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Abstract  Musa – Okumoto (1984) non-homogeneous Poisson Process (NHPP) software reliability model also known as 

logarithmic NHPP model is one of the widely used reliability model. The model is based on the assumptions that failures are 

observed during execution time caused by remaining faults in the software; whenever a failure is observed, an instantaneous 

effort is made to find what caused the failure and the faults are removed prior to future tests and whenever a repair is done it 

reduces the number of future faults not like other models. The failure intensity function of this model reduces exponentially 

with time and the expected number of failures has logarithmic function. The predictive analysis of software reliability model 

is of great importance for modifying, debugging and determining when to terminate software development testing process. 

This paper presents some results about predictive analyses for the Musa – Okumoto (1984) NHPP model. Four issues in 

single-sample prediction associated closely with development testing program are addressed. Bayesian approach based on 

informative prior was adopted to develop explicit solutions to the problems which arise during software development testing 

process. Developed methodologies were illustrated using real data in form of time between failures. 
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1. Introduction 

Developing a reliable software is a challenging task facing 

software industry. This therefore calls for a method for 

checking whether the developed software is reliable or not. 

To determine when to terminate development process of a 

software there is need to carry out predictive analyses. 

Bayesian predictive analyses using various software 

reliability growth models has attracted a number of 

researchers. For instant, predictive analyses for the power 

law process (PLP) was developed, where most problems that 

relates to development process of software were solved using 

Bayesian approach [1]. [2] also solved the issues related to 

software development process by conducting a Bayesian 

predictive analyses for Goel- Okumoto software reliability 

growth model. Both models assume that failures are finite 

and that a software can be free of errors at a given time when 

all faults have been removed which might not happen at a 

real situation. Predictive analyses for Musa – Okumoto 

software reliability growth model  has not been developed  
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and the model assume failures to be infinite, that is there is 

no point in time a software will have zero faults, which is 

true in real situation. The model assumes that the earlier 

faults that are removed have great impact than the remaining 

faults. The Musa – Okumoto software reliability model is 

one of non-homogeneous Poisson process software model 

with the intensity function given by; 

𝜆 𝑡 =
𝛼𝛽

1+𝛽𝑡
                  (1) 

The model is based on the assumptions that failures are 

observed during execution time caused by remaining faults 

in the software; whenever a failure is observed, an 

instantaneous effort is made to find what caused the failure 

and the faults are removed prior to future tests and whenever 

a repair is done it reduces the number of future faults not like 

other models. The model must remain stable during the 

entire testing period for any particular testing environment 

and a reasonably accurate prediction of reliability must be 

provided by the model. These are the two main aspects of a 

good reliability model [3]. The Musa – Okumoto (1984) 

model has been used in various testing environment and in 

many instances, it provides good estimation and prediction 

of software reliability. Compared to other models when used 

in testing industrial data set, Musa- Okumoto model is the 

best performer in terms of fitting and predictive capability to 

the data [4]. 
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Bayesian reliability modeling is one of the best methods in 

predictive analysis. Development of reliability posterior 

distribution from which predictive inference is made is the 

main thing required in Bayesian reliability model. The 

reliability posterior distribution is usually constructed using 

prior distribution for the parameters of the software 

reliability model and the likelihood function based on the 

observed data. The advantage of using Bayesian approach is 

that it allows prior information such as engineering 

judgments and test results to be combined with more recent 

information from test or field data. This is vital since it helps 

software developers to arrive at a prediction of reliability 

based upon a combination of all available information. This 

information includes; the environment under which the 

software will work, previous tests on the software and even 

intuition based upon experience [5]. This paper present 

single – sample prediction analyses for Musa – Okumoto 

model using Bayesian approach with informative priors.  

