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Abstract  This study aims to draw attention to the best extraction technique that may be considered when using the three of 

the most popular methods for choosing the number of factors/components: Principal Component Analysis (PCA), Maximum 

Likelihood Estimate (MLE) and Principal Axis Factor Analysis (PAFA), and compare their performance in terms of 

reliability and accuracy. To achieve this study objective, the analysis of the three methods was subjected to various research 

contexts. A Monte Carlo method was used to simulate data. It generates a number of datasets for the five statistical 

distribution considered in this study: The Normal, Uniform, Exponential, Laplace and Gamma distributions. The level of 

improvement in the estimates was related to the proportion of observed variables and the sum of the square loadings of the 

factors/components within the dataset and across the studied distributions. Different combinations of sample size and number 

of variables over the distributions were used to perform the analysis on the three analyzed methods. The generated datasets 

consist of 8 and 20 variables and 20 and 500 number of observations for each variable. 8 and 20 variables were chosen to 

represent small and large variables respectively. Also 20 and 500 sample sizes were chosen to represent also the small and 

large sample sizes respectively. The result of analysis, from applying the procedures on the simulated data set, confirm that 

PC analysis is overall most suitable, although the loadings from PCA and PAFA are rather similar and do not differ 

significantly, though the principal component method yielded factors that load more heavily on the variables which the 

factors hypothetically represent. Considering the above conclusions, it would be natural to recommend the use of PCA over 

other extraction methods even though PAF is somehow similar to its methods. 
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1. Introduction 

The origin of factor analysis dated back to a work done by 

Spearman in 1904. At that time Psychometricians were 

deeply involved in the attempt to suitably quantify human 

intelligence, and Spearman’s work provided a very clever 

and useful tool that is still at the bases of the most advanced 

instruments for measuring intelligence. Spearman was 

responsible for the development of Two-Factor Theory, in 

which each variable receives a contribution from two factors, 

a general factor common to all variables and a specific factor 

unique to itself. Pearson developed the methods of principal 

axes, later to be extended by Hotelling to become the theory 

of principal components. Spearman’s Two-Factor Theory 

was eventually superseded by multiple factor analysis in  
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which several common or group factors are postulated and in 

which the specific factors are normally absorbed into the 

error term. From this standpoint Spearman’s Two-Factor 

Theory may be regarded as a one-factor theory, that is one 

common or group factor. For example, an individual’s 

response to the questions on a college entrance test is 

influenced by underlying variables such as intelligence, 

years in school, age, emotional state on the day of the test, 

amount of practice taking tests, and so on. The answers to the 

questions are the observed variables. The underlying, 

influential variables are the factors. 

The factor procedure performs a variety of common factor 

and component analyses and rotations. Input can be 

multivariate data, a correlation matrix, a covariance matrix, a 

factor pattern, or a matrix of scoring coefficients. The 

procedure can factor either the correlation or covariance 

matrix, and most results can be saved in an output data set. 

Factor analysis is used in many fields such as behavioural 

and social sciences, medicine, economics, and geography as 

a result of the technological advancements of computers. 

The methods for factor extraction in FA are principal 

component analysis, principal factor analysis, principal axis 
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factor analysis, unweighted least-squares factor analysis, 

maximum-likelihood (canonical) factor analysis, alpha 

factor analysis, image component analysis, and Harris 

component analysis. A variety of methods for prior 

communality estimation is also available but, in this study, 

only the principal factor analysis, the maximum likelihood 

factor analysis and Principal Axis Factor analysis will be 

considered. 

Also, there are different methods for factor rotation. The 

methods for rotation are varimax, quartimax, parsimax, 

equamax, orthomax with user-specified gamma, promax 

with user-specified exponent, Harris-Kaiser case II with 

user-specified exponent, and oblique Procrustean with a 

user-specified target pattern. Here also, varimax will be 

considered further in this study. 

1.1. Aims and Objectives 

The main aim of this study to provide researchers with 

empirical derivation guidelines for conducting factor 

analytic studies in complex research contexts. To enhance 

the potential utility of this study, the researchers focused on 

factor extraction methods commonly employed by social 

scientists; these methods include principal component 

analysis, maximum likelihood method and principal axis 

factor analysis method. To meet the goal of this study, factor 

extraction models were subjected to several research 

conditions. These contexts differed in sample sizes, number 

of variables and distributions. Data were simulated under 

1000 different conditions; specifically, this study employed  

a two (sample size) by two (number of variables) by five 

distributions. 

The following are the specific objectives of the study: 

(i)  To generate artificial sample independent from each 

of the five distribution. 

(ii)  To know how well the hypothesized factors explain 

the observed data.  

(iii)  To determine the best extraction method in factor 

analysis. 

