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Abstract  This paper offers four different methods of proof of the convergence of negative binomial NB(n, p) distribution 
to a normal distribution, as n →∞ . All these methods of proof may not be available together in a book or in a single paper in 
literature. The reader should find the presentation enlightening and worthwhile from a pedagogical viewpoint. The article 
should of interest to teachers and undergraduate seniors in probability and statistics courses. 
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1. Introduction 
The negative binomial (NB) distribution was first initiated 

by Pascal (1679), although its earliest concrete formulation 
and introduction was due to Montmort (1741); see Todhunter 
(1865). Montmort derived the distribution of number of 
tosses of a coin required to obtain a specified number of 
heads. Student (1907) in an empirical study employed NB to 
model countings on haemocytometer data. Bartko (1961) 
published an excellent review article on many aspects of the 
NB distribution. The NB is an often used distribution in 
statistical modeling. The inverse binomial sampling scheme 
is modeled with NB distribution. This scheme is described as: 
in an infinite sequence of independent Bernoulli trials 
continue to select items until a fixed number of successes  
(or failures) are captured. For example, suppose we are 
conducting a wildlife survey and wanting to catch n of a 
certain type of restricted birds. In the sampling process we 
capture birds at random until we have bagged n of these 
restricted birds (and an unknown random number of other 
types of birds). Thus, the resulting sample size would be 
more than n. The NB models the distribution of either the 
resulting total sample size or the unknown random number 
of other types of birds.  

Thus, there are a couple of variations of the NB 
distribution. The first version deals with the total number  
of trials (say, nY ) necessary to obtain n successes. With this 
version,  the probability mass function of  nY  is given by  
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( )1
1( ) y n y n

n nP Y y p q− −
−= = , for integer y n≥ . Here p is the 

probability of success and 1q p= −  is the probability of 
failure, with 0 1p< < . If we let nX  denote the number of 
failures before the nth success, then n nX Y n= − . The second 
version counts the number of failures before the nth success. 
In this version, the probability mass function of nX  is given 
by 

( )1
    ( ) n x n x

n xP X x p q+ −= = , for integer 0,1, 2,x =   (1.1) 

It is well known that the mean of nX  is ( )nE X µ=
( )nq p= and the variance of nX  is Var( )nX =  
2 2( )nq pσ = . A little algebra shows that 2 pσ µ=

( ) /p q pµ= + 2 nµ µ= + . Thus, the variance is always 
larger than the mean for NB distribution. For the data which 
points to a larger variance than the mean, the Poisson 
distribution is unsuitable for modeling as it requires the mean 
and variance to be equal. In such cases, the negative binomial 
seems more suitable. The NB distribution has become 
increasingly popular as a flexible alternative to the Poisson, 
especially when the underlying variance seems greater than 
the mean and when independence of the counts is also 
doubtful. Among others, Arbous and Kerrich (1951), 
Greenwood and Yule (1920), and Kemp (1970) have applied 
NB to model accident statistics. Furry (1937) and Kendall 
(1949) have shown its applications in birth-and-death 
processes. For more applications see Johnson et al. (1993) 
and also Feller (1957).  
Relationship with Poisson distribution. 

Suppose |X θΘ =  follows Poisson distribution with Θ  
following a Gamma ( ,n β ); then 
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So the marginal distribution of X  is negative binomial 
with parameters n and 1 (1 )p β= + . This result was due to 
Greenwood and Yule (1920). They used it to model 
“accident proneness”. The parameter θΘ =  is the expected 
number of accidents for an individual, which is presumed to 
vary from person to person.  

Another important formulation is due to Luders (1934) 
and Quenouille (1949). In this formulation the NB arises as 
the distribution of the sum of N independent random 
variables each having the same logarithmic distribution and 
N having a Poisson distribution. This has application in 
entomology where the counts of larvae over the plots in a 
field are observed. The larvae are hatched from egg masses 
which appear at random over the field. If the number of egg 
masses on a plot follow a Poisson distribution and the 
survivors from the egg masses follow a Logarithmic 
distribution, then the resulting distribution of larvae on plots 
will be a Negative Binomial (See Gurland 1959).  