2. Bayesian Method 

Computer Software is an important complex intellectual 

product that has become driver of almost everything in the 

21st century. During its development testing, developers and 

statisticians are interested on some prediction problems that 

are believed to be helpful in modifying the development 

testing program. In this section we present four issues A, B, 

C and D in single – sample prediction associated closely to 

development testing program. The four issues that were 

addressed are outline as propositions and their proof given in 

the appendix. Predictive distributions were derived using 

Bayesian method with informative priors. In this paper, it is 

assumed that a reliability growth testing is performed on a 

computer software system and the number of failures in   

the time interval (0, ]t , denoted by ( )N t  is observed. It is 

also assumed that { ( ), 0}N t t   follows the NHPP with 

intensity given in equation (14). Let 1 20 t t    be the 

successive failure times. When testing stops after a 

pre-determined n  number of failures is observed, the 

failure data is said to be failure-truncated. We denote the n  

failures time by  
1

nf
iobs i

Y t


  where 1 20 .nt t t     

a time-truncated data is when testing is observed for fixed 

time t . We denote the corresponding observed data by

1{ , , , ; }t
obs nY n t t t  , where 10 nt t t    . 

A prediction interval is an interval estimate for a future 

observation or a function of some future observations (Jun – 

Wu et al., 2007). Specifically, a double-sided (bilateral) 

prediction interval for 𝑥𝑛+𝑘   a future failure time with 

confidence level 𝛾  is defined by  𝑋𝑛+𝑘 ,𝑙(𝛾), 𝑋𝑛+𝑘 ,𝑢(𝛾)  

where , ( )n k lX   and , ( )n k uX   are the lower and upper 

prediction limits respectively such that 

𝑃𝑟 𝑋𝑛+𝑘 ,𝑙 𝛾 ≤ 𝑥𝑛+𝑘 ≤ 𝑋𝑛+𝑘 ,𝑢(𝛾) = 𝛾. 

Similarly, a single-sided (unilateral) lower or upper 

prediction limit for 𝑥𝑛+𝑘  with level 𝛾  is defined by 

𝑋𝑛+𝑘 ,𝐿(𝛾)  (or 𝑋𝑛+𝑘 ,𝑈(𝛾) ), which satisfies 𝑃𝑟 𝑋𝑛+𝑘 ,𝐿(𝛾) ≤

𝑥𝑛+𝑘 = 𝛾  or 𝑃𝑟 𝑥𝑛+𝑘 ≤ 𝑋𝑛+𝑘 ,𝑈(𝛾) = 𝛾 . Both lower and 

upper prediction limits, 𝑋𝑛+𝑘 ,𝐿(𝛾)  and 𝑋𝑛+𝑘 ,𝑈(𝛾) 

respectively, depend only on a single sample (or a single 

software) and are called single-sample prediction limits. 

Prediction limits involving two samples (or two software) 

can be defined similarly and are called two-sample 

prediction limits.  

2.1. Predictive Issues  

Here, we consider one software and assume that its 

cumulative time between failure times obey Musa – 

Okumoto software reliability growth model with observed 

data as either 
f

obs
Y  or t

obsY . Based on 
f

obs
Y  or t

obsY , we 

are interested in the following problems: 

A: What is the probability that at most k software failure 

will occur in the future time period  𝑇, 𝜏  with T  ? 

B: Given that the pre-determined target value 𝜆𝑡𝑣  for the 

failure rate of the software undergoing development testing 

is not achieved at time T, what is the probability that the 

target value 𝜆𝑡𝑣  will be achieved at time 𝜏, 𝜏 > 𝑇? 

C: Suppose that the target value 𝜆𝑡𝑣  for the software 

failure rate is not achieved at time T, how long will it take 

so that the software failure rate will be attained at 𝜆𝑡𝑣? 

D: What is the upper prediction limit (UPL) of 𝜆𝜏 = 𝛼𝛽 ⁄
(1 + 𝛽𝜏) with level 𝛾 . 𝜏  being a pre-determined value 

greater than T? 

