we 

simply call the matcher number. There we show that, while 

for bipartite graphs the matcher number equals the matching 

number, in general αg  G ≥
2

3
α  G , and we characterize the 

graphs G  for which αg  G =
2

3
α  G . We also investigate  

the relationship with the lower matching number, showing 

that αg  G ≥ 2α  G − 2α L G . We conclude with some 

sufficient conditions for αg  G   to be half the order. 

1.1. Introduction of the Matching Game 

In this research we introduce the matching game. This   

is played on undirected graph G  by two players, called 

Maximizer and Minimizer, who take turns in constructing a 

matching of G. Each round, one player chooses a vertex u𝔦 

with at least one neighbor not previously chosen, and the 

other player chooses a vertex v𝔦 not previously chosen that 

is a neighbor of u𝔦. This process continues until no more play 

is possible; that is, the edges u𝔦v𝔦 form a maximal matching 

of G. Maximizer wishes to maximize the number of edges  

in this matching, while Minimizer wishes to minimize it. The 

Max-start matcher number αg  G   of G is the number of 

edges in the matching when Maximizer starts and both 

players play optimally, while the Min-start matcher number 

α g
  G  of G is the number of edges chosen when Minimizer 

http://creativecommons.org/licenses/by/4.0/
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starts and both players play optimally. 

For notation and graph-theory terminology not defined 

herein, we in general follow [9]. We denote the degree of a 

vertex v in a graph G by d v . The minimum degree among 

the vertices of G is denoted by δ G . 
The following are some important concepts: 

  A matching M: is a set of edges in G no two of which 

are adjacent. 

  A perfect matching M: if every vertex of G is incident 

to an edge of M. 

  Maximal matching: if no other edges of  G  can be 

added to M. 

  Maximum matching: are largest maximal matching. 

  Matching number α  G : is number of edges in the 

maximum matching of G. 

  Lower matching number α L G : is the minimum 

cardinality of a maximal matching of G. 

  If M is a matching in G, then a vertex is M-matched or 

covered by M  if it is incident with an edge of M ; 

otherwise, the vertex is M-unmatched. 

  A path or cycle is M -alternating of its edges are 

alternately in and not in M. 

  Max start matcher number  αg  G : is the number of 

edges in the matching when Maximizer starts and both 

players play optimally 

  Min start matcher number  α g
  G : is the number of 

edges chosen when Minimizer starts and both players 

play optimally. 

The following figure shows the difference between 

Maximal matching and Maximum matching. 

 

 
Figure 1.  The difference between Maximal matching and Maximum 

matching 

2. The Minimizer Starts the Game 

We start by showing that the Min-start matcher number of 

a graph is precisely the matching number of the graph. We 

shall need the following trivial well-known preliminary 

lemma.  

Lemma 1.  

For every graph G, every non-isolated vertex is incident 

with an edge that belongs to some maximum matching of G  
[10].  

In the following graph we note that every vertex is 

incident with an edge belong to a maximum matching 

 

Figure 2.  Example of Lemma 1 

Theorem 1. 

If G is a graph, then have  α g
  G  = α  G . 

Proof. 

We show that Maximizer has a strategy that guarantees 

that the Min-start matcher game always finishes with a 

maximum matching, implying that α g
  G  = α  G . Suppose 

that Minimizer chooses vertex u. By Lemma 1, the vertex  u 

is incident with an edge, say uv , that belongs to some 

maximum matching, M  say, In G. So, Maximizer chooses 

vertex v . Then let G = G − {u, v}.  Note that α  G  =

α  G − 1, while by induction we have α g G  = α  G  , then 

α g
  G  = α  G − 1, and from it α g

  G  + 1 = α  G − 1 + 1 

and then α g
  G  = α  G . 

3. The Maximizer Starts the Game 

For the remainder of the paper we study the Max-start 

matcher game. Here is an example: 

Lemma 2. 

 

Figure 3.  Max start matcher number for the cycle C8 and C7 
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For the path Pn  with n ≥ 1  it holds that α g Pn =

 n ∕ 2 . For the cycle Cn  with n ≥ 3  it holds that 

α g Cn =  n ∕ 2  [10]. 

For the cycle C8 and C7, we find α g C8 =  8 ∕ 2 = 4 

and α g C7 =  7 ∕ 2 = 3 as shown in Figure 3. 

The above case is an example where the matcher number 

equals the matching number. For an example where the 

matcher and matching numbers are different is the following: 

Lemma 3.  
If G is a graph with minimum degree at least two that 

contains a unique maximum matching, then αg  G < α  G . 