For various methods of approximating the NB probability, 
see Bartko (1965). It is well-known that as n increases 
indefinitely, the NB converges to a normal distribution. 
Accordingly, in statistical practice the NB probabilities are 
approximated using the appropriate normal density for large 
n. There are multiple ways one can show the convergence of 
the NB to the normal. But all these proofs may be not be 
found together in a single book or an article. The main aim of 
this article is to the present four different methods of proof of 
this convergence, as n →∞ . The first proof is based on the 
well-known Stirling’s formula, and the other three methods 
are the Ratio method, the Method of Moment Generating 
Functions (mgf’s), and lastly that of the Central Limit 
Theorem. These contrasting methods of proof are useful 
from a pedagogical standpoint. Bagui and Mehra (1917) 
dealt with similar proofs for showing the convergence of 
Binomial to the limiting normal, as n →∞ . 

The paper is organized as follows: In Section 2, we list 
some preliminary results that will be used in the subsequent 
sections for proving these convergences. The details of 
various poofs of convergence are provided in Section 3. 
Some concluding remarks are given in Section 4.  

2. Preliminaries 
In this section we state a few useful definitions, formulas, 

Lemmas, and Theorems which we shall employ in detailing a 
number of proofs in Section 3.  

Formula 2.1. For large n, the Stirling’s formula for 
approximating ! ( 1)( 2) (3)(2)(1)n n n n= − −   is given by 

! 2 ( )n nn n n eπ −≈  (namely, that ! 2 n nn nn eπ − 
  1→  

 as n →∞ );                (2.1) 

( ≈  stands for “approximately equals to”, in the above 
sense, for large n)  

Formula 2.2. The following equations hold: 

(i)  
2 3

ln(1 )
2 3
x xx x+ = − + − = 1

1
( 1)

i
i

i

x
i

∞
−

=
−∑  for 1 1x− ≤ ≤ ; 

and 

(ii)  
2 3

ln(1 )
2 3
x xx x− = − − − −  =  

1

i

i

x
i

∞

=
−∑  for 1 1x− ≤ ≤ . 

Definition 2.1. Let X be a random variable. The moment 
generating function (mgf) of the r.v. X is defined by 

( ) ( )tX
XM t E e=  provided it is finite for all | |t h< , for 

some 0h > . 
We say then that the mgf ( )XM t of X exists. If it exists, it 

is associated with a unique distribution. That is, there is a 
one-to-one correspondence between the pdf’s (or pmf’s) of X 
and the above defined mgf’s.  

Lemma 2.1. Let Z be a random variable with density 

( ) 2 2( ) 1 2 z
Zf z eπ −= , z−∞ < < ∞ ; that is, the r.v. Z 

(0,1)N , the standard normal distribution. Then the mgf of Z 

is given by 
2 2( ) t

ZM t e= . 
Proof. From the above definition, the mgf of Z evaluates to  

( ) ( )tZ
ZM t E e=

2 21
2

tz ze e dz
π

∞
−

−∞

= ∫
 

2 22 (1 2)( )1
2

t z te e dz
π

∞
− −

−∞

= ∫
2 2te= . 

Lemma 2.2. Suppose { }( ),  1n nλ ≥  is a sequence     
of real numbers such that ( ) 0lim

n
nλ

→∞
= . Then 

( )
1lim

n

n

n
n n

e
β

αβα λ
→∞

+ +  = 
 

, as long as α  and β  do not 

depend on n .  
Theorem 2.1. Suppose { }nX  is a sequence of r.v’s  

with mgf’s ( )XnM t  for | |t h<  and 1,2,3,n =  . Suppose 
the r.v. X has mgf ( )XM t  for | |t h< . If 
lim ( ) ( )X Xnn

M t M t
→∞

=  for | |t h< , then d
nX X→ , as 

n →∞ .  
(The symbolization d

nX X→  means that the 
distribution of the r.v. nX  converges to the distribution of 
the r.v. X, as n →∞ ). 

Theorem 2.2. Let 1 2, , , nX X X  be a random sample of 
independent and identically distributed observations from a 
population that has a finite mean µ  and a finite variance 

2 0σ > . Define 
1

n

n i
i

S X
=

= ∑  and ( )n nX S n= . Then 

n
n

S n
Z

n

µ

σ

−
=  =  ( )nn X µ

σ

−  d→ Z (0,1)N , the 
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standard normal distribution, as n →∞ .  
Theorem 2.2 is often referred to as the basic Central Limit 