(iv)  To compare the Principal Components Analysis, 

Maximum Likelihood Factor Analysis, and Principal 

Axis Factor Analysis method of extractions with 

varimax rotation method. 

1.2. Theoretical Framework 

1.2.1. The Orthogonal Factor Model 

The aim of factor analysis is to explain the outcome of p 

variables in the data matrix 𝒙 using fewer variables, called 

factors. Ideally all the information in 𝒙 can be reproduced 

by a smaller number of factors. These factors are interpreted 

as latent (unobserved) common characteristics of the 

observed 𝑥 ∈  ℝ𝑝 . Let  𝑥 =  (𝑥1, … , 𝑥𝑝)𝑇 be the variables 

in population with mean, 

𝐸 𝑋 =  𝜇 =   

𝜇1

⋮
𝜇𝑝
  and variance,  

𝑉𝑎𝑟  𝑋 =    = 

𝜎11 ⋯ 𝜎1𝑝

⋮ ⋮ ⋮
𝜎𝑝1 ⋯ 𝜎𝑝𝑝

  

The orthogonal factor model is 

𝑋𝑝𝑥1 − µ𝑝𝑥1 =  𝜆𝑝𝑥𝑚 𝐹𝑚𝑥1 + ℇ𝑝𝑥1     (2.1) 

Key Concepts 

 F is latent (i.e. unobserved, underlying) variable  

 X’s are observed (i.e. manifest) variables 

 ℇj is measurement error for Xj. 

 𝜆𝑗  is the “loading” for Xj. 

𝜆 =   

𝜆11 ⋯ 𝜆1𝑚

⋮ ⋮ ⋮
𝜆𝑝1 ⋯ 𝜆𝑝𝑚

  is called the factor loading matrix 

𝐹 =   
𝐹1

⋮
𝐹𝑚

  are called the factors or common factors, 

 ℇ =   

ℇ1

⋮
ℇ𝑝

  are called errors or specific errors. 

This is written in matrix notation as  

 

𝑋1

⋮
⋮
𝑋𝑝

 =   

𝜆11 ⋯ 𝜆1𝑚

⋮ ⋮ ⋮
𝜆𝑝1 ⋯ 𝜆𝑝𝑚

  
𝐹1

⋮
𝐹𝑚

 +  

ℇ1

⋮
ℇ𝑝

  

Our hypothesis is that these values arise from a linear 

combination of k factors, 𝐹𝑚 , plus noise, ℇ𝑗 ; 

The model can be re-expressed as 

𝑋𝑗 − µ𝑗 =   𝜆𝑗𝑚 𝐹𝑚 + ℇ𝑗 , 𝑗 = 1, 2, … , 𝑝𝑘
𝑚=1     (2.2) 

And  𝜆𝑗𝑚  is called the loading of 𝑋𝑗  on the factor 𝐹𝑚 . 

In the factor Matrix  

𝜆11 ⋯ 𝜆1𝑘

⋮ ⋮ ⋮
𝜆𝑝1 ⋯ 𝜆𝑝𝑘

 : 

  Columns represent derived factors.  

  Rows represent input variables.  

  Loadings represent degree to which each of the variable 

“correlates” with each of the factors •Loadings range 

from -1 to 1.  

  Inspection of factor loadings reveals extent to which 

each of the variables contributes to the meaning of each 

of the factors.  

  High loadings provide meaning and interpretation of 

factors (regression coefficients). 

1.2.2. Review of Previous Studies  

For this research work, different related theses, websites, 

books, journals, articles etc. have been studied, it is 

discovered that John Spearman was first to find the use of 

Factor Analysis in developing psychology and sometimes 

credited with the invention of factor analysis. He discovered 

that school children study on variety of seemingly unrelated 

subjects which are positively correlated. This led him to 

postulate that the General Mental Ability (GMA) underlies 

and shapes human cognitive performance. This postulate 

now enjoys broad support in the field of intelligence research 

which is known as the G-theory. 
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Raymond Cattel expanded on Spearman’s idea of a 

two-factor theory of intelligence after performing his own 

tests on factor analysis. He used a multi-factor theory to 

explain intelligence. Cattell’s theory addressed alternate 

factors in intellectual development, including motivation and 

psychology. Cattell also developed several mathematical 

methods for adjusting psychometric graphs such as his 

“scree” test and similarity coefficients. His research led to 

the development of his theory of fluid and crystallized 

intelligence as well as his sixteen (16) personality factors 

theory of personality. 

[1] examined the information reported in 60 exploratory 

factor analyses published before 1999. The authors focused 

on studies that employed at least one exploratory factor 

analysis strategy. Although Henson and Roberts noted that 

most of the articles reported researcher objectives that 

warranted an EFA design, nearly 57% of the researchers 

engaged in principal components analysis. As a suggested 

rationale for this problematic model selection, the authors 

noted that principal components analysis was the “default 

option for most statistical software packages” ([1]).  