Proof. 
Let  M  be the unique maximum matching in  G . By 

Lemma 1, every vertex is incident with M; that is, M is a 

perfect matching. Let u  be the first vertex chosen by 

Maximizer. Since u has degree at least two, Minimizer can 

respond by choosing a vertex v such that uv is not in M; 

thus, the maximal matching that is constructed will not be M. 

It follows that αg  G < α  G . 
Definition: We define a vertex v of a graph G as liberal 

if it is not isolated and every edge incident with v belongs to 

some maximum matching in G. 
An example in the following figure we call the vertexes 

v2 and v3 liberal vertex, while the vertexes  v1 and v4 are 

not. 

 

Figure 4.  Graph that contains liberal vertexes 

The usefulness of the idea can be expressed in the 

following observation. Recall that a family of graphs is 

hereditary if it is closed under vertex removal. 

Lemma 4. 

Let 𝒢  be a hereditary graph family such that every 

nonempty graph in 𝒢  has a liberal vertex. Then for all 

G∈𝒢  it holds that αg  G =  α  G . 

Proof.  

The proof is by induction. If G  has no edges, then 

αg  G =  α  G = 0. If G is nonempty, then by assumption 

there is a liberal vertex in G, say u. Maximizer chooses this 

as his first move. Let v be the response of Minimizer and let 

G = G − {u, v}.  Note that α  G  = α  G − 1 , while by 

induction we have αg  G  = α  G    since  G ∈ 𝒢 , then 

αg  G  = α  G − 1, and from it αg  G  + 1 = α  G − 1 + 1 

and then αg  G = α  G . 

Note from Figure 4 for liberal vertex v2  we have 

 αg  G =  α  G = 2. 

For example, it is immediate that any end-vertex of a 

graph is liberal; thus trees/forests are examples of the above 

situation. We show next that isolate-free graphs without 

perfect matchings always have a liberal vertex (see [11]).  

Lemma 5. 

If  u is a non-isolated vertex and there exists a maximum 

matching M where u is M -unmatched, then  u is liberal. 

Proof.  

As in the proof of Lemma 1, every neighbor w  of u is 

incident with an edge of M, say fw , and (M\{fw }) ∪ {uw} 

is a maximum matching in G containing uw. That is, u  is 

liberal.  

3.1. Bipartite Graphs  

We conclude below some properties to see the relation 

between  αg  G   and α  G . 

Lemma 6.  

If G is an isolate-free bipartite graph, then each partite set 

contains a liberal vertex. 

Proof. 

Color red all edges of G  that belong to no maximum 

matching. Let M be a fixed maximum matching of G, and 

color blue all edges of M. Thus, each vertex of G is incident 

with at most one blue edge. 

Let us say a path is happy if the edges alternate colors. Let 

p ∶  v1 v2 … vk  be a longest happy path in G. As in the proof 

of Lemma 5, an M-un matched vertex is not incident with 

any red edge. So if the first edge of p is red, vertex v1  must 

be incident with a blue edge; by the maximality of p, this 

blue edge must join v1  to a vertex of p; indeed, this blue 

edge must join v1  to vk , since all other vertices of p are 

already incident with a blue edge. But then, if we take M  
and remove the (blue) edges of p and add the red edges of p, 

we get another maximum matching, contradicting the claim 

that the edges are red. It follows that both the first and last 

edge of the happy path p  are colored blue. In particular this 

implies that k is even. 

Suppose that v1  is not liberal. That is, it is incident with 

at least one red edge. It follows by the maximality of p that 

v1 vi  is a red edge for some i ∈   3, … , k . Since  G  is 

bipartite, the cycle C ∶  v1 v2 … vi v1  is an even cycle whose 

edges alternate between blue and red edges. Replacing the 

(blue) edges of M that belong to  C with the (red) edges of 

C not in M and leaving all other edges of M  unchanged, 

produces a new maximum matching of G that contains some 

red edges, contradicting the definition of a red edge [10]. 

And by this we have proven the vertex v1  is liberal and in 

the same way we prove that  vk  is liberal, then every partite 

sets have liberal vertex. 

Theorem 2.  

If G is a bipartite graph, then αg  G =  α  G . 

Proof. 

It is produced from Lemmas 4 and 6 [10]. 

An example of this, in the following figure we have 

αg  G =  α  G =  4. 
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Figure 5.  Example of bipartite graph has αg  G =  α  G  

Theorem 3. 

If G is a complete multipartite graph, then αg  G =  α  G . 

Proof.  

Assume G is a complete multipartite graph with partite 

sets V1, … , Vk  where  V1 = max   V1 , … ,  Vk  . By 

Lemma 4 it is sufficient to show that if  G is nonempty then 

it contains a liberal vertex. By Lemma 5 we may assume that 

G has a perfect matching, say M.  