Theorem (CLT).  
Big O  and Small o  notations 
The Big O  notation ( ) ( ( ))h n O g n=  implies that the 

ratio ( ) ( )h n g n  stays bounded, as n →∞ ; that is, there 

exists a positive constant C < ∞  such that ( ) ( )h n g n C<  

for all n, however large the n may be. For example, if ( )g n

0→ , as n →∞ , ( ) ( ( ))h n O g n=  implies that ( ) 0h n →  

at the same or higher rate than that of ( )g n .  
The small o notation ( ) ( ( ))h n o g n= implies that the 

ratio ( ) ( ) 0h n g n → , as n →∞ ; that is, given an 0ε > , 
however small, there exists an 0 0 ( )n n ε=  such that 

( ) ( )h n g n ε<  for all 0n n≥ . Here for example, if ( )g n

0→ , as n →∞ , ( ) ( ( ))h n o g n=  implies that ( ) 0h n →  

at a higher rate than that of ( )g n . 

3. Multiple Proofs 
In this section, we offer four different methods of proof for 

showing the convergence of negative binomial to a normal 
distribution, as n →∞ .  

3.1. Stirling Approximation Formula Method 

First we rewrite the negative binomial pmf given in (1.1) 
as  

( 1)!
( )

( 1)! !
n x

n
n x

P X x p q
n x
+ −

= =
−

 ( )!
! !

n xn n x
p q

n x n x
+

=
+

 
 
 

. (3.1) 

Now substitute Stirling’s approximation formula given by 
(2.1) in (3.1). After some algebraic simplifications, we have  

( )n
n

n x
P X x

+
 = ≈  
 

( )2 ( ) ( )

2 ( ) 2 ( )

n x n x

n n x x

n x n x e

n n e x x e

π

π π

+ − +

− −

+ + n xp q  

1 2 ( )
2 ( )

n x
n x

n x
n n x p q

n x x n xπ

++ =  + 
 

1 2 ( )
2 ( ) ( )

n x
n x

n x x
n n x p q

n x x n x nπ

+

+
+ =  + 

 

( )
1 21

2

n xn x
nnq pπ

+ −+ =  
  ( )

1

1 2

n

x
p

x nq

−

+
 

( 1 2)1 2 xn xnp xp xpC
n nq

− ++ −  + =   
   

,            (3.2) 

where 1 2[ ( )]C nq pπ= . Taking natural logarithms on 
both sides of (3.2), we get 

ln ( ) lnnP X x C= = + ( )1 2 ln np xpn x
n
+ + −  

   

( )1 2 ln xpx
nq

 
− +  

 
.            (3.3) 

Note now that the mean nµ  and variance 2
nσ  of the 

NB(n, p) r.v. are given by ( )n np qµ =  and 2 2( )n nq pσ = , 

respectively. Suppose we set ( )n
n

X nq p
Z

nq p

−
=  and 

( )x nq p

nq p
z −
=

xp nq

nq

−
= . The terms in the last equation lead 

to: xp nq z nq= + , so that 1
xp z
nq nq

= +
 
  
 

, and 

np xp n z nq+ = + , so that 1
z qnp xp

n n

+
= +
 
  
 

. Using the 

these simplifications we re-write (3.3) as  

ln ( )nP Z z= ln C= ( ) ( ) 1 2[ ]n p z nq p+ + −

ln 1[ ( )]z q n+  

( ) ( ) 1 2[ ]nq p z nq p− + + ln 1[ ]z nq+  

 1 2ln ( , , ) ( , , )C I z p q I z p q= + + ,      (3.4) 

where 

1( , , )I z p q = ( ) ( ) 1 2[ ]n p z nq p+ − ln 1 ( )[ ]z q n+  

= ( ) 1 2( )[ ]n p z nq p+ − ( )
1

1

( 1)k k k

k
q n z

k

−∞

=

−∑  

= ( )n p
2 3

2 3 3 3 3

3

( 1)( ) ( ) ( )
2

[ ]
k

k k

k

zz q n q n z q n q n z
k

−∞
− −

=

−
− + ∑  

2
2 2 2 2

2

( 1)( ) ( ) ( )[ ]
k

k k

k
z nq p z q n z q n q n z

k

−∞
− −

=

−
+ − ∑  

2
z q n−  

1
1 1

1

( 1) ( )
k

k k

k
q n z

k

−∞
− −

=

−∑  

2 3 3 2

2
z nq z q z q

p p p n
= − +

0

( 1) ( )
( 3)

k
k k

k
q n z

k

∞

=

−
+∑

2z q
p

+
 

3 3 2z q
p n

−  
0

( 1) ( )
( 2)

k
k k

k
q n z

k

∞

=

−
+∑  

1 2

2
zq

n
−

0

( 1) ( )
( 1)

k
k k

k
q n z

k

∞

=

−
+∑  

 ( )
2

1
2

z nq z q O n
p p

= + + ,                        (3.5) 

where the last order term ( )1O n  follows since the 
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absolute values of the three infinite sums above can be 
shown to remain bounded, as n →∞ , by applying Formulas 
2.2 to each of them individually. Similarly,  