The goal for factor retention guidelines is to identify the 

necessary number of factors to account for the correlations 

among measured variables. Empirical research suggests  

that under-factoring, retaining too few factors, is more 

problematic than over- factoring ([2]). However, 

over-factoring is not ideal; for example, when over-factoring, 

researchers may postulate the existence of factors with no 

theoretical basis which can “accentuate poor decision made 

at other steps in factor analysis” ([2]). 

Orthogonal rotation algorithms yield uncorrelated factors 

([2]; [3]; [4]). The most commonly employed type of 

orthogonal rotation is varimax ([2]). Although orthogonal 

rotation yields simple structure, the use of orthogonal 

rotation when the factors are correlated in the population 

results in the loss of important data ([5]). 

In published literature, orthogonal strategies appear to be 

the most commonly cited rotation procedure. According to 

[6] findings, researchers reported using an orthogonal 

rotation strategy most frequently (40%); in only 18% of the 

studies, researchers reported the use of an oblique rotation 

strategy. More recently, in their study of common practices 

in factor analytic research, [1] found that 55% of the articles 

included orthogonal rotation strategies; researchers reported 

the use of oblique rotation strategies in 38.3% of the articles, 

and, in 1.7% of the articles, researchers failed to report any 

factor rotation method. 

The “conventional wisdom advises researchers to use 

orthogonal rotation because it produces more easily 

interpretable results . . .” ([5]). However, this argument is 

flawed in two areas. Firstly, social science researchers 

“generally expect some correlation among factors” ([5]); 

therefore, the use of orthogonal rotation results in the loss of 

information concerning the correlations among factors. 

Secondly, output associated with oblique rotation is “only 

slightly more complex” than orthogonal rotation output and 

yield substantive interpretations that “are essentially the 

same” ([5]). 

[7] in his book, Robustness of the Maximum Likelihood 

Estimation procedure in factor analysis, generated random 

variables from six distributions independently on a 

high-speed computer and then used to represent the common 

and specific factors in a factor analysis model in which the 

coefficients of these factors had been specified. Using 

Lawley's approximate χ2 statistic in evaluating the estimates 

obtained, the estimation procedure is found to be insensitive 

to changes in the distributions considered. 

A Monte Carlo Study Comparing Three Methods for 

Determining the Number of Principal Components and 

Factors by [7] was conducted. The results of the analysis 

confirm the findings from previous papers that Kaiser 

criterion has the poorest performance compared with the 

other two analyzed methods. Parallel analysis is overall the 

most accurate, although when the true number of factors/ 

components is small, acceleration factor can outperform it. 

The acceleration factor and Kaiser criterion perform with 

different accuracy for different true number of factors/ 

components and number of variables, whereas the parallel 

analysis is only affected by the sample size. Kaiser criterion 

tends to overestimate and acceleration factor – to 

underestimate the number of factors/ components. The 

parallel analysis shows fewer fluctuations in its accuracy and 

is more robust.  

[8] conducted a research on the Principal component 

procedure in factor analysis and robustness. In her study she 

said that Principal component procedure has been widely 

used in factor analysis as a data reduction procedure. The 

estimation of the covariance and correlation matrix in factor 

analysis using principal component procedure is strongly 

influenced by outliers. The study investigated the robustness 

of principal component procedure in factor analysis by 

generating random variables from five different distributions 

which are used to determine the common and specific factors 

in factors analysis using principal component procedure. The 

results revealed that the variance of the first factor was 

widely distributed from distribution to distribution ranging 

from 0.6730 to 5.9352. The contribution of the first factor  

to the total variance varied widely from 15 to 98%. It was 

therefore concluded that the principal component procedure 

is not robust in factor analysis. 

In the book, Exploratory Factor Analysis by [2] 

summarizes the key issues that researchers need to take into 

consideration when choosing and implementing exploratory 

factor analysis (EFA) before offering some conclusions and 

recommendations to help readers who are contemplating the 

use of EFA in their own research. It reviews the basic 

assumptions of the common factor model, the general 

mathematical model on which EFA is based, intended to 

explain the structure of correlations among a battery of 

measured variables; the issues that researchers should bear in 

mind in determining when it is appropriate to conduct an 

EFA; the decisions to be made in conducting an EFA; and 
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the implementation of EFA as well as the interpretation of 

data it provides. 

