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Abstract  The classical Banach contraction principle in metric space is one of the fundamental results in metric space with 

wide applications. And the probabilistic metric space is one of the important generalizations of metric space introduced by 

Austrian mathematician Karl Menger in 1942. The purpose of this article is to describe different contraction conditions in 

Probabilistic Metric Space. Also, mention the generalized contraction conditions and interrelationships between contraction 

conditions. 
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1. Introduction and Preliminaries 

In mathematics, analysis plays an important role in the 

development of mathematics. Among several branches of 

analysis, functional analysis which deals with the study of 

several functions, come under Functional Analysis. It 

describes two types of functional analysis one is linear and 

another is non-linear functional analysis.  

Fixed point theory is one of the most important topics of 

non-linear functional analysis since 1960. It has wide 

applications to the numerous fields of mathematics as well as 

outside mathematics such as differential equations, integral 

equations, variational problems, optimization problems, 

game theory, graph theory, image and signal processing, 

economics, and many more. 

The notion of distance later known as metric space, 

introduced by M. Frechet in 1906, furnishes the common 

idealization of a large number of mathematical, physical and 

other scientific constructs in which the distance of a 

'distance' appears. The objects under consideration may be 

most varied. They may be points, functions, sets, and even 

the subjective experiences of sensation. What matters is the 

possibility of associating a non-negative real number with 

each ordered pair of elements of a certain set, and that the 

number associated with pairs and triples of such elements 

satisfy certain conditions. However, in numerous instances 

in which the theory of metric spaces is applied, this very 

association of a single number with a pair of elements is, 

realistically speaking, an over idealization. This is so even in 

the measurement of an ordinary length, where the number 

given as the distance  between two points is  often not the 
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result of a single measurement, but the average of a series of 

measurements. Indeed, in this and many similar situations, it 

is appropriate to look upon the distance concept as a 

statistical rather a determinate one. More precisely, instead 

of associating a number - the distance 𝑑 𝑝,𝑞  - with every 

pair of elements 𝑝, 𝑞 , one should associate a distribution 

function 𝐹𝑝𝑞  any for any positive number 𝑥 , interpret 

𝐹𝑝𝑞(𝑥) as the probability that the distance from 𝑝 to 𝑞 less 

than 𝑥. When this is done one obtains a generalization of the 

concept of metric space - a generalization which was first 

introduced by Austrian Mathematicians Karl Menger in 1942 

and following him, is called a statistical metric space [8]. 

In this paper, we analyze the different contraction 

conditions in probabilistic metric space and their 

inter-relationships.  

Definition 1.1: Metric space is a pair (𝑆,𝑑), where 𝑆 

is a non-empty set and 𝑑 is a distance function or metric of 

the space defined by 𝑑: 𝑆 × 𝑆 → [0,∞) , satisfies the 

following conditions: 

(i) 𝑑 𝑝, 𝑞 = 0 if 𝑝 = 𝑞  (Indiscrinibles) 

(ii) 𝑑 𝑝, 𝑞 > 0 if 𝑝 ≠ 𝑞  (Positivity) 

(iii) 𝑑 𝑝, 𝑞 = 𝑑 𝑞,𝑝 ,∀ 𝑝, 𝑞 ∈ 𝑆  (Symmetry) 

(iv) 𝑑 𝑝, 𝑟 ≤ 𝑑 𝑝, 𝑞 + 𝑑 𝑞, 𝑟 ,∀ 𝑝, 𝑞, 𝑟 ∈ 𝑆 

       (Triangle Inequality) 

Example 1.1: Let 𝑋 be a non-empty set. For 𝑥,𝑦 ∈ 𝑋, 

we define 

𝑑 𝑥,𝑦 =  
0 𝑖𝑓 𝑥 = 𝑦
1 𝑖𝑓 𝑥 ≠ 𝑦

  

Then, 𝑑  is discrete metric and the space (𝑋,𝑑)  is 

discrete metric space. 

Definition 1.2: Let 𝑓:𝑋 → 𝑋  be a map. Then, an 

element 𝑥 ∈ 𝑋 is said to be fixed point of 𝑓 if 𝑓 𝑥 = 𝑥. 