2 ( , , )I z p q = ( ) 1 2[ ]nq p z nq p− + + ln 1[ ]z nq+  

( )
2 3 3 3

3 3
3

( 1)
2 ( ) ( )

[ ]
k k

k
k

z z z znq p
nq knq nq nq

− −∞

−
=

−
= − − + ∑  

( )z nq p−
2 2 2

2 2
2

( 1)
( ) ( )

[ ]
k k

k
k

z z z
knq nq nq

− −∞

−
=

−
− ∑  

2
z
nq

−
1 1

1
1

( 1)
( )

k k

k
k

z
k nq

− −∞

−
=

−∑  

z nq
p

= −
2

2
z

p
+

3

1 2
z

pq n
−

0

( 1)
( 3) ( )

k k

k
k

z
k nq

∞

=

−
+∑   

2z
p

−
3

1 2
z

pq n
−

0

( 1)
( 2) ( )

k k

k
k

z
k nq

∞

=

−
+∑  

2
z
nq

−
0

( 1)
( 1) ( )

k k

k
k

z
k nq

∞

=

−
+∑  

z nq
p

= −
2

2
z

p
− + ( )1O n ,                      (3.6) 

the last order term ( )1O n  in (3.6) following again by an 

application of Formulas 2.2, as done for (3.5) above. 
Now substituting (3.5) and (3.6) in (3.4), we have 

ln ( )nP Z z= ln C≈ +
2

2
z nq z q

p p
+

z nq
p

−
2

2
z

p
− +

( )1O n  

= ( )
2 (1 )ln 1

2
z qC O n

p
−

− + =  ( )
2

ln 1
2
zC O n− + . (3.7) 

Hence, for large n, from (3.7) we get 
2 2( ) z

n nP Z z Ce−= ≈ ∆
2 21

2
ze dz

π
−= ,      (3.8) 

where (1 )n ndz p nq σ≈ ∆ = = . The above equation (3.8) 
may also be written as  

( ) ( )n nP X x P Z z= ≈ = ≈

2( )
22( )1

2 ( )

x nq p

nq pe
nq pπ

−
−

. (3.9) 

This completes the proof.  

3.2. The Ratio Method [5] 

The ratio method uses the ratio of two successive 
probability terms of the pmf. The ratio of two consecutive 
probability terms of the negative binomial pmf given in (1.1) 
is leads to 

( 1)
( )

n

n

P X x
P X x

= +
=

=

11
1

  1

n
x

xn

n x
p

n q
n x qp

n

+
+ 

 − 
+ − 

 −   

 

( )! ( 1)! !
( 1)!( 1)! ( 1)!

n x n x q
n x n x

+ −
=

− + + − 1
n x q
x
+

=
+

      (3.10) 

Let ( [ ]) ( )z x nq p nq p = −  , so that 

( )[ ]x nq p z nq p= + ; substituting this expression for x 

into (3.10), we obtain the equation 

( )
( )

[ ] 1

[ ]

n

n

P X nq p z nq p

P X nq p z nq p

 = + + 
 = +   

( )
np nq z nq

q
nq z nq p
+ +

=
+ + ( ) ( )

n z nq
n z nq q p q

+
=

+ +
. (3.11) 

By setting ( ) ( )n nZ X nq p nq p= −  and p nq∆ = , 
we can rewrite (3.11) as 

( )
( )
n

n

P Z z
P Z z

= + ∆
= 2

1 ( )
1 ( )

zq p
z p p
+ ∆

=
+ ∆ + ∆

.    (3.12) 

Now assume that there exists a smooth pdf ( )f z  such 
that for large n, ( ) ( )nP Z z f z dz= ≈  and therefore 

( ) ( )nP Z z f z dz= + ∆ ≈ + ∆ . Under this broad assumption, 
the left hand side of (3.12) can be rewritten as  

2
( ) 1 ( )

( ) 1 ( )
f z zq p

f z z p p
+ ∆ + ∆

≈
+ ∆ + ∆

.          (3.13) 