Robustness of the maximum likelihood estimation 

procedure in factor analysis by [9] is that of random variables 

generated from five distributions which were used to 

represent the common and specific factors in factor analysis 

in order to determine the robustness of the maximum 

likelihood estimation procedure. Five response variables 

were chosen for this study each with two factors. The chosen 

variables were transformed into linear combinations of an 

underlying set of hypothesized or unobserved components 

(factors). The result revealed that the estimates of the 

variance for the first factor were found to be almost the same 

and closely related to each other in all the distributions 

considered. The Chi-Square test conducted concluded that 

maximum likelihood method of estimation is robust in factor 

analysis. 

[10] wrote on a robust method of estimating covariance 

matrix in multivariate data analysis. This is also a research 

paper where a proposed robust method of estimating 

covariance matrix in multivariate data set was done. The goal 

was to compare the proposed method with the most widely 

used robust methods (Minimum Volume Ellipsoid and 

Minimum Covariance Determinant) and the classical method 

(MLE) in detection of outliers at different levels and 

magnitude of outliers. The proposed robust method 

competes favorably well with both MVE and MCD and 

performed better than any of the two methods in detection of 

single or fewer outliers especially for small sample size and 

when the magnitude of outliers is relatively small.  

2. Methodology 

2.1. Research Design 

The research method used in this study is Monte Carlo 

design to generate a data set. This incorporated samples 

simulated through different number of variables and sample 

sizes; specifically, a two (number of variables) and two 

(sample size) by five (distributions) design.  

2.2. Population of the Study 

This simulation was developed in RGUi (64 – bit).    

The program associated with this design was written. To 

enhance this project’s generalizability, this study included 

simulations of results from data sets of varying size. It 

simulated data sets containing 8 and 20 variables. The two 

sample sizes included in this study were 20 (small sample 

size) and 500 (large sample size). The initial factor solutions 

from each model in each condition was subjected to an 

orthogonal rotation strategy. Specifically, this study 

employed a varimax rotation in all simulated contexts. 

Because the intent of this study is to address methodological 

issues that are frequently encountered in social science 

literature, varimax rotation was considered to be a more 

appropriate choice ([2]; [11]). 

2.3. Sample Size and Sampling Procedure 

Determining the sample size is a very important issue in 

factor analysis because samples that are too large may waste 

time, resources and money, while samples that are too small 

may lead to inaccurate result. Larger samples are better than 

smaller samples (all other things being equal) because larger 

samples tend to minimize the probability of errors, maximize 

the accuracy of population estimates, and increase the 

generalizability of the results. Factor analysis is a technique 

that requires a large sample size. Factor analysis is based on 

the correlation matrix of the variable involved and 

correlations usually need a large sample size before they 

stabilize.  

[12] suggested that “the adequacy of sample size might be 

evaluated very roughly on the following scale: 50 – very 

poor; 100 – poor; 200 – fair; 300 – good; 500 – very good; 

1000 or more – excellent” (p. 217). It is known that a sample 

size of 200 or more is sufficient for a sample number of 

independent variables. As the sample size gets larger for 

Maximum Likelihood Estimator, the estimates become 

consistent, efficient and unbiased. So in our experiment, we 

will consider two types of sample sizes – 20 (small) and 500 

(large) sample number of independent variables. 

2.4. Instrumentation/Factor Extraction Method  

Maximum likelihood factoring allows the researcher to 

test for statistical significance in terms of correlation among 

factors and the factor loadings, but this method for 

estimating factor models can yield distorted results when 

observed data are not multivariate normal ([5]; [1]). 

Principal axis factoring does not rely on distributional 

assumptions and is more likely than maximum likelihood to 

converge on a solution. However, principal axis factoring 

does not provide the variety of fit indices associated with 

maximum likelihood methods, and this method does not lend 

itself to the computation of confidence intervals and tests of 

significance. 

Consider a data vector for subject i on p variables 

represented as:  

Xi = ( Xi1 Xi2 ... Xip)
/
,   I = 1 2, ,...,n 

Standardization of the data matrix X is performed since 

the p variables could be in different units of measurement. 

The standardized matrix, Z, is written as Z = (V
1/2

)
-1

 (X - µ), 

where V1/2is the diagonal standard deviation matrix and µ is 

the vector of the means. Clearly, E(Z) = 0 and Cov(Z) =   

(V 
1/ 2 

)
-1 

(V 
1/ 2 

) = ρ, where ∑ is the variance-covariance 

matrix and is the population correlation matrix. The kth 

principal component of Z =(Z1 Z2 ... Z p )
/ is given by:  

Yk =e
/
kZk = e

/
k (V 

1/ 2 
)