2.2. Posterior and Predictive Distribution 

Let obsY  represent 
f

obs
Y  or t

obsY . The joint density 

distribution of obsY  is therefore [6]: 

1 ( ln(1 ))

1

( / , ) ( ) (1 )
n

n T
obs i

i

f Y t e        



   

0, 0                   (2) 

Case 1: When   the shape parameter is known, we  

adopt the following an informative prior for  , that is

( , )Gamma a b , where a  and b  are known 

1( ) a be      .           (3) 

The posterior of   is thus obtained as 

0

( / , ) ( )
( / )

( / , ) ( )

obs
obs

obs

f Y
h Y

f Y d

   


    





      (4) 

Substituting equation (2) and equation (3) into equation (4) 

we have 

 

   

1 1

ln(1 )

( / ) ( )

ln(1 )

n a
obs

n a T b

h Y n a

T b e
 

 



  

   

  

 

.      (5) 

Let y  be the random variable being predicted. The 
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predictive density of y  is; 

0

( / ) ( / ) ( / )obs obs obsf y Y f y Y h Y d 


       (6) 

Hence, the Bayesian UPL of y  with level  , denoted as 

( )
Uy


, must satisfy 

( )

( / )

y
U

obsf y Y dy







             (7) 

Case 2: Shape parameter   is unknown, we assume the 

informative priors for   and   as ( , )Gamma a b  

and ( , )Gamma c d . This implies that 1( ) a be       

and 1( ) c de      . Since   and   are independent 

the joint prior density ( , )    is given as

( , ) ( ). ( )       . Implying that 

1 1( , ) a b c de e         .      (8) 

The joint posterior density of   and   is thus  

 

 

1 1

ln(1 )1 1

1

( , / ) ( )

(1 )

n a
obs

n
T bn c d

i

i

h Y p n a

t e e
 

  

 

  

     



  


.   (9) 

where 

 

1 1

1

0

(1 )

ln(1 )

n
n c d

i

i

n a

t e

p d
T b

 




   









 



   

Equation (9) is similar to equation (5), let y  be the 

random variable predicted. The predictive density of y  is; 

0 0

( / ) ( / , , ) ( , / )obs obs obsf y Y f y Y h Y d d     


    (10) 

and the Bayesian UPL denoted by Uy  of y  with level   

similar to equation (6) is; 

( / )

yU

obsf y Y dy



             (11) 

3. Main Results for Prediction Using 
Informative Priors 

In this section we address the four issues stated in section 

2.1 using the Bayesian approach. The main results are 

presented as propositions and their proofs given in the 

appendix. Below, we use 2 ( ; )n   to represent   the 

percentage point of the chi-square distribution with n  

degrees of freedom such that 2 2Pr{ ( ) ( ; )}n n     , 

and define the Poisson mass function as   

( ) / !hh e h    and gamma density function as 

1( , ) / ( )n n nx n x e n     . The prior is assumed to be 

equation (3) and (8) in all subsequent propositions.  

Preposition 1 (Issue A) 

The probability that at most k  failures will occur in the 

interval ( , )T   with T   is 

 

 

 

 
 

 

1

1

1

1

1 1(1 )

1

ln(1 )
0

lnln(1 ) 1ln(1 )

1ln(1 ) ln(1 )ln

( )

( )! ( )

j
na n k T

n j
j n

T
k

n
n c dt ein k

i
j a

bj n

T b j aT b
if is known

n ab b

j a
d if is unknown

j n p n a









 






 



 


 

 


   



 

  
           

  
        

  


 

  



 












         (12) 

Preposition 2 (Issue B) 

The probability that the target value tv  will be achieved at time   T   is 

   

   

 

(1 ) (1 )1 ln(1 )

0

1 1
(1 ) (1 )1 ln(1 )

1

0 0

ln(1 )
1

!

