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Abstract  In this paper, we introduce a new iteration method for solving a variational inequality over the fixed point set 
of a firmly nonexpansive mapping in ℝ𝑛, where the cost function is continuous and monotone, which is called the 
projection method. The algorithm is a variant of the subgradient method and projection methods.  
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1. Introduction  
Let 𝑇: ℝ𝑛 →  ℝ𝑛  be a firmly nonexpansive mapping, 

i.e., ‖𝑇(𝑥) − 𝑇(𝑦)‖2 ≤  〈𝑇(𝑥) − 𝑇(𝑦), 𝑥 − 𝑦〉  for all 
𝑥,𝑦 ∈ ℝ𝑛 , and mapping 𝐹: ℝ𝑛  → 𝑅 . We consider the 
following variational inequalities over the fixed point set 
(shortly, VI(F, Fix(T))):  

Find 𝑥∗ ∈ 𝐹𝑖𝑥(𝑇) such that 〈𝐹(𝑥∗), 𝑥 − 𝑥∗〉  ≥ 0  
 ∀𝑦 ∈ 𝐹𝑖𝑥(𝑇), 

where Fix(T): = {𝑥 ∈ 𝐶:𝑇𝑥 = 𝑥}. Problem VI(F,Fix(T)) is 
a special class of equilibrium problems on the nonempty 
closed convex constraint set. Many iterative methods for 
solving such problems have been presented in [1, 2, 3, 4, 5, 
8, 9].  

In this paper, we investigate a new and efficient global 
algorithm for solving variational inequalities over the fixed 
point set of a firmly nonexpansive mapping. To solve the 
problem, most of current algorithms are based on the metric 
projection onto a nonempty closed convex constraint set, in 
general, which is not easy to compute. The fundamental 
difference here is that, at each main iteration in the 
proposed algorithm, we only require computing the simple 
projection. Moreover, by choosing suitable regularization 
parameters, we show that the iterative sequence globally 
converges to a solution of Problem VI(F,Fix(T)). 

The paper is organized as follows. Section 2 recalls some 
concepts related to variational inequalities over the fixed 
point set of a nonexpansive mapping, that will be used in 
the  sequel  and  a new  iteration  scheme.  Section 3  
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investigates the convergence theorem of the iteration 
sequences presented in Section 2 as the main results of our 
paper. 

2. Preliminaries  
We list some well known definitions and the projection 

under the Euclidean norm, which will be required in our 
following analysis.  

Definition 2.1 Let 𝐶  be a nonempty closed convex 
subset of in ℝ𝑛, we denote the metric projection on 𝐶 by 
𝑃𝑟𝐶(∙), i.e,  

PrC(x) = argmin{‖𝑦 − 𝑥‖: 𝑦 ∈  𝐶}  ∀𝑥 ∈ 𝑅𝑛. 
The mapping F: 𝐶 →ℝ𝑛 is said to be 
(i)  monotone on 𝐶 if for each x,y ∈ 𝐶, ⟨F(x) - F(y), x - 

y⟩ ≥ 0;  
(ii)  pseudomonotone on 𝐶 if for each x,y ∈ 𝐶, ⟨F(y), x 

- y⟩ ≥ 0 ⇒ ⟨F(y), x - y⟩ ≥ 0.  
It is well-known that the gradient method in [10] solves 

the convex optimization problem:  
min{f(x): x ∈ 𝐶},           (2.1) 

where 𝐶𝑖  is a closed convex subset of ℝ𝑛  for all i = 
1,… ,m, 𝐶:=⋂ 𝐶𝑖𝑚

𝑖=1 , and  f  is a differentiable convex 
function on 𝐶. The iteration sequence {𝑥𝑘} of the method 
is defined by 

𝑥𝑘+1 ≔  𝑃𝐶�𝑥𝑘 −  𝜆∇𝑓(𝑥𝑘)�. 
When 𝐶  is arbitrary closed convex, in general, 

computation of the metric projection 𝑃𝐶 is not necessarily 
easy and hence it is not effective for solving the convex 
optimization problem. To overcome this drawback, Yamada 
in [11] proposed a fixed point iteration method  