Upon taking logarithms on both sides of (3.13), dividing 
by ∆  and taking limits as n →∞ , or equivalently 0∆ → , 
we have  

0

ln ( ) ln ( )lim f z f z
∆→

+ ∆ − 
 ∆ 

( )
0

ln 1 ( )
lim

zq p
∆→

+ ∆ 
=  ∆   

( ) 2

0

ln 1 ( )
lim

z p p
∆→

 + ∆ + + ∆
 −

∆  
.        (3.14) 

We simplify right hand side of (3.14) by applying 
L’Hopitals rule. Since the left hand side of (3.14) is evidently 
the derivative of [ln ( )]f z , as a consequence we obtain the 
following differential equation 

0

ln ( ) ( )lim
1 ( )

d f z z q p
dz z q p∆→

 
= − + ∆  20

(2 )lim
1 ( ) ( )

z p p
z p p∆→

 + ∆
 
+ ∆ + ∆  

 

 (1 )zq z z q z
p p p

−
= − = − = − .          (3.15)  

Integrating on both sides of equation (3.15) with respect to 

,z  we obtain 
2

ln ( )
2
zf z c= − + , where c is the constant of 
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integration. We can rewrite this equation as 
2 2( ) zf z ke−=  

with 1 2k π=  to make ( )f z , z−∞ < < ∞ , a valid 
density. We can conclude thus that the r.v. 

( ) ( )n nZ X nq p nq p= −  converges in distribution, as 
n →∞ , to a standard normal (0,1)N  r.v., or equivalently, 
that the negative-binomial ( , )NB n p  r.v. nX  follows 
approximately, for large n, the normal distribution with mean 

( )n nq pµ =  and 2 2( )n nq pσ = as the variance. 

3.3. The MGF Method [4] 

Let nX  be a negative binomial r.v. with pmf given in 
(1.1). Then the mgf of nX  is derived as  

( ) ( )tX
Xn

M t E e=
0

1
     

tx n x

x

n x
e p q

x

∞

=

+ − 
=  

 
∑  

(1 )
ntp qe = −  .                (3.16) 

Let nZ = [( ) ( )]nX nq p nq p− ( )npX nq nq = −  . 

The mgf of nZ  then evaluates to  

( ) ( )( ) nnZn
t pX nq nqtZM t E e E e

 −
= =  

  
  

( ) ( ) nnq t p nq t Xe E e−  =   
( )nq t

Xn
pte M nq

−  =  
 

 

( ) (1 )
n

nq t pt nqe p qe−  =   
−

( ) 1
nqq nq tn pt nq

p pe e
−

−  
 
 

= −  

( ) ( )1
nqq nq t t nq

p pe e
−

 
 
 

= − .              (3.17) 

The Taylor series expansion for ( )q nq te  gives us 

( )1 q nq te
p

2 21 1
(2!)

[
p

qt q t
nqnq

= + +
3 3

( )
3 2(3!)( )

]nq t e
nq

ξ+  

21
(2 )

qt qt
p p np nq

= + +
2 3

( )
3 2

( )

(3!)( )
nq q t

e
p nq

ξ+ .      (3.18) 

where the sequence ( )nξ  lies between 0 and ( )tq nq  and 
( ) 0nξ → as n →∞ .  
Similarly, we obtain 

t nqq
e

p

2
1

(2!)
[q

p
t t

nqnq
= + +

3
( )

3 2(3!)( )
]nt e

nq
ς+  

2

(2 )
q qt t
p p np nq

= + +
3

( )
3 2(3!)( )

nqt
e

p nq
ς+ , (3.19) 

where the sequence ( )nς  here lies between 0 and ( )t nq  
and ( ) 0nς → as n →∞ . 

Substituting equations (3.18) and (3.19) in the last 
expression for ( )ZnM t  in (3.17), after some algebraic 
simplifications, we have  

( )ZnM t
21 1

2
[( ) ( )q t q

p p n p p
= − − −

3
2 ( ) ( )

3/2 ( )
(3!)( )

]n n nq t q e e
p nq

ξ ς −+ −  

21 1
2

[ q t q
p n p
− −

= −  
3

2 ( ) ( )( )
( ) (3!)