We claim that every vertex u ∈ V1 is liberal. For, suppose 

there is an edge uv incident with u that is not in any perfect 

matching; say v ∈ V2. By symmetry, no edge between V1 

and V2  is in a perfect matching. Since M  is perfect, it 

contains edges incident with u  and v; say uu′ and vv′. If 

u′ and v′ are adjacent, then (M\{uu′, vv′}) ∪ {uv, u′v′}  is a 

perfect matching that contains the edge uv, a contradiction. 

So, assume that u′ and v′ are in the same partite set, say V3 

(as observed earlier, u′ ∉ V2 and v′ ∉ V1). 

Since  V1 ≥   V3 , there is a vertex, w say, in V1 that is 

not M-matched to a vertex of V3. Hence, the vertex w is 

incident with an edge of M,  say ww′, where w′ ∉ V1 ∪
V2 ∪ V3. But then (M\{vv′, ww′}) ∪ {vw, v′w′} is a perfect 

matching that contains the edge vw, a contradiction. Thus, 

every vertex of V1 is liberal [10].  

An example of this, in the following figure the complete 

multipartite graph k2,2,2 we have αg  G =  α  G =  3. 

 

Figure 6.  Complete multipartite graph k2,2,2 

4. Lower Bounds  

We next consider lower bounds for the matcher game, 

especially in relation to the matching and lower matching 

numbers. We will need the following lemma. 

Lemma 7. 

If G is a graph and  A is an independent set of vertices 

such that there is a matching that covers A, then αg  G ≥

|A|. 

Proof.  

Let H be the bipartite subgraph of G  with vertex set 

A ∪ N(A)  and edge-set the edges incident with  A . By 

Lemma 6 there is a vertex v  of A  that is liberal in H . 

Maximizer chooses this vertex. Say Minimizer chooses w 

in response. Since v is liberal in H, the edge vw is in a 

maximum matching N  of H . The matching N −  vw   
covers  A − {v} in G − {v, w}.  Thus the result follows by 

induction.  

For example, the above lemma shows that if a graph  G 

has a perfect matching, then αg  G ≥  α G , here α G  is 

the independence number of G . We next use the above 

lemma to provide a lower bound on the matcher number in 

terms of the lower matching number. 

Lemma 8.  

If  G  is a graph, then αg  G ≥ 2α   G − 2αL  G . 

Proof. 

Consider a maximum matching M  and a minimum 

maximal matching N. Then the vertices of V(G) − V(N) 

form an independent set. Further, at most n − 2|M| of them 

are not covered by M, where  n is the order of G. That is, 

there is a subset of V(G) − V(N) of at least (n − 2|N|) −
(n − 2|M|) = 2|M| − 2|N| vertices, all of whose vertices 

are M -matched. By Lemma 7, it follows that αg  G ≥

2|M| − 2|N|. 
For example, if the lower matching number is half the 

matching number, then the matcher and matching numbers 

are equal. 

As another consequence of Lemma 8 and the earlier trivial 

observation that αg  G ≥ αL  G , we obtain the following 

lower bound: 

Theorem 4. 

If G is a graph then αg  G ≥ 2α   G /3. 

Proof.  

 

Figure 7.  Depiction of cor(K7, C6) 
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As long as an edge remains, Max plays an edge belonging 

to a maximum matching; this reduces the matching number 

by 1. When α   G ≥ 3, the edge played by Min in response 

is incident to at most two edges of a maximum matching and 

hence reduces the matching number (of the residual graph) 

by at most 2. Hence a round reduces α   by at most 3 while 

adding2 to the number of edges played. When α   G = 3 

and Max starts, two more edges will be played. 

For graph G and integer k ≥ 3, define the generalized 

corona cor(G, Ck) as follows.  

For each vertex v of G introduce a disjoint k-cycle and 

identify one vertex of the cycle with v; we call the vertex 

v the root of the cycle. For example, here is a depiction of 

cor(K7, C6). 

Lemma 9.  

If graph G  has order n  and k ≥ 3  is odd, then 

αg (cor(G, Ck)) ≤ n(k − 1)/2. 

Proof.  

In each copy of Ck , color red both edges incident with the 

root and then every alternate edge. Note that every root is 

incident with exactly two red edges and every other vertex  

is incident with exactly one red edge. The strategy for 

Minimizer is to prefer red edges. That is, if possible, she 

chooses a neighbor connected by a red edge to Maximizer’s 

choice, otherwise she chooses any neighbor. 