𝑥𝑘+1 ≔  𝑇�𝑥𝑘 −  𝜆𝑘∇𝑓(𝑥𝑘)�. 
where T is a nonexpansive mapping defined by     



 American Journal of Mathematics and Statistics 2018, 8(5): 140-143 141 
 

 

𝑇(𝑥) ≔  ∑ 𝛽𝑖 𝑃𝐶𝑖(𝑥)𝑚
𝑖=1  for all x ∈ 𝐶, 𝛽𝑖 ∈ (0, 1) such that 

∑ 𝛽𝑖 = 1𝑚
𝑖=1 . Under certain parameters 𝛽𝑖 (i = 1, …, m), the 

sequence {𝑥𝑘} converges a solution to Problem (2.1). Very 
recently, Iiduka in [6] proposed the fixed point optimization 
algorithm for solving the following variational inequalities:  

Finding 𝑥∗ ∈ 𝐶 such that ⟨F(𝑥∗), x - 𝑥∗⟩ ≥ 0, ∀x ∈ 𝐶, 
where 𝐶  is a nonempty closed convex subset of  ℝ𝑛 ,    
F: 𝐶 → ℝ𝑛, over the fixed point set Fix(T) of a firmly 
nonexpansive mapping T: 𝐶 → ℝ𝑛. In each iteration of 
the algorithm, in order to get the next iterate 𝑥𝑘+1, one 
orthogonal projection onto 𝐶 included Fix(T) is calculated, 
according to the following iterative step. Given the current 
iterate 𝑥𝑘, calculate  

�
𝑦𝑘 ≔  𝑇�𝑥𝑘 −  𝜆𝑘𝐹(𝑥𝑘)�,

𝑥𝑘+1 ≔  𝑃𝑟𝐶(𝛼𝑘𝑥𝑘 + (1 − 𝛼𝑘)𝑦𝑘).
� 

Under certain conditions over parameters 𝜆𝑘, 𝛼𝑘 (k ≥ 1), 
and asymtotic optimization conditions          
⋂ {𝑢 ∈ 𝐹𝑖𝑥(𝑇): 〈𝐹(𝑥𝑘), 𝑥 − 𝑥𝑘〉 ≤ 0} ≠ ∅𝑚
𝑖=1  is satisfied. 

Then, the iterative sequence 𝑥𝑘, converges a solution to the 
variational inequalities over the fixed point set of the firmly 
nonexpansive mapping. In fact, the asymtotic optimization 
condition, in some cases, is very difficult to define. In order 
to avoid this requirement, we propose a new iteration 
method without both the asymtotic optimization condition 
and computing the metric projection on a closed convex set. 
Our algorithm is described more detailed as follows.  

Algorithm 2.2 Initialization. Take a point 𝑥0 ∈  ℝ𝑛 such 
that M ≤ ‖𝑥0‖, 𝜂0 ≔  ‖𝑥0‖, a positive number ρ > 0, and 
the positive sequences {𝛽𝑘 }, {  𝜌𝑘 }, { 𝜖𝑘 } verifying the 
following conditions: 

      𝜌 < 𝜌𝑘, lim𝑘→∞ 𝜖𝑘 = 0,   ∑ 𝛽𝑘 
𝜌𝑘

 <  ∞.∞
𝑘=0       (2.2) 

Step 1. Let 𝑥𝑘  ∈  ℝ𝑛. Choose arbitrary 𝜆𝑘  ∈ (0, 1) such 
that (1 - 𝜆𝑘 )(  ‖𝑥𝑘‖ + 𝑀 )  ≤  𝛽𝑘  for all 𝑘 ≥ 0.  Define 

𝛾𝑘 ≔ 𝑚𝑎𝑥{𝜌𝑘, ‖𝐹(𝑥𝑘)‖},  𝛼𝑘 ≔
𝛽𝑘 
𝜌𝑘

 ,  and  
𝐶𝑘 ≔ {𝑥 ∈  ℝ𝑛: ‖𝑥‖  ≤  𝜂𝑘 +  1}.  𝑡𝑘 
≔  𝑃𝐶𝑘(𝑥𝑘 −  𝛼𝑘𝐹(𝑥𝑘)). 