(1 )
ln(1 )

1
1

! ln(1 )

h

n a T btv tv

h

n
n c dh

in a T btv tv i

n a
h

T b
e if is known

h

t e
T b

e d if is unknown
p h T b

 
  


 

  

 




 
 

 


     



   
     






      





 
   

  


 




 





 (13) 

Preposition 3 (Issue C) 

For a given level  , the time 


 required to attain tv   
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2(2 ; ) 1
2 ln(1 )

n

T btv
T if is known

T if is unknown

 

 




 

  

 
  

  




                             (14) 

Remark 1: For the second part of equation (14),   is the solution to the equation 

   

 

1 1
(1 ) (1 )1 ln(1 )

1

0 0

(1 )
ln(1 )

1
1

! ln(1 )

n
n c dh

in a T btv tv i

n a
h

t e
T b

e d
p h T b


 

  

 
 

 


   
     






  
  

 
 


  .      (15) 

Preposition 4 (Issue D) 

The Bayesian UPL of 
(1 )


 



  with level   is 

 

2(2 ; )
( ) 2(1 ) ln(1 )( )

n

T b
U

tv

if is known

if is unknown

 
  


 

 

  






 



                          (16) 

Remark 2: The second part of equation (16) is such that tv
  is the solution to 

   

 

1 1
(1 ) (1 )1 ln(1 )

1

0 0

(1 )
ln(1 )

1
1

! ln(1 )

n
n c dh

in a T btv tv i

n a
h

t e
T b

e d
p h T b


 

  

 
 

 


   
     






  
  

 
 


  .      (17) 

4. Real Example 

We have used the time between failures data described in [7] to illustrate the developed methodologies for the 

single-sample Bayesian predictive analysis. We conducted the goodness of fit test using Laplace statistics as presented in [8] 

and found that the data obey the Musa – Okumoto process. From the given data the maximum likelihood estimates for the 

parameters   and   of Musa – Okumoto growth model were obtained numerically by Newton Raphson method as

ˆ 0.008282448   and ˆ 15.285550499   respectively. In this paper we have used gamma priors for both parameters. The 

values of the parameters of informative priors ( , )Gamma a b  and ( , )Gamma c d  are chosen arbitrarily as 

2, 1/ 2, 2a b c    and 1/ 2d  . 

(A) Suppose we are interested in the probability k  that at most k  will occur in a future time period ( , ] (180,250]T   . 

Considering the case when   is known (i.e, 0.008282448  ), using the first formula in equation (12) we have

0 1 2 3 4 5

6 7 8 9 10 11

12 1

=0.01202933, =0.06169460, =0.16742455, =0.32202724, =0.49656381, =0.65870012, 

=0.78770083, =0.87805309, =0.93488273, =0.96747044, =0.98470892, =0.99320106,

 =0.99712719, 

     

     

  3 14 15=0.99884169, =0.99955271, =0.99983403 

 

Figure 1 shows the graph of probabilities that at most k  failures will occur in the time interval (180,250]  for   known 

for both informative and non-informative priors. From the graph it can be seen that the probabilities for informative prior is 

high as compared to that of non-informative. This is more seen at issue C, where there high reduction of time required to 

achieve a predetermined target value in informative prior. 

(B) Suppose the target value is given by 0.03tv  . At the time 182.21T  , the MLE of the achieved failure rate for this 

software is 
ˆˆˆ(182.21) 0.05045615ˆ(1 182.21 )




 


, which is greater than tv  thus it cannot be achieved at time 

182.21T   and development testing will continue. Suppose we want to find the probability that the target value tv  will be 

achieved at the time 277.83h  . (i) When   is known (say, 0.008282448  ), from the first formula in equation (13), 

we obtain 0.0007319763  . In this case also as that of non-informative prior, the target value is unlikely to be achieved. (ii) 

When   is unknown, from the second formula in equation (13), we obtain 0.08730647   where the Monte Carlo 

sample size 1000L  .  
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Figure 1.  The graph of the probabilities k  that at most k  failures will occur in the time interval (180, 250] for the cases of   known for informative 

and non-informative prior 

 

(C) Since the target value 0.03tv   is not achieved at 

time 182.21T  . It is interesting now to know how long it 

will take in order to achieve the desired target value. (i) 

When   is known (say, 0.008282448  ), using the first 

formula in equation (14) and letting 0.90  , we obtain 

 242.3671h   . Thus, it will take another  242.3671  

hours in order to achieve the target value which is a 

significant reduction from the value obtained for the case of 

non-informative prior. (ii) When   is unknown, from the 

second formula in equation (14) we have 147h   . It will 

take another 147 hours for the desired target value to be 

achieved when   is unknown. . (D) Given 900h  , 

when   is known (i.e, 0.008282448  ), from first 

formula in equation (16) the Bayesian UPL of 
1










with level 0.90  is given by 
( )

( ) 0.01602707U


   . 