Example 1.2: Let 𝑦 = 𝑓 𝑥 = 𝑥3 − 4𝑥2 + 𝑥 + 6 = 0 , 

cubic equation. 

Then, it can be transferred to as 

mailto:akcsaurya81@gmail.com
http://creativecommons.org/licenses/by/4.0/


200 Ajay Kumar Chaudhary and Kanhaiya Jha:  Contraction Conditions in Probabilistic Metric Space  

 

 

𝑥 = 𝑓 𝑥 =
𝑥3 + 6

4𝑥 − 1
 

Here, 𝑓 −1 = −1, 𝑓 2 = 2 & 𝑓 3 = 3. 

So, by definition 𝑥 = −1, 𝑥 = 2 𝑎𝑛𝑑 𝑥 = 3  are fixed 

points of 𝑓. 

Definition 1.3: Let  𝑋,𝑑  be a metric space and let 

𝑓:𝑋 → 𝑋 be a mapping. Then, 𝑓 is called contraction if 

there exists a fixed constant ℎ ∈ [0,1), such that  

𝑑 𝑓 𝑥 , 𝑓 𝑦  ≤ ℎ𝑑 𝑥,𝑦 ,∀ 𝑥,𝑦 ∈ 𝑋 

Example 1.3: Let 𝑓 0,2 →  0,2  be defined by, 

𝑓 𝑥 =  
0 𝑥 ∈ [0,1]
1 𝑥 ∈ (1,2]

  

Then, 𝑓2 𝑥 = 0  for all 𝑥 ∈ [0, 2] . So, 𝑓2  is a 

contraction on [0,2]. But 𝑓 is not continuous and thus not 

a contraction map. 

Definition 1.4: For the set ℝ of real numbers, a function 

𝐹:ℝ → [0,1] is called a distribution function if 

(i) 𝐹 is non-decreasing, 

(ii) 𝐹 is left continuous, and 

(iii) inf𝑥∈ℝ𝐹 𝑥 = 0  and sup𝑥∈ℝ𝐹 𝑥 = 1. 

If 𝑋  is a non-empty set, 𝐹:𝑋 × 𝑋 → ∆  is called 

probabilistic distance on 𝑋 and 𝐹(𝑥,𝑦) is usually denoted 

by 𝐹𝑥𝑦 . We will denote by ∆ the family of all distribution 

function on (−∞,∞) and ∆+ on [−0,∞). 

Example 1.4: Let 𝐻 is a maximal element for ∆+ then, 

distribution function 𝐻 is defined by 

𝐻 𝑥 =  
0, 𝑖𝑓 𝑥 ≤ 0,
1, 𝑖𝑓 𝑥 > 0.

  

 

Figure 1.  Distribution Function 

Definition 1.5: [13] A probabilistic metric space (brief, 

PM-space) is an order pair (𝑋,𝐹)  where 𝑋  is a 

non-empty set and 𝐹 is a function defined by 𝐹:𝑋 × 𝑋 →
∆+  (the set of all distribution functions) that is 𝐹 

associates a distribution function 𝐹(𝑝, 𝑞) with every pair 

(𝑝, 𝑞) of points in 𝑋. The distribution function 𝐹(𝑝, 𝑞) is 

denoted by 𝐹𝑝 ,𝑞 , whence the symbol 𝐹𝑝 ,𝑞(𝑥) will represent 

the value of 𝐹𝑝 ,𝑞  at 𝑥 ∈ ℝ. And the function 𝐹𝑝 ,𝑞 ,𝑝, 𝑞 ∈ 𝑋 

are assumed to satisfy following conditions: 

(i) 𝐹𝑝 ,𝑞 0 = 0 ; (ii) 𝐹𝑝 ,𝑞 = 𝐹𝑞 ,𝑝 , (iii) 𝐹𝑝 ,𝑞 𝑥 = 1,  for 

every 𝑥 > 0 ⇔ 𝑝 = 𝑞. 