-1
 (X - µ),   k = 1,2,..., p (3.1) 

where (λk, ek) is the kth eigenvalue-eigenvector pair of the 

correlation matrix, with λ1 ≥ λ2 ≥...≥λp ≥0. Since Zi is a 

standardized variable,  𝑉𝑎𝑟 (𝑌𝑖)
𝑝
𝑖=1 =   𝑉𝑎𝑟 (𝑍𝑖) = 𝑝

𝑝
𝑖=1  

and the correlation coefficient between component Yk and 

standardized variable Zl is 𝜌𝑌𝑘 , 𝑍𝑙 =  ℯ𝑘𝑙 𝜆𝑘,, k, l = 1, 2, …, 

p. The proportion of standardized population variance due to 



48 Onyekachi Akuoma Mabel and Olanrewaju Samuel Olayemi:  A Comparison of Principal  

Component Analysis, Maximum Likelihood and the Principal Axis in Factor Analysis 

 

the kth principal component is λk/ p. 

A correlation matrix can be thought of as a matrix of 

variances and covariances of a set of variables that have 

standard deviations of 1. It can be expressed as a function of 

its eigen values λk and eigenvectors, ek, as follows:  

𝜌 =  𝜆𝑘ℯ𝑘ℯ𝑘
′𝑝

𝑘=1            (3.2) 

The correlation matrix is modeled as ρ = LL’ + Ψ, where 

Ψ is a diagonal matrix of specific variances. As a principal 

component analysis takes all variance into account, Ψ is 

assumed to be zero and the variance-covariance matrix is 

modeled as ρ = LL’. A PCA procedure will try to 

approximate the correlation by a summation over m<p, i.e.  

𝜌 ≅   𝜆𝑖ℯ𝑖ℯ𝑖
′𝑚

𝑖=1 = ( 𝜆1𝑒1 𝜆2𝑒2 … 

  𝜆𝑚𝑒𝑚  ) 

 𝜆1𝑒1

 𝜆2𝑒2
…

 𝜆𝑚 𝑒𝑚

 = 𝐿𝐿′          (3.3) 

where L is the matrix of factor loadings with a factor loading 

estimated as 𝐿 𝑖𝑗 =   𝜆 𝑖𝑒 𝑖𝑗 . 

2.5. Data Collection Procedure 

2.5.1. Extraction by Principal Component Analysis Method 

The principal factor method involves finding an 

approximation 𝚿  of Ψ, the matrix of specific variances, and 

then correcting R, the correlation matrix of X, by 𝚿 . The 

principal component method is based on an approximation 

𝐐  of 𝐐 , the factor loadings matrix. The sample covariance 

matrix is diagonalized, 𝑺 =  𝚪𝚲𝚪𝑻 . Then the first K 

eigenvectors are retained to build  

𝐐 =    𝝀𝟏𝜸𝟏, … , 𝝀𝒌𝜸𝒌 . 

The estimated specific variances are provided by the 

diagonal elements of the matrix 𝑺 − 𝐐 𝐐 𝑻,  

𝚿  = 

 
 
 
 
 
 
 
𝜓 11  0 …  0

0 𝜓 22  …  0
.
.
.

0 0 … 𝜓 𝑝𝑝  
 
 
 
 
 
 

 𝑤𝑖𝑡ℎ 𝜓 11 = 𝑠𝑋𝑗𝑋𝑗 −  𝑞 𝑗𝑙
2𝑘

𝑙=1  

By definition, the diagonal elements of 𝑺 are equal to the 

diagonal elements of 

𝐐 𝐐 𝑻 + 𝚿 . The off-diagonal elements are not necessarily 

estimated. How good then is this approximation? Consider 

the residual matrix  

𝑺 − (𝐐 𝐐 𝑻 + 𝚿 ). 

resulting from the principal component solution. 

Analytically we have that  

 (𝑺 − 𝐐 𝐐 𝑻 − 𝚿 )𝑖𝑗
2 ≤ 𝝀𝑘+1

2

𝑖𝑗

+⋯+ 𝝀𝑝
2  

2.5.2. Extraction by Maximum Likelihood Factor Analysis 

In finding factors that can reproduce the observed 

correlations or covariances between the variables as closely 

as possible, a maximum likelihood estimation (MLE) 

procedure will find factors that maximize the likelihood of 

producing the correlation matrix. In trying to do so, it 

assumes that the data are independently sampled from a 

multivariate normal distribution with mean vector µ , and 

variance-covariance matrix of the form ∑ = LL’ + Ψ, where 

L is the matrix of factor loadings and Ψ, is the diagonal 

matrix of specific variances. The MLE procedure involves 

the estimation of µ , the matrix of factor loadings L, and the 

specific variance Ψ, from the log likelihood function which 

is given by the following expression:  

𝑙 µ, 𝐋,𝚿 =  
𝒏𝒑

𝟐
 𝒍𝒐𝒈 𝟐𝝅 − 

𝒏

𝟐
 𝒍𝒐𝒈  𝑳𝑳′ +  𝚿 

− 
𝟏

𝟐
 𝑿𝒊 −  µ ′ 𝐋𝐋′ +  𝚿  𝑿𝒊 −  µ . 