5. Conclusions 

Reliable software has been the main goal of any software 

developer. This is because non- reliable software means that 

the customers will be dissatisfied with the product thus loss 

of market shares and significant cost to the supplier. For 

critical applications such as banking or health monitoring, 

non-reliability can lead to great damage not only to the 

consumer but also to the developer. Due to the above reasons, 

there is need to develop reliable software. There are many 

software reliability growth models that have been used in 

analyzing software reliability data. Musa- Okumoto is one  

of the software reliability models which best performed in 

fitting industrial failure data set. In this paper, explicit 

solution to predictive issues that may arise during 

development process were derived using Bayesian approach. 

These solutions are helpful to software developers in many 

instances such as resource allocation, when to terminate the 

testing process, modification needed in the software before 

termination.  

The study used informative to derived explicit solutions 

for predictive issues that may arise during software 

development process. In all the cases when the shape 

parameter was known, solutions to posterior and predictive 

distributions had closed forms while when it is unknown, 

solutions had no closed forms and the study used Markov 

Chain Monte Carlo (MCMC). Bayesian approach was used 

as it is advantageous over classical approach. Bayesian 

approach is available for small sample sizes and allows the 

input of prior information about reliability growth process 

and provides full posterior and predictive distributions [1]. 
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Appendix: Proof of preposition 1 – 4  

We first state the following identity without proof: That is 

 1

( ; , )

( ) ( ) ( ) ( ) / !
m

m

D m a b

dF t dF t F a F b m                               (A.1) 

where m  is any positive integer, a  and b  are two real numbers such that a b , ( )F t  is an increasing and 

differentiable function and  1 1( ; , ) ( , ) :m mD m a b t t a t t b    . 

Proof of preposition 1 

The probability that at most k  failures will occur in the interval ( , )T   is  Pr ( ) /k obsN n k Y    , when   is 

known, we have 

 
0

Pr ( ) / , ( / )k obs obsN n k Y h Y d    



   .                         (A.2) 

where ( / )obsh Y  is given by equation (5) and 

 Pr ( ) / , ( , ( ) ) / ( / )
n k

j
obs obs obs

j n

N n k Y f Y N f Y   




    .                  (A.3) 

From equation (2) 1 ln(1 )

1

( / ) (1 )
n

n n T
obs i

i

f Y t e        



    

and 

1

1( ; , )

( , ( ) ) ( , , , , ( ) )
j

j
obs obs n j

nD j n T

f Y N f Y x x N j dx


 

 

     

ln(1 ) 1

1 1( ; , )

( , ( ) ) (1 )
j j

j j Tj
obs i

i nD j n T

f Y N e t dt 




     

  

     

1 ln(1 ) 1

1 1 1( ; , )

(1 ) (1 )
j jn

j j
i

i n nD j n T

t e t dt 



      

    

     .             (A.4) 

Solving the integral part in equation (A.4), we proceed as follows: 

1

0

1
(1 ) ln(1 )

t

t t 


   . Substituting the limits T  and   we have 
1 1

ln(1 ) ln(1 )T 
 

    which reduces to

 1

1

1
ln

T








. Therefore the integral part of equation (A.4) becomes 

 1

11

1 1( ; , )

ln
1

(1 )
( )!

j n

j j
T

j n
n nD j n T

t dt
j n
















   

 
  

 


  .                  (A.5) 

Substituting equation (A.5) to equation (A.4) we have 

 1

11 ln(1 )

1

ln
1

( , ( ) ) (1 )
( )!

j n

j
Tj jj

obs i j n
i

f Y N t e
j n



 
   






  




 
  

  


  

From equation (A.3), we obtain 
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 1

11

1

1 ln(1 )

1

ln
1

(1 )
( )!