We claim that Minimizer’s strategy means that every root 

will be matched to a vertex inside its copy of Ck . Focus on 

some copy D, and let  F  be the set consisting of the root and 

its two neighbors in D. The strategy for Minimizer means 

that if Maximizer chooses a vertex in  D\F, then so does 

Minimizer. Thus, Maximizer must be the first to choose a 

vertex in F; and when he does so, Minimizer chooses its 

neighbor in F. Thus the root is matched within D. 
It follows that at the end of the game, at least one vertex 

from each copy of Ck  is unmatched. That is, the maximal 

matching obtained has size at most (nk − n)/2. 
It follows that cor G, C3   is an example of equality in 

Theorem 4 whenever G has a perfect matching. 

4.1. Odd Girth 

We now consider a generalization of Theorem 4. Recall 

that the odd-girth of a nonbipartite graph G is the shortest 

length of an odd cycle in G. 

Theorem 5.  

If graph G has odd girth g, then αg  G ≥  g−1

g
α   G . 

Proof.  

The proof is by induction on the order. If there is an 

isolated vertex, then we can just discard it and induct; so, 

assume that G is isolated-free. If there is a liberal vertex u  
in G, then Maximizer chooses that vertex and we induct after 

Minimizer’s response. So, we may assume there is no liberal 

vertex. In particular, by Lemma 5, the graph has a perfect 

matching, say M. 

As usual we color red each edge that is in no perfect 

matching. 

Say Maximizer starts with vertex u and Minimizer 

responds with vertex v. If the edge uv is in some perfect 

matching, then again, we can just induct on G − {u, v}. So 

we may assume that the edge uv  is red. Let Q1 be the path 

uv. Now the initial strategy of Maximizer will be to do the 

following as long as it is possible: 

choose the M-partner of one end of the current path, 

where by M-partner of vertex w we mean the vertex w′ 

such that ww′  is in M . So, we obtain a series of 

M -alternating paths Q1, Q2, . ..  such that each Qi  has 2i 
vertices and starts and finishes with an edge not in M. 

If such a choice were always valid, then Maximizer would 

match off the entire graph, a contradiction of the fact that  uv 

is red. So, Maximizer becomes stuck somewhere; that is, he 

cannot choose the M-partner of either end of the current  

path since neither has an unchosen neighbor. Say we have 

path Qk  with ends x  and y. Let x′ be the M-partner of x  
and y′ the  M-partner of y. Since Maximizer is stuck, all 

neighbors of x′ and y′ are on Qk . 

Suppose that k < g −  1. By assumption, vertex  x′ is 

not liberal and so is incident to a red edge, say x′x∗. If the 

edge x′x∗  creates an even cycle with the path Qk , then   

we have a contradiction, since every edge in such an 

 M-alternating cycle is in a perfect matching. So, the edge 

x′x∗ must create an odd cycle with Qk . Similarly,  y′  is 

joined by a red edge to some vertex y∗ on  Qk . that creates 

an odd cycle. By the odd-girth condition, x∗ is closer to y 

than y∗ is along the path Qk . See figure. 

 

Figure 8.   M-alternating cycle formed by x′x∗. . . yy′y∗. . . xx′ 

But then there is an M -alternating cycle formed by 

x′x∗. . . yy′y∗. . . xx′ . It follows that the edge x′x∗  is in a 

perfect matching, a contradiction of the claim that it is red. 

That is, it must be the case that k ≥  g − 1. Then the 

remaining graph  G′ =  G\(V( Qk) ∪ {x′, y′})  has a perfect 

matching, and we can apply induction to G′ . The final 

matching is the union of a matching that has size  k  from 

 Qk ∪   x′, y′   and a matching that has size at least (g −

 1)/g  of α   G  . The lower bound follows since k/(k +

 1)  ≥  (g −  1)/g.  

Note that for k  odd, the generalized corona cor(H,  Ck) 

has a perfect matching if and only if the graph H has a 

perfect matching. By Lemma 9, it follows that cor(H,  Ck) is 

an example of equality in Theorem 5 for all odd k  and 

graphs H  with a perfect matching and girth at least k. 

Using the ideas in the above proof, one can characterize 

the graphs that achieve equality in Theorem 4. 

Theorem 6.  

If G is an isolate-free graph, then αg  G = 2α   G /3 if and 

only if it is isomorphic to cor(H, C3) for some graph Hwith 

a perfect matching. 
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Proof.  