By maximizing the above log likelihood function, the 

maximum likelihood estimators for µ, L and Ψ are obtained.  

2.5.3. Extraction by Principal Axis Factoring  

The most widely-used method of extraction in factor 

analysis is the principal axis factoring (PAF) method. The 

method seeks the least number of factors which can account 

for the common variance of a set of variables. In practice, 

PAF uses a PCA strategy but applies it on a slightly different 

version of the correlation matrix. As the analysis of data 

structure in PAF is focused on common variance and not on 

sources of error that are specific to individual measurements, 

the correlation matrix ρ in PAF has estimates of 

communalities as its diagonal entries, instead of 1’s as in 

PCA.  

Allowing for specific variance, the correlation matrix is 

estimated as 𝝆 =  𝑳𝑳′ +  𝜳, where Ψ is a diagonal matrix of 

specific variances. The estimate of the specific variances is 

obtained as  

Ψ = 𝝆 − 𝑳𝑳′, where matrix 𝑳𝑳′ is as defined in (3) and 

diagonal entries Ψ are estimated as 𝑦 𝑖𝑗 =  𝑠𝑖
2 −   𝜆 𝑖

𝑚
𝑖=1 𝑒 𝑖𝑗

2 . 

2.6. Method of Data Analysis 

For this study, simulated data was used to examine the 

effects of (1) Principal Component Analysis, Maximum 

Likelihood analysis method and Principal Axis factoring 

method, (2) Small and large variables, (3) Small and large 

sample sizes using varimax on five statistical distributions: 

Uniform, Normal, Gamma, Exponential, and Laplace. Our 

goal was to utilize methods that most closely simulate real 

practice, and real data, so that our results will shed light on 

the effects of current practice in research and also advise 

researchers on the best extraction method that can be adopted 

in data analysis to accomplish their goal. 
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2.7. Data Presentation, Analysis and Interpretation 

2.7.1. Presentation of Data 

The result of the first Principal Component/Maximum 

Likelihood/Principal Axis Loadings from the simulation of 

each sample from the various distribution with respect to 

each extraction method is presented in the table below:  

 

Table 1.  First Principal Component/Maximum Likelihood/Principal Axis Loadings from the simulation 

Distributions Uniform Normal Gamma Exponential Laplace 

Extraction method 
PCA ML PAF PCA ML PAF PCA ML PAF PCA ML PAF PCA ML PAF 

Sample distribution 

V8n20 1.54 1.54 1.5 0.9 1.15 1 1.2 0.99 1.3 1.2 1.09 1.5 0.3 0.71 0.61 

V20n20 -0.04 
  

0.4 
  

1.2 
  

0.6 
  

0.5 
  

V8n500 1.77 0.87 0.8 0.7 0.997 0.6 2 0.99 1 0.8 0.19 0.3 2.1 1.098 1.23 

V20n500 0.95 0.397 0.9 1.2 0.11 0.5 0.2 0.27 0.1 1.6 1.01 0.8 0.3 0.195 -0.5 

 

 

Figure 1.  First Principal Component/Maximum Likelihood/Principal Axis Loadings from the simulation 

The result of the Sum of Square loadings and Proportion 

Variance of the 1st principal component/Maximum 

Likelihood/principle axis of each sample from the various 

distribution with respect to each extraction method is 

presented in the table below:  

 

Table 2.  Simulation Results for Sample = 20  

Extraction 

method 

sample 

(n) 

1st PC/ML/PA 

Performance 

Sample Distributions 

Uniform Normal Gamma Exponential Laplace 

Variables Variables Variables Variables Variables 

v8 v20 v8 v20 v8 v20 v8 v20 v8 v20 

(PCA) 20 
SS loadings 2.05 3.51 1.74 2.9 1.85 2.91 2.14 3.44 2.09 3.13 

Proportion Var 0.26 0.18 0.22 0.15 0.23 0.15 0.27 0.17 0.26 0.16 

(MLFA) 20 
SS loadings 1.63 N/A 1.357 N/A 1.479 N/A 1.888 N/A 1.557 N/A 

Proportion Var 0.204 N/A 0.17 N/A 0.185 N/A 0.236 N/A 0.195 N/A 

(PAFA) 20 
SS loadings 1.55 N/A 1.14 N/A 1.59 N/A 2.23 N/A 1.52 N/A 

Proportion Var 0.19 N/A 0.14 N/A 0.2 N/A 0.28 N/A 0.19 N/A 
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Figure 2.  Simulation Results for SS Loadings of the 1st PC/ML/PA at 20 Samples 