(iv) For every 𝑝, 𝑞, 𝑟 ∈ 𝑋 and for every 

𝑥,𝑦 > 0,𝐹𝑝 ,𝑞 𝑥 = 1,𝐹𝑞 ,𝑟 𝑦 = 1 ⇒ 𝐹𝑝 ,𝑟 𝑥 + 𝑦 = 1 

The interpretation of 𝐹𝑝 ,𝑞 𝑥  as the probability that the 

distance from 𝑝 to 𝑞 is less than 𝑥, it is clear that PM 

condition (iii), (i) and (ii) are straight forward 

generalizations of the corresponding metric space 

conditions (i), (ii) and (iii). The PM condition (iv) is a 

'minimal' generalization of the triangle inequality of metric 

space condition (iv). If it is certain that the distance of 𝑝 

and 𝑞 is less than 𝑥, and like wise certain that the distance 

of 𝑞  and 𝑟  is less than 𝑦 , then it is certain that the 

distance of 𝑝 and 𝑟 is less than 𝑥 + 𝑦. The PM condition 

(iv) is always satisfied in metric spaces, where it reduces to 

the ordinary triangle inequality. 

Definition 1.6: [6] A mapping 𝑇:  0,1 ×  0,1 → [0,1] 
is called a triangular norm (shortly t-norm) if for all 

𝑎, 𝑏, 𝑐,𝑑,∈ [0,1] the following conditions are satisfied: 

(i)  𝑇 𝑎, 1 = 𝑎 for every 𝑎 ∈ [0,1],  

(Neutral Element 1) 

(ii)  𝑇 𝑎, 𝑏 = 𝑇(𝑏,𝑎)  for every 𝑎, 𝑏 ∈ [0,1] , 

(Commutativity) 

(iii)  𝑇 𝑎, 𝑏 ≤ 𝑇(𝑐,𝑑)  whenever 𝑎 ≤ 𝑐 𝑎𝑛𝑑 𝑏 ≤ 𝑑 

(Monotonicity) 

(iv)  𝑇 𝑎,𝑇 𝑏, 𝑐  = 𝑇(𝑇 𝑎, 𝑏 , 𝑐))(𝑎, 𝑏, 𝑐 ∈ [0,1]) . 

(Associativity) 

Example 1.5 of t-norms 

𝑇 𝑎, 𝑏 = max  𝑎 + 𝑏 − 1,0  and 

 𝑇 𝑎, 𝑏 = min{𝑎, 𝑏} 

The four basic standard t-norms are: 

(i)  The minimum t-norm, 𝑇𝑀 , is defined by 

𝑇𝑀 𝑥,𝑦 = min{𝑥,𝑦}, 

(ii)  The product t-norm, 𝑇𝑝 , is defined by 𝑇𝑝 𝑥,𝑦 =

𝑥,𝑦, 

(iii)  The Lukasiewicz t-norm, 𝑇𝐿 , is defined by 

𝑇𝐿 𝑥,𝑦 = max{𝑥 + 𝑦 − 1,0}, 

(iv)  The weakest t-norm, the drastic product, 𝑇𝐷 , is 

defined by 

𝑇𝐷 𝑥,𝑦 =  
min(𝑥,𝑦)  𝑖𝑓 max 𝑥,𝑦 = 1,𝑎𝑛𝑑

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

With references to the point wise ordering, we have the 

following inequalities 

𝑇𝐷 < 𝑇𝐿 < 𝑇𝑃 < 𝑇𝑀 . 

Definition 1.7: [8] A Menger probabilistic metric 

space (briefly, Menger PM-space) is a triple  𝑆,𝐹,𝑇 , 
where (𝑆,𝐹)  is a probabilistic metric space, 𝑇  is a 

triangular norm and also satisfies the following conditions, 

for all 𝑥, 𝑦, 𝑧 ∈ 𝑋  and 𝑡, 𝑠 > 0,  𝑣 𝐹𝑥𝑦  𝑡 + 𝑠 ≥

𝑇(𝐹𝑥𝑧  𝑡 ,𝐹𝑧𝑦  𝑠 ) . This is the extension of triangle 

inequality. This inequality is called Menger's triangle 

inequality. 