( , ( ) ) / ( / )

(1 )

j n

n
Tj j

i j n
j i

obs obs n
n n T

i

i

t
j n

f Y N f Y

t e






 

  


 

  









  



 
  




 







 

 
1

ln
1 1

1
ln

( )!

j n
Tj n

T
e

j n




 




 
     


 
  




 

Thus equation (A.3) becomes 

   
1

ln
1 1

1

1
Pr ( ) / , ln

( )!

n k j n
Tj n

obs T
j n

N n k Y e
j n




 


  

        




   
   

 .              (A.6) 

and equation (A.2) 

     

1
ln

1
ln(1 )1 1

1
0

ln . ln(1 )
( )! ( )

Tn k j n
n a T bj n n a

k T
j n

e
T b e d

j n n a





 


    

 
      

     




   
     

         (A.7) 

The integral part of equation (A.7) integrates to 1 since it is a gamma distribution with parameters j a  and

ln(1 )T b  .  

On re-arranging equation (A.7), it becomes  

 

 

 
 

1

1

1

1

lnln(1 ) 1ln(1 )

1ln(1 ) ln(1 )ln

j
na n k T

k n j
j n

T

T b j aT b

n ab b












 


 

 


 
           

   
        

  

 .                   (A.8) 

This implies the first formula of equation (12). 

When   is unknown, from equation (9) and equation (A.6) we have 

  0

0 0

Pr ( ) / , , ( , / )k obs bsN n k Y h Y d d       



     

   
1 1 1 1ln1 ln(1 )1 1

10 0

ln

(1 )
( )! ( )

j n
j n

n a n c nn k T T bT d
i

j n i

e t e e d d
j n p n a

 
   


 

  


               

 

 
  

 
  

    

 
 

1 1 1
1

ln(1 )11

0 0

ln (1 )

( )! ( )

nj n
n c d

iTn k
T bj ai

j n

t e

e d d
j n p n a

 


 

 

  


    

 
   



  
      

  
     


   

 

1 1(1 )

1

ln(1 )
0

( )

( )! ( )

n
n c dt ein k

i
j a

bj n

j a
d

j n p n a

 




   



 


 


  

  .                                        (A.9) 

Equation (A.9) implies the second formula of equation (12).  

Proof of Preposition 2 

Let ( / )obsf Y  denote the posterior of (1 )
.

 


  Hence, the probability that the target value tv  will be 

achieved at time   is given by  
0

Pr / ( / )
tv

tv obs obsY f Y d



          . When   is known, making transformation
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(1 )


 


 , we have 
(1 )




 



  and 

(1 )d

d 

 

 


 . Consequently, the posterior density of   is 

( / ) ( / )obs obs
d

f Y h Y
d





 


  

 
 

(1 )
1 ln(1 )(1 ) 1 (1 )

ln(1 )
( )

n a T b
n a

T b e
n a


   









         

    
 

 
 

(1 )1 ln(1 )
(1 )

ln(1 )
( )

n a T bn a

T b e
n a


  






            
   

.                        (A.10) 

Equation (A.10) follows a gamma distribution with parameters n a  and  
(1 )

ln(1 )T b





  
  

. From the 

relationship of gamma and Poisson distribution 
1
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Equation (A.11) implies the first formula of equation (13). 

When   is unknown, making transformation on (1 )
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We obtain, 
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Equation (A.13) implies the second formula of equation (13). 

Proof of Preposition 3 

For given level  , the time required to attain the target value tv  is T    , where   satisfies
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Hence T     is given as 
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When   is unknown, the time required to attain the target value tv  with level   is T    . Where   is the 

solution to  
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Proof of Preposition 4 

For a pre-determined ( )T   , the Bayesian UPL for   with level   is 
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Equation (A.17) implies the first formula of equation (16) 

and the second part follows similarly. 
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