Suppose that αg  G = 2α   G /3. Consider the proof of 

Theorem 5 for the case that g =  3. To obtain equality, it is 

necessary that every vertex is incident with a red edge and 

that there is a perfect matching M . Further, in applying 

hisstrategy, Maximizer must get stuck with k =  g –  1. So 

we have an alternating path Q2  with 4 vertices. Let 

B denote the subgraph induced by V(Q2)  ∪  {x′, y′} . See 

figure. 

 

Figure 9.  Alternating path Q2 with 4 vertices 

Note that vertices x′ and y′  have degree 2. Since 

Maximizer can start with any vertex, it follows that every 

vertex has a neighbor of degree 2. In particular, the degree-2 

vertices come in pairs. 

For equality, one needs that the graph G′ =  G\B is also 

an example of equality. By induction, the graph G′  is 

isomorphic to cor(H′, C3) where H′ is a graph with a perfect 

matching. Since the degree-2 vertices form a paired 

dominating set, it follows that in G the only edges between B 

and cor(H′, C3), if any, are between the vertices that already 

have degree at least 3 in that subgraph. Thus, the original 

graph G has the desired structure.  

In general, it seems likely that the only graphs that achieve 

equality in Theorem 5 are the ones already noted; that is, 

cor(H, Ck)  for k  odd and H  a graph with a perfect 

matching and girth at least  k. As in the proof of Theorem 6, 

one can readily show that graphs with equality in Theorem  

5 have cor(H, Cg)  as a spanning subgraph, and by the 

odd-girth condition, the copies of Cg  are induced. What 

seems harder to resolve is the absence or existence of other 

edges between the cycles. 

5. Dense Graphs 

We consider some dense graphs and show that their 

matcher number is half their order. It is well-known that if 

the minimum degree is at least half the order, and the order is 

even, then the graph has a perfect matching. (For example, 

this follows from Dirac’s theorem [12].) 

It follows from Theorem 3 that graphs of even order n 

with minimum degree at least n −  2 have matcher number 

n/2. 

(Since such minimum degree implies the graph is 

complete multipartite.) Here is a tiny improvement on this. 

Lemma 10.  

If graph G  has even order n ≥  6 and minimum degree 

δ(G)  ≥  n −  3, then αg  G =  n/2. 

Proof.  

The strategy for Maximizer is simply to choose any vertex 

of minimum degree. 

Consider the situation when four vertices remain. The 

current graph, say G4 , has minimum degree at least 1. 

Suppose it does not have a perfect matching. Then G4  is 

(isomorphic to) the star with three edges. Let A denote the 

set of the three end-vertices in G4. Now, go back to the graph, 

say G6 , with six vertices remaining. That graph G6  has 

minimum degree at least 3. So all three vertices of A  are 

adjacent in G6 to the two vertices matched in G6; this means 

that in G6 each vertex in A has degree 3 while the vertices 

matched each have degree at least 4. This is a contradiction 

of Maximizer’s strategy. 

Thus, it follows that G4 has a perfect matching. It is easily 

checked that the strategy of choosing a vertex of minimum 

degree ensures that the resultant maximal matching is 

perfect. 

One can improve the above lemma slightly. Computer 

search shows that all graphs of order 8 and minimum degree 

at least 4 have matcher number 4. It follows that if graph G  
has even order n ≥  8 and minimum degree at least n −  4, 

then the matcher number is n/2 . (Maximizer plays 

arbitrarily until eight vertices remain, and then uses the 

optimal strategy.) 

Lemma 11.  

If two graphs have the same order m, then the matcher 

number of their join is m. 

Proof.  

The vertex set of the join can be partitioned into sets A  
and B  of size m such that every edge between A  and B is 

present. If both A  and B  are independent sets, then the 

graph is Km,m   and we are done. So, assume there is some 

edge e with both ends in A. 

Then Maximizer starts by choosing any vertex in B. If 

Minimizer takes a vertex of A, then the result follows by 

induction (as the remaining graph is the join of two graphs of 

order m −  1). So, assume that she chooses a vertex of B. 

If only two vertices of  A remain, then we are done, since 

they are joined by edge e and every other vertex has been 

matched. So, assume more than two vertices remain in A. 

Then Maximizer chooses a vertex in A but avoiding both 

ends of e. If Minimizer chooses a vertex in A, we are back 

to having equal number of vertices in the two sets, and so can 

induct. 

So, assume that she chooses a vertex of B . But then 

Maximizer chooses another vertex in A, avoiding the ends of 

e, and the argument repeats. 

6. Conclusions 

We provided bounds on the matcher games. It seems that 

the Max-start matcher game might be interesting for special 

families of graphs. For example, rooks' graphs or cartesian 

products in general seem worthy of consideration, as do 

cubic graphs or chordal graphs. In another direction, a 
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natural question is the complexity of the game. 
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