Example 1.6: Let 𝑋 = ℝ,𝑎 ∗ 𝑏 = min 𝑎, 𝑏 ∀ 𝑎, 𝑏 ∈
(0,1) and 

𝑓𝑢 ,𝑤 𝑥 =  
𝐻(𝑥) 𝑓𝑜𝑟 𝑢 ≠ 𝑣

1 𝑓𝑜𝑟 𝑢 = 𝑣
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where 

𝐻 𝑥 =  

0 𝑖𝑓 𝑥 ≤ 0
𝑥 𝑖𝑓 0 ≤ 𝑥 ≤ 1
1 𝑖𝑓 𝑥 > 0

  

then (𝑋,𝐹,∗) is Menger Space. 

Definition 1.8: [4] Let (𝑋,𝐹,𝑇) be a Menger Space 

and 𝑇 be a continuous t-norm (1) A sequence {𝑥𝑛} in 𝑋 

is said to be converge to a point 𝑥 in 𝑋 (written 𝑥𝑛 → 𝑥) 

iff for every 𝜖 > 0 and 𝜆 ∈  0,1 , there exists an integer 

𝑁 such that 𝐹𝑥𝑛 ,𝑥 𝜖 > 1 − 𝜆 for all 𝑛 ≥ 𝑁. 

(2) A sequence {𝑥𝑛} in 𝑋 is called a Cauchy if for 

every 𝜖 > 0  and 𝜆 ∈ (0,1) , there exists an integer 𝑁 

such that 𝐹𝑥𝑛 ,𝑥𝑚
 𝜖 > 1 − 𝜆 for all 𝑛,𝑚 ≥ 𝑁. 

(3) A Menger space in which every Cauchy sequence is 

convergent is said to be Complete Menger Space. 

Banach Contraction Condition in Metric Space: The 

most basic fixed-point theorem is analysis known as the 

Banach Contraction Principle (BCP). It is due to S. Banach 

[1] and appeared in his Ph.D. thesis (1920, published in 

1922). The BCP was first stated and proved by Banach for 

the Contraction maps in setting of complete normed linear 

spaces. At about the same time the concept of an abstract 

metric space was introduced by Hausdorff for the set valued 

mappings, which then provided the general framework for 

the principle for contraction mappings in a complete metric 

space. The BCP can be applied to mappings which are 

differentiable, or more generally, Lipschitz continuous. 

Theorem 1.1: Let (𝑋,𝑑) be a complete metric space, 

then each contraction map 𝑓:𝑋 → 𝑋 has a unique fixed 

point. 

Example 1.7: 𝑇:ℝ → ℝ,𝑇 𝑥 =
𝑥

2
+ 3, 𝑥 ∈ ℝ. 

Obviously 𝑇 is a Banach contraction and 

Fix 𝑇 = {6} where Fix(𝑇) denotes the fixed point of 

the mapping 𝑇. 

2. Contraction Conditions in 
Probabilistic Metric Space 

2.1. V.M. Seghal and A.T. Bharucha-Reid (B) 

Contraction Conditions in PM Space 

The following definition of a contraction mapping    

was suggested and studied by V.M. Seghal and A.T. 

Bharucha-Reid in 1972, which is very natural probabilistic 

version of the notion of Banach contraction in metric space.  

Definition 2.1.1: [12] The following definition of a 

contraction mapping was suggested and studied by V.M. 

Seghal and A.T. Bharucha-Reid in 1972, which is very 

natural probabilistic version of the notion of Banach 

contraction in metric space. 

Let (𝑋,𝐹) be a probabilistic metric space. A mapping 

𝑇:𝑋 → 𝑋 is a contraction mapping (or a SB - Contraction 

mapping or B-contraction) on (𝑋,𝐹) if and only if there is 

a 𝑘 ∈ (0,1) such that 

 

𝐹𝑇𝑝 ,𝑇𝑞 𝑡 ≥ 𝐹𝑝 ,𝑞(𝑡/𝑘),           (2.1) 

where 𝑝, 𝑞 ∈ 𝑋 and 𝑡 > 0. It is also known as probabilistic 

k-contraction. 

The geometrical interpretation expression (2.1) is that the 

probability that the distance between the image points 

𝐹𝑝 ,𝐹𝑞  being less than 𝑘𝑥, is at least equal to the probability 

that the distance between 𝑝, 𝑞 that is less than 𝑥. 