Step 2. Compute 
𝑥𝑘+1 ≔  𝑇(𝜆𝑘𝑥𝑘 + (1 − 𝜆𝑘)𝑡𝑘), 𝜂𝑘+1

≔  max{𝜂𝑘, ‖𝑥𝑘+1‖},  𝑘 = 𝑘 + 1.  

Note that 𝐶𝑘 ≔ {𝑥 ∈  ℝ𝑛: ‖𝑥‖  ≤  𝜂𝑘 +  1}  is a closed 
ball. Therefore, the metric projection 𝑃𝐶𝑘(𝑥𝑘 −  𝛼𝑘𝐹(𝑥𝑘))  
is computed by 

𝑡𝑘 =  𝜂𝑘+1
�𝑥𝑘− 𝛼𝑘𝐹(𝑥𝑘)�

(𝑥𝑘 −  𝛼𝑘𝐹(𝑥𝑘)). 

3. Convergent Results 
To investigate the convergence of Algorithm 2.2, we 

recall the following technical lemmas, which will be used in 
the sequel. 

Lemma 3.1 (see [7]) Let {𝑎𝑘 }, {𝑏𝑘 } and {𝑐𝑘 } be the three 
nonnegative sequences satisfying the following condition: 

𝑎𝑘+1 ≤ (1 + 𝑏𝑘 )𝑎𝑘 + 𝑐𝑘 . 
If  ∑ 𝑏𝑘 <  ∞∞

𝑖=1  and ∑ 𝑐𝑘 <  ∞∞
𝑖=1 , then lim𝑘→∞ 𝑎𝑘  

exists. 
We are now in a position to prove some convergence 

theorems. 
Theorem 3.2 Let 𝐶 be a nonempty closed convex subset 

of ℝ𝑛, T: 𝐶 → ℝ𝑛 is a firmly nonexpansive mapping such 
that Fix(T) is bounded by M > 0, and F: 𝐶  → ℝ𝑛 
ismonotone. Then, the sequence { 𝑐𝑘 } generalized by 
Algorithm 2.2 converges to a solution of Problem VI(F, 
Fix(T)). 

Proof. We divide the proof into five steps. 
Step 1. For each 𝑥∗ ∈ Sol(F, Fix(T)), we have 

 
‖𝑥𝑘+1 − 𝑥∗‖2≤  ‖𝑥𝑘 − 𝑥∗‖2−(1 − 𝜆𝑘2)‖𝑡𝑘 −  𝑥𝑘‖2 +2(2−𝜆𝑘) 𝛽𝑘2.                      (3.1) 

Indeed, from 𝑡𝑘 ≔ 𝑃𝐶𝑘(𝑥𝑘 −  𝛼𝑘𝐹(𝑥𝑘))  it follows that  

〈𝛼𝑘𝐹(𝑥𝑘) + 𝑡𝑘 − 𝑥𝑘, 𝑥 −   𝑡𝑘〉  ≥ 0,   ∀𝑥 ∈  𝐶𝑘.                       (3.2) 
Using the assumption ‖𝑥‖ ≤  ‖𝑥0‖ for all x ∈ Fix(T) and  𝐶𝑘 ⊆ 𝐶𝑘+1  for all k ≥ 0, we have Fix(T) ⊆ 𝐶. Then, 

substituting x = 𝑥∗ into (3.2), we get  
〈𝛼𝑘𝐹(𝑥𝑘) + 𝑡𝑘 − 𝑥𝑘, 𝑥∗ −   𝑡𝑘〉  ≥ 0 

Combinating this and the inequality  
‖𝑡𝑘 −  𝑥∗‖2 =  ‖𝑥𝑘 −  𝑥∗‖2 − ‖𝑡𝑘 −  𝑥𝑘‖2 + 2〈𝑥𝑘 −  𝑡𝑘, 𝑥∗ −  𝑡𝑘〉, 