 

Figure 3.  Simulation Results for Proportion Variance of the 1st PC/ML/PA at 20 Samples 

Table 3.  Simulation Results for Sample = 500 

Extraction 

method 

sample 

(n) 

1st PC/ML/PA 

Performance 

Sample Distributions 

Uniform Normal Gamma Exponential Laplace 

v8 v20 v8 v20 v8 v20 v8 v20 v8 v20 

(PCA) 500 
SS loadings 1.23 1.39 1.13 1.4 1.19 1.33 1.2 1.36 1.22 1.4 

Proportion Var 0.15 0.07 0.14 0.07 0.15 0.07 0.15 0.07 0.15 0.07 

(MLFA) 500 
SS loadings 1.03 0.429 1.016 0.47 0.278 0.416 0.25 0.436 1.04 0.443 

Proportion Var 0.129 0.021 0.127 0.024 0.035 0.021 0.031 0.022 0.13 0.022 

(PAFA) 500 
SS loadings 0.35 0.43 0.56 0.47 0.27 0.4 0.25 0.43 0.71 0.44 

Proportion Var 0.04 0.02 0.07 0.02 0.03 0.02 0.03 0.02 0.09 0.02 
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Figure 4.  Simulation Results for SS Loadings of the 1st PC/ML/PA at 500 Samples  

 

Figure 5.  Simulation Results for Proportion Variance of the 1st PC/ML/PA at 500 Samples 

 

Figure 6.  Principal Component Analysis, SS Loadings for 20 and 500 samples 
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Figure 7.  Principal Component Analysis, Proportion Variances for 20 and 500 samples 

 

2.7.2. Data Analysis and Result 

Factor analysis uses variances to produce communalities 

between variables. The variance is equal to the square of the 

factor loadings. In many methods of factor analysis, the goal 

of extraction is to remove as much common variance in the 

first factor as possible.  

From table 1, we compare the different extraction methods 

per each of the distribution. It was observed that: 

  PC is the best extraction method for Uniform 

distribution for all variables and all samples. 

  For Normal distribution, ML is the best extraction 

method for normal when working with 8 variables 

(small) over different sample sizes but PC is better 

when the variables are 20 (large) over large sample 

sizes. 

  For Gamma distribution, PC and PAF are better with 8 

(small) variables and 20 (small) sample sizes; PC is best 

for 8 (small) variables and 500 (large) samples sizes 

while ML is better with 20 (large) variables over large 

sample sizes. 

  For Exponential distribution, all the extraction methods 

studied are good but PAF is the best for small variables 

and sample sizes while PC is the best for different 

variables with large numbers. 

  For Laplace distribution, ML and PAF are good 

methods to use for small variables and small sample 

sizes though ML performed better. PC performed better 

the other large variables and large sample sizes even at 

small variables and large sample sizes. 

Comparing the same number of variables and sample sizes 

over different distributions. 

Also, from table 1, we can deduce that: 

  For small (8) variables and small (20) number of 

samples, all the extraction methods can be used for 

analysis since the sum of the factor loading are above 

0.5 across all the distributions except for PC method for 

Laplace distribution. 

  Only PC can be used for analysis when the variables 

have equal variables with the sample size. 

  For small (8) variables and large (500) sample sizes, PC 

formed better across all distributions except for normal 

distribution where ML is slightly higher but Uniform, 

Gamma and Laplace distributions perform best when 

large sample size is applied with smaller variables using 

PCA.  

  For large variables and large sample sizes, PC 

performed better across all the distributions. 

Using figure 2, when the sample size is small over small 

and large variables, it can be observed that for the sum of 

square loadings of the extraction methods across the 

distributions, PC is seen to perform better than other 

extractions methods for all variables and all distributions 

used in this study. 

Figure 3 explained the proportion variance for small 

sample sizes over small variables, PC is the best method   

for all distributions. PAF explains the greatest in the 

Exponential distribution over others. Also, when compared 

other small sample sizes and small variables, PAF is seen to 

perform very well. 

In Figure 4, when the sample size is large, PC showed the 

highest the ssloadings for all variables over all distributions. 

In figure 5, for the large sample sizes, PC explained the 

highest proportion variance across the distribution. It was 

also seen that the proportion variance of the PC seems equals 

over all small variables and also the same across the large 

variables. 

Figure 6, for ss loadings across the sample sizes, PC 

performed better over small sample sizes than the large 

sample sizes. Same also it is for proportion variables as 

observed in figure 7. 
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3. Discussion on Findings 

From the figure 1 above, we can observe that Uniform, 

Gamma and Laplace distributions perform best when large 

sample size is applied with smaller variables using PCA. 