Dentition 2.1.2: [2] Let (𝑋,𝐹) be a probabilistic metric 

space. A mapping 𝑓:𝑋 → 𝑋 is a probabilistic q-contraction 

(𝑞 ∈  0,1 ) if 

𝐹𝑓𝑃1 ,𝑓𝑃2
 𝑥 ≥ 𝐹𝑃1,𝑃2(𝑥/𝑞)         (2.2) 

for every 𝑝1,𝑝2 ∈ 𝑋 and every 𝑥 ∈ ℝ  

It is obvious that 𝑓:𝑋 → 𝑋  is a probabilistic 

q-contraction if and only if for every 𝑝1,𝑝2 ∈ 𝑋 and every 

𝑥 ∈ ℝ the following implication holds 

(∀𝛼 ∈  0,1 )(𝐹𝑃1,𝑃2 𝑥 > 1 − 𝛼 ⇒ 𝐹𝑓𝑃1 ,𝑓𝑃2
 𝑞𝑥 > 1 − 𝛼). 

(2.3) 

The inequality (2.2) is a generalization of inequality. 

𝑑 𝑓𝑝1,𝑓𝑝2 ≤ 𝑞𝑑(𝑝1,𝑝2), 

where 𝑓:𝑋 → 𝑋 and (𝑋,𝑑) is a metric space. In order to 

prove that (2.3) implies (2.2) recall that every metric space 

(𝑋,𝑑) is also a Menger space (𝑋,𝐹,𝑇𝑋), if 𝐹 is defined in 

the following way: 

𝐹𝑝1,𝑝2 𝑥 =  
1 𝑖𝑓 𝑑 𝑝1,𝑝2 < 𝑥,

0 𝑖𝑓 𝑑 𝑝1,𝑝2 ≥ 𝑥 𝑓𝑜𝑟 𝑥 𝑖𝑛 ℝ
   (2.4) 

Suppose that 𝑓:𝑋 → 𝑋  is such that (2.3) holds and 

prove that (2.2) is satisfied i.e., 

that for every 𝑥 > 0, we have 

𝐹𝑝1,𝑝2  
𝑥

𝑞
 = 1 ⇒ 𝐹𝑓𝑝1 ,𝑓𝑝2

 𝑥 = 1 

If 𝐹𝑝1,𝑝2  
𝑥

𝑞
 = 1, then 𝑑 𝑝1,𝑝2 <

𝑥

𝑞
 and (2.3) implies 

𝑑 𝑓𝑝1,𝑓𝑝2 < 𝑞
𝑥

𝑞
= 𝑥, 

which means that 

𝐹𝑓𝑝1 ,𝑓𝑝2
 𝑥 = 1 

2.2. Hick’s Contraction (C) in PM Space 

Definition 2.2.1: [7] T.L. Hicks in 1996, defined the 

following C-contraction mapping in PM space. 

Let (𝑋,𝑇) be a probabilistic metric space and 𝑇:𝑋 → 𝑋. 

The mapping 𝑇  is called Hicks C-contraction (or, 

C-contraction) if there exists 𝑘 ∈  0,1  such that the 

following implication holds for every 𝑝, 𝑞 ∈ 𝑋: and for 

every 𝑡 > 0 

𝑇𝑝𝑞  𝑡 > 1 − 𝑡 ⇒ 𝑇𝑇 𝑝 𝑇 𝑞  𝑘𝑡 > 1 − 𝑘𝑡. 

Definition 2.2.2: [9] D.Mihet in 2005, introduced the 

weak- hicks contraction in PM Space as follows: 

Let 𝑆  be a nonempty set and 𝐹  be a probabilistic 

distance on 𝑆. A mapping 𝑓: 𝑆 → 𝑆 is said to be weak - 

Hicks contraction (w-H contraction) if there exists 

𝑘 ∈ (0,1) such that, for all 𝑝, 𝑞 ∈ 𝑆. 
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 𝑤 − 𝐻 : 𝑡 ∈  0,1 ,𝐹𝑝𝑞  𝑡 > 1 − 𝑡 ⇒ 𝐹𝑓 𝑝 𝑓 𝑞  𝑘𝑡 

> 1 − 𝑘𝑡. 