we have  
‖𝑡𝑘 −  𝑥∗‖2 ≤  ‖𝑥𝑘 −  𝑥∗‖2 − ‖𝑡𝑘 −  𝑥𝑘‖2 + 2𝛼𝑘〈𝐹(𝑥𝑘), 𝑥∗ −  𝑡𝑘〉, 

Since (3.3), 𝑥𝑘+1 ≔  𝑇(𝜆𝑘𝑥𝑘 + (1 − 𝜆𝑘)𝑡𝑘) and the equaltity 
‖𝜆𝑥 + (1 − 𝜆)𝑦‖2 ≤  𝜆‖𝑥‖2 + (1 − 𝜆)‖𝑦‖2 − 𝜆(1 − 𝜆)‖𝑥 − 𝑦‖2,∀ 𝜆 ∈ [0,1], 𝑥,𝑦 ∈  ℝ𝑛,     (3.4) 

we get  
‖𝑥𝑘+1 −  𝑥∗‖2 = ‖𝑇(𝜆𝑘𝑥𝑘 + (1 − 𝜆𝑘)𝑡𝑘) − 𝑇(𝑥∗)‖2 

≤  ‖𝜆𝑘𝑥𝑘 + (1 − 𝜆𝑘)𝑡𝑘 − 𝑥∗‖2 

                        =  𝜆𝑘‖𝑥𝑘 − 𝑥∗‖2 + (1 − 𝜆𝑘)‖𝑡𝑘 −  𝑥∗‖2 −  𝜆𝑘(1 − 𝜆𝑘)‖𝑡𝑘 −  𝑥𝑘‖2 
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                        ≤  𝜆𝑘‖𝑥𝑘 − 𝑥∗‖2 + (1 − 𝜆𝑘)[‖𝑥𝑘 −  𝑥∗‖2 −  ‖𝑡𝑘 −  𝑥𝑘‖2 + 2𝛼𝑘〈𝐹(𝑥𝑘), 𝑥∗ −  𝑡𝑘〉]
−  𝜆𝑘(1 − 𝜆𝑘)‖𝑡𝑘 −  𝑥𝑘‖2 

                        = ‖𝑥𝑘 − 𝑥∗‖2 − (1 − 𝜆𝑘2)‖𝑡𝑘 −  𝑥𝑘‖2 +  2𝛼𝑘(1 − 𝜆𝑘)〈𝐹(𝑥𝑘), 𝑥∗ −  𝑡𝑘〉. 
Thus  

‖𝑥𝑘+1 −  𝑥∗‖2 ≤ ‖𝑥𝑘 − 𝑥∗‖2 − (1 − 𝜆𝑘2)‖𝑡𝑘 −  𝑥𝑘‖2 +  2𝛼𝑘(1 − 𝜆𝑘)〈𝐹(𝑥𝑘), 𝑥∗ −  𝑡𝑘〉.         (3.5) 

From 𝛾𝑘 ≔ max{𝜌𝑘, ‖𝐹(𝑥𝑘)‖} and 𝛼𝑘 ≔
𝛽𝑘 
𝜌𝑘

 it follows that  

𝛼𝑘‖𝐹(𝑥𝑘)‖ =  𝛽𝑘 
𝜌𝑘
‖𝐹(𝑥𝑘)‖ =  𝛽𝑘 �𝐹(𝑥𝑘)�

max�𝜌𝑘,�𝐹�𝑥𝑘���
 ≤  𝛽𝑘 .                       (3.6) 

By the definition of the metric projection 𝑃𝑟𝐶𝑘 and (3.6), we have  

‖𝑡𝑘 −  𝑥𝑘‖2 ≤ 〈𝛼𝑘𝐹(𝑥𝑘), 𝑥𝑘 −  𝑡𝑘〉‖𝐹(𝑥𝑘)‖‖𝑥∗ −  𝑡𝑘‖  ≤  𝛽𝑘 ‖𝑡𝑘 −  𝑥𝑘‖.                 (3.7) 
Combinating (3.5), (3.6) and (3.7), we get  