]n n nt q e e
n p nq

ξ ς −+ −  

2
1

2
[ t

n
= −

3
2 ( ) ( )1 ( )

(3!)
]n n nt q e e

n nq
ξ ς −+ − .       (3.20) 

The preceding equation (3.20) may be written as 
2 ( )

2( ) 1
n

nt
Zn n nM t ψ

−
 = − + 
 

, where ( )nψ = 3( (6) )t nq

2 ( ) ( )( )n nq e eξ ς− . Since both ( ),  ( ) 0n nξ ς →  as n →∞ , 
it implies that lim ( ) 0

n
nψ

→∞
=  for every fixed t . Hence, by 

Lemma 2.2 we have 
2 2lim ( ) ( )Z Znn

tM t e M t
→∞

= = , where (0,1)Z N , (3.21) 

for all real t. Hence, by Theorems 2.1, we can conclude that 
the r.v. nZ ( ) ( )nX nq p nq p= −  has the limiting 
standard normal distribution, as n →∞ . Alternatively, we 
can state that the NB r.v. nX  has approximately a normal 

distribution with mean [ ]n nq pµ =  and variance 2
nσ =  

2[ ]nq p , for large n. 

3.4. The CLT Techniques 
Consider an infinite sequence of Bernoulli trials with 

success probability p, 0 1p< < , and failure probability 
1 .q p= −  Define the r.v. Y to be the number of failures 

before the first success. Then Y is said to have the Geometric 
distribution with parameter p. The pmf of Y can be stated as 

 ( )Yf y   for 0,1, 2,
0       otherwise.

ypq y == 


        (3.4.1) 

Let 1 2, , , nY Y Y  be a sequence of independent and 
identically distributed r.v.’s from the above Geometric 
distribution. Define 1 2n nX Y Y Y= + + + . Then nX  
denotes total number of failures before the nth success. The 

sum 
1

n

n k
k

X Y
=

= ∑ can be easily seen to have the 

negative-binomial distribution with parameters n and p. We 



 American Journal of Mathematics and Statistics 2019, 9(1): 44-50 49 
 

 

can verify it by the mgf technique: The mgf of each kY  is 

( )YkM t  =  
0

ty y

y
e pq

∞

=
∑ =  

0
( )t y

y
p e q

∞

=
∑ = (1 )tp qe− , 

1, 2, ,k n=  , so that the mgf of 
1

n

n k
k

X Y
=

= ∑  is obtained as 

( )XnM t =  ( )tXnE e =  [ ]( ) n
YM t  = (1 )

ntp qe −  . This 

is exactly the mgf of the negative-binomial NB(n, p) r.v. 
derived directly in (3.16). Hence, nX  follows a 
negative-binomial with parameters n and p. Thus, the 
negative binomial r.v. nX  ca be viewed as the sum of n i.i.d. 
Geometric r.v.’s, iY , 1, 2, ,i n=  , with mean [ ]q p  and 

variance 2[ ]q p . Clearly therefore, the mean of nX  is 

( )nE X = µ = nq p  and variance 2σ =  2nq p . 
Accordingly, by the CLT Theorem 2.2, we can conclude that 

nZ  =  ( ) ( )nX n nµ σ −   =  ( ( ) ) ( )nX nq p nq p − 
d→ (0,1)N , as n →∞  or equivalently, that the r.v.  

nX  follows approximately the normal distribution with 

mean µ = [( ) ]nq p  and variance 2σ =  2[( ) ]nq p  for 
large n. 

4. Concluding Remarks 
This article offers four different methods of proof for the 

convergence of negative-binomial NB(n, p) distribution to  
a limiting normal distribution. The first one is due to 
DeMoivre which uses Stirling’s Approximation formula. 
The second one is the Ratio Method which is based on and 
utilizes the ratio of two successive probability terms of the 
pmf and, thereby, circumvents the use of Stirling’s 
approximation formula. The method requires only a basic 
knowledge of Calculus, viz., limits, derivatives, Taylor 
series expansions and simple integration, along with basic 
probability concepts. This method also makes a broad 
assumption which is not always verifiable. Accordingly, the 
method - strictly speaking - may be regarded only as a 
technique rather than a complete proof. The other two 
methods are, respectively, the MGF method based on 
Laplace transforms and lastly that of the Central Limit 
Theorems based on Fourier transforms and the complex 
analysis, [3].  

This article may serve as a useful teaching reference paper. 
The contents of this article should be of pedagogical interest 
to teachers, and can be discussed in senior level probability 
courses. It should be of reading interest for undergraduate 
students in probability or mathematical statistics. The 
teachers may gainfully assign these different methods to 
students as class projects. 
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