Also, the proportion of variance explained by PCA is higher 

on a lower variable than large variable. 

Similarly, when the three extractions methods were 

applied on a real-life data used under this study, the methods 

of PCA and PAF methods achieved a simple structure of the 

loadings following rotation. The loadings from each method 

are rather similar and don’t differ significantly, though the 

principal component method yielded factors that load more 

heavily on the variables which the factors hypothetically 

represent. However, the factors resulting from the principal 

component method explain 54% of the cumulative variance 

compared to 46% from the principal factor method. 

4. Summary 

The broad purpose of factor analysis is to summarize data 

so that relationships and patterns can be easily interpreted 

and understood. It is normally used to regroup variables into 

a limited set of clusters based on shared variance. Hence, it 

helps to isolate constructs and concepts. 

The goal of this paper is to collect information that will 

allow researchers and practitioners to understand the various 

choices of factor extractions available, and to make decisions 

about "best practices" in exploratory factor analysis. A 

Monte Carlo study has been performed for assessing the 

accuracy of three frequently used methods for extraction of 

number of factors and components in factor analysis and 

principal component analysis: The Principal Components 

Analysis, Maximum Likelihood Factor Analysis, and 

Principal Axis Factor Analysis method. 

Data was generated independently in a sequence of 1000 

replications through simulation for factor analysis, so that  

it would have a specific number of underlying components 

or factors: Then the three methods for extracting the number 

of factors/components were applied and their overall 

performance examined. The SS loadings of the different 

distributions using different variables and sample sizes were 

computed as well as the proportion variance of the 

distribution on different extraction methods from the 

simulated data. The procedure was performed by simulating 

datasets with 8 and 20 number of variables over sample sizes 

of 20 and 500 for all combinations of 8 and 20 (number of 

variables).  

In summary, our research seems to agree with [2] that  

says that when each factor is represented by three to four 

measured variables and the communalities exceed .70, 

relatively small sample sizes will allow researchers to make 

accurate estimates about population parameters as observed 

with the real-life data set. To avoid distortions derived from 

sample characteristics, researchers can select a sample that 

maximizes variance on measured variables that are not 

relevant to the construct of interest ([2]). 

5. Conclusions 

From some of the literatures reviewed, many researchers 

believe that there is almost no evidence regarding which 

method should be preferred for different types of factor 

patterns and sample sizes. Some of these contributed to this 

research and the following conclusions can be drawn from 

the results, obtained by the Monte Carlo simulations:  

  PC is the best extraction method for Uniform 

distribution for all variables and all samples. 

  For Normal distribution, ML is the best extraction 

method for normal when working with 8 variables 

(small) over different sample sizes but PC is better 

when the variables are 20 (large) over large sample 

sizes. 

  For Gamma distribution, PC and PAF are better with 8 

(small) variables and 20 (small) sample sizes; PC is best 

for 8 (small) variables and 500 (large) samples sizes 

while ML is better with 20 (large) variables over large 

sample sizes. 

  For Exponential distribution, all the extraction methods 

studied are good but PAF is the best for small variables 

and sample sizes while PC is the best for different 

variables with large numbers. 

  For Laplace distribution, ML and PAF are good 

methods to use for small variables and small sample 

sizes though ML performed better. PC performed better 

the other large variables and large sample sizes even at 

small variables and large sample sizes. 

Comparing the same number of variables and sample sizes 

over different distributions. 

Also, from table 1, we can deduce that: 

  For small (8) variables and small (20) number of 

samples, all the extraction methods can be used for 

analysis since the sum of the factor loading are above 

0.5 across all the distributions except for PC method for 

Laplace distribution. 

  Only PC can be used for analysis when the variables 

have equal variables with the sample size. 

  For small (8) variables and large (500) sample sizes, PC 

formed better across all distributions except for normal 

distribution where ML is slightly higher but Uniform, 

Gamma and Laplace distributions perform best when 

large sample size is applied with smaller variables using 

PCA.  

  For large variables and large sample sizes, PC 

performed better across all the distributions. 

6. Recommendations 

This thesis only analyses three of the most commonly  

used methods for extracting the number of factors and 

components in FA and PCA. However, there are other 

developed methods such as Image Factor Extraction, 

Unweighted Least Squares Factoring, Generalized Least 

Squares Factoring and Alpha Factoring and used only in 
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principal component analysis. A review of these methods 

would be a suitable continuation of the current thesis.  

The knowledge of studies, such as this one can help 

researchers pinpoint the best extraction method of number of 

factors or components, even if all the methods have given 

different estimates. To do so, one has to know the strengths 

and weaknesses of each method and how they compare to 

each other for different combinations of variables and 

sample sizes. 
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