‖𝑥𝑘+1 −  𝑥∗‖2 ≤ ‖𝑥𝑘 − 𝑥∗‖2 − (1 − 𝜆𝑘2)‖𝑡𝑘 −  𝑥𝑘‖2 +  2𝛼𝑘(1 − 𝜆𝑘)〈𝐹(𝑥𝑘), 𝑥∗ −  𝑡𝑘〉  

+2𝛼𝑘(1 − 𝜆𝑘)‖𝐹(𝑥𝑘)‖‖𝑥𝑘 −  𝑡𝑘‖  

 ≤ ‖𝑥𝑘 − 𝑥∗‖2 − (1 − 𝜆𝑘2)‖𝑡𝑘 −  𝑥𝑘‖2 +  2𝛼𝑘(1 − 𝜆𝑘)‖𝐹(𝑥𝑘)‖ ‖𝑥∗ −  𝑥𝑘‖ 

+ 2(1 − 𝜆𝑘)𝛽𝑘2
 

 ≤ ‖𝑥𝑘 − 𝑥∗‖2 − (1 − 𝜆𝑘2)‖𝑡𝑘 −  𝑥𝑘‖2 +  2𝛽𝑘(1 − 𝜆𝑘)(‖𝑥𝑘‖ +  𝑀) + 2(1 − 𝜆𝑘)𝛽𝑘2
 

 ≤ ‖𝑥𝑘 − 𝑥∗‖2 − (1 − 𝜆𝑘2)‖𝑡𝑘 −  𝑥𝑘‖2 +  2(2 − 𝜆𝑘)𝛽𝑘2. 

This implies (3.1).  
Step 2. Claim that lim𝑘→∞‖𝑥𝑘+1 − 𝑥𝑘‖ = 0 and lim𝑘→∞‖𝑥𝑘 − 𝑇(𝑥𝑘)‖ = 0. 
Indeed, using (3.3), (3.4) and the definition of the firmly nonexpansive mapping, we have  
‖𝑥𝑘+1 −  𝑥∗‖2 ≤  ‖𝑇(𝜆𝑘𝑥𝑘 + (1 − 𝜆𝑘)𝑡𝑘) −  𝑇(𝑥∗)‖2 
                            ≤  〈𝜆𝑘𝑥𝑘 + (1 − 𝜆𝑘)𝑡𝑘 −  𝑥∗, 𝑥𝑘+1 − 𝑥∗ 〉 

                           =
1
2

[‖𝜆𝑘𝑥𝑘 + (1 − 𝜆𝑘)𝑡𝑘 −  𝑥∗‖2 + ‖𝑥𝑘+1 − 𝑥∗‖2 − ‖𝜆𝑘𝑥𝑘 + (1 − 𝜆𝑘)𝑡𝑘 −  𝑥𝑘+1‖2] 

                           ≤
1
2

[𝜆𝑘‖𝑥𝑘 − 𝑥∗‖2 + (1 − 𝜆𝑘)‖𝑡𝑘 −  𝑥∗‖2 − 𝜆𝑘(1 − 𝜆𝑘)‖𝑥𝑘 −  𝑡𝑘‖2 + ‖𝑥𝑘+1 − 𝑥∗‖2] 

                              −
1
2

[𝜆𝑘‖𝑥𝑘 − 𝑥𝑘+1‖2 + (1 − 𝜆𝑘)‖𝑡𝑘 −  𝑥𝑘+1‖2 − 𝜆𝑘(1 − 𝜆𝑘)‖𝑥𝑘 −  𝑡𝑘‖2] 

                          =
1
2

[𝜆𝑘‖𝑥𝑘 − 𝑥∗‖2 + ‖𝑥𝑘+1 −  𝑥∗‖2 − 𝜆𝑘‖𝑥𝑘 −  𝑥𝑘+1‖2−(1 − 𝜆𝑘)‖𝑡𝑘 − 𝑥𝑘+1‖2

+ (1 − 𝜆𝑘)‖𝑡𝑘 − 𝑥∗‖2 ] 