Example 2.2.1: Let 𝑋 = [0,∞) and 

𝐹𝑥𝑦  𝑡 =
min(𝑥,𝑦)

max(𝑥,𝑦)
,∀ 𝑡 ∈  0,∞ ,∀ 𝑥,𝑦 ∈ 𝑋, 𝑥 ≠ 𝑦. 

It is known ([10], [11]) that (𝑋,𝐹,𝑇) is a complete 

Menger space under the triangular norm 𝑇 = 𝑇𝑝 > 𝑇𝐿 . Also, 

it can easily be seen that the mapping 𝑔:𝑋 → 𝑋, 

𝑔 𝑥 =  
0 𝑖𝑓 𝑥 = 0
1 𝑖𝑓 𝑥 > 0

  

is a w-H contraction for every 𝑘 ∈ (0,1). 

2.3. Generalization of Bharucha (B)-Contraction 

As a generalization of the notion of a probabilistic 

B-contraction, we shall introduce the notion of a 

probabilistic (m,k) - B-contraction where 𝑚 ≥ 1  and 

𝑘 ∈ (0,1). 

Definition 2.3.1: [6] If (𝑆,𝐹) is a PM - space, 𝑚 ≥ 1 

and 𝑘 ∈ (0,1), a function 𝑓: 𝑆 → 𝑆 is called probabilistic 

(m,k)-B-contraction if for any 𝑝, 𝑞 ∈ 𝑆 there is an 𝑖 with 

1 < 𝑖 < 𝑚 such that for every 𝑡 > 0, 

𝐹𝑓𝑖 ,𝑓𝑖𝑞 𝑘
𝑖𝑡 ≥ 𝐹𝑞 ,𝑞 𝑡 . 

If 𝑚 = 1  and 𝑘 ∈ (0,1)  then a probabilistic (1 −
𝑘)-B-contraction 𝑓 is a probabilistic  

B-contraction. 

As a generalization of C-contraction, we have 

Definition 2.3.2: [6] If (𝑆,𝜑) is a PM - space, 𝑚 ≥ 1 

and 𝑘 ∈ (0,1) , a function 𝑓: 𝑆 → 𝑆  is called a 

(m,k)-C-contraction if for any 𝑝, 𝑞 ∈ 𝑆 there is an 𝑖 with 

𝑙 < 𝑖 < 𝑚 such that for every 𝑡 > 0. 

𝐹𝑝 ,𝑞 𝑡 > 1 − 𝑡 ⇒ 𝐹𝑓𝑖 ,𝑓𝑖𝑞 𝑘
𝑖𝑡 > 1 − 𝑘𝑖𝑡. 

If 𝑚 = 1  and 𝑘 ∈ (0,1)  then a probabilistic 

(1, 𝑘)-C-contraction 𝑓 is a probabilistic C-contraction. 

2.4. Probabilistic G-contraction Mapping 

Definition 2.5.1: [5] g-contraction mapping is the 

generalization of Hick’s C-contraction in Probabilistic 

Metric Space. Let 𝑓,𝑔  be two mappings defined on a 

Menger space (𝑆,𝐹,𝑇) with values into itself and let us 

suppose that 𝑔 is bijective. The mapping 𝑓 is called a 

probabilistic g-contraction with a constant 𝑘 ∈  0,1  if 
𝑡 > 0 and 𝐹𝑔 𝑥 ,𝑔 𝑦  𝑡 > 1 − 𝑡 impies 𝐹𝑓 𝑥 ,𝑓 𝑦  𝑘𝑡 >

1 − 𝑘𝑡. 
The notion of g-contraction is justified because the 

images of two points 𝑥,𝑦 under the function 𝑓 are nearer 

than images of the same points under the function 𝑔. 

3. Conclusions [3] 

The Probabilistic g-contraction is Hicks C-contraction 

when g = I, an identity mapping. Since H-contraction need 

not be B-contraction. So, Probabilistic g-contraction need 

not be B-contraction. Moreover, C-contraction is an 

extension of Banach contraction in Probabilistic Metric 

Space. 

It is clear that 

(i)  (m-k) contraction ⇒ C-contraction ⇒  

B-contraction ⇒ Banach contraction 

(ii)  g-contraction ⇒ C-contraction ⇒ B-contraction 

(iii)  C-contraction ⇒ (w-H) contraction 
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