                          ≤
1
2

[𝜆𝑘‖𝑥𝑘 − 𝑥∗‖2 + ‖𝑥𝑘+1 −  𝑥∗‖2 − 𝜆𝑘‖𝑥𝑘 −  𝑥𝑘+1‖2−(1 − 𝜆𝑘)‖𝑡𝑘 − 𝑥𝑘+1‖2

+ (1 − 𝜆𝑘)(‖𝑥𝑘 − 𝑥∗‖2 − ‖𝑡𝑘 −  𝑥𝑘‖2 +   2𝛼𝑘〈𝐹(𝑥𝑘), 𝑥∗ −  𝑡𝑘〉) ]. 
Hence, we have  

‖𝑥𝑘+1 −  𝑥∗‖2 ≤ ‖𝑥𝑘 − 𝑥∗‖2 − 𝜆𝑘‖𝑥𝑘 −  𝑥𝑘+1‖2 − (1 − 𝜆𝑘)‖𝑡𝑘 −  𝑥𝑘+1‖2 

−(1 − 𝜆𝑘)‖𝑡𝑘 −  𝑥𝑘‖2 + 2(1 − 𝜆𝑘)〈𝐹(𝑥𝑘), 𝑥∗ −  𝑡𝑘〉.                   (3.8) 
 

Applying Lemma 3.1 for the sequences in the inequality 
(3.1), there exists  

𝐴 ≔ lim𝑘→∞‖𝑥𝑘 − 𝑥∗‖.                (3.9) 
From Initialization of Algorithm 2.2 that          

𝜆𝑘 ∈ (0, 1), (1 − 𝜆𝑘)(‖𝑥𝑘‖ + ‖𝑥0‖) ≤ 𝛽𝑘  and  
 ∑ 𝛽𝑘2 <  ∞,∞

𝑘=1  it follows that  
lim
𝑘→∞

𝜆𝑘 = 1. 

Combinating this, (3.8) and (3.9), we get  
lim
𝑘→∞

‖𝑥𝑘+1 − 𝑥𝑘‖ = 0 

Using this, the nonexpansive property of T and 
lim𝑘→∞ 𝜆𝑘 = 1, have  

‖𝑥𝑘+1 −  𝑇(𝑥𝑘+1)‖2 

= ‖𝑇(𝜆𝑘𝑥𝑘 + (1 − 𝜆𝑘)𝑡𝑘) −  𝑇(𝑥𝑘+1)‖  
≤ ‖𝜆𝑘𝑥𝑘 + (1 − 𝜆𝑘)𝑡𝑘 − 𝑥𝑘+1‖ 
≤ 𝜆𝑘‖𝑥𝑘 − 𝑥𝑘+1‖ + (1 − 𝜆𝑘)‖𝑡𝑘 − 𝑥𝑘+1‖ 
≤ 𝜆𝑘‖𝑥𝑘 − 𝑥𝑘+1‖ + (1 − 𝜆𝑘)‖𝑡𝑘 − 𝑥𝑘+1‖ 
→ 0 𝑎𝑠 𝑘 → ∞ 

Since {𝑥𝑘} is bounded, there exists 𝜂: = sup{𝜆𝜂𝑘: k ≥ 0} 
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< ∞ and a subsequence {𝑥𝑘𝑖} which converges to 𝑥̅ as i → 
∞.  

Step 3. Claim that 𝑥̅ ∈  𝐹𝑖𝑥(𝑇)⋂𝐵(0, 𝜂 + 1 − 𝛿), where 
𝛿 ∈ (0,1) and the open ball is defined by  

𝐵(0, 𝜂 + 1 − 𝛿) ≔ {𝑥 ∈  ℝ𝑛: ‖𝑥‖ < 𝜂 + 1 − 𝛿}. 
Indeed, from  𝜂 ≔ sup{𝜂𝑘: 𝑘 ≥ 0} < ∞ 𝑎𝑛𝑑 𝛿 ∈ (0,1, ), 

it follows that the existence of 𝑘0 such that for 𝜂𝑘 ≥  𝜂 −
𝛿 for all 𝑘 ≥ 𝑘0. It means that 𝐵(0, 𝜂 + 1 − 𝛿) ⊆ 𝐶𝑘 for 
all 𝑘 ≥ 𝑘0. Then, we have 

‖𝑥̅‖=lim𝑖→∞‖𝑥𝑘𝑖‖ ≤ 𝜂 < 𝜂 + 1 − 𝛿. 
Thus, 𝑥̅ ∈  𝐵(0, 𝜂 + 1 − 𝛿). 
Now we suppose that 𝑥̅ ≠ 𝑇(𝑥̅). By Step 2 and Opial’s 

condition, we get 
lim
𝑖→∞

‖𝑥𝑘𝑖 − 𝑥𝑘‖ < lim
𝑖→∞

‖𝑥𝑘𝑖 − 𝑇(𝑥̅)‖ 

≤ lim
𝑖→∞

(‖𝑥𝑘𝑖 − 𝑇(𝑥𝑘𝑖)‖ + ‖𝑇(𝑥𝑘𝑖) − 𝑇(𝑥̅)‖) 

= lim
𝑖→∞

‖𝑇(𝑥𝑘𝑖) − 𝑇(𝑥̅)‖ 

≤ lim
𝑖→∞

‖𝑥𝑘𝑖 − 𝑥̅‖ 

This is a contradiction. So, 𝑥̅ = 𝑇(𝑥̅). 
Step 4. Claim that 𝑥̅ ∈  𝑆𝑜𝑙�𝐹,𝐹𝑖𝑥(𝑇)� and the sequence 

{𝑥𝑘} converges to 𝑥� .  
Indeed, from (3.6), it follows that 

0≤ 𝜌‖𝐹(𝑥𝑘)‖ ≤ ‖𝐹(𝑥𝑘)‖ max {𝜌𝑘,‖𝐹(𝑥𝑘)‖}=
𝛼𝑘‖𝐹(𝑥𝑘)‖ ≤  𝛽𝑘. 

Using  ∑ 𝛽𝑘 < ∞ ∞
𝑘=0 and 𝜌 > 0 , we have 

lim𝑖→∞‖𝐹(𝑥𝑘‖ = 0. Combinating this and Step 3, we have  
〈𝐹(𝑥̅),𝑦 − 𝑥̅〉 ≥ 0,   ∀𝑦 ∈ 𝐹𝑖𝑥(𝑇)⋂𝐵(0, 𝜂 + 1 − 𝛿).   

Denote g(z):= 〈𝐹(𝑥̅),𝑦 − 𝑥̅〉. Then, g is convex and  
g(z) ≥ g(𝑥̅)=0, ∀𝑧 ∈ 𝐹𝑖𝑥(𝑇)⋂𝐵(0, 𝜂 + 1 − 𝛿).  

Thus, 𝑥̅ is a local minimizer of g. Since Fix(T) is 
nonempty convex, 𝑥̅  is also a global minimizer of g, i.e., 
g(z) ≥ g(𝑥̅) for all 𝑧 ∈ 𝐹𝑖𝑥(𝑇). This means that  

〈𝐹(𝑥̅),𝑦 − 𝑥̅〉 ≥ 0,   ∀𝑧 ∈ 𝐹𝑖𝑥(𝑇). 
So, 𝑥̅ ∈ Sol(F, Fix(T)).  
To prove {𝑥𝑘} converges to 𝑥̅ , we suppose that the 

subsequence {𝑥𝑘𝑖} also converges to 𝑥� as j → ∞. By a 
same way, we also have 𝑥� ∈ VI(F, Fix(T)). Suppose that 
𝑥̅ ≠ 𝑥�. Then, using Opial’s condition, we have  

 lim
𝑖→∞

‖𝑥𝑘 − 𝑥̅‖ = lim
𝑖→∞

‖𝑥𝑘𝑖 − 𝑥̅‖ 

≤ lim
𝑖→∞

‖𝑥𝑘𝑖 − 𝑥� ‖ 

= lim
𝑘→∞

‖𝑥𝑘 − 𝑥� ‖ 

= lim
𝑘→∞

‖𝑥𝑘𝑖 − 𝑥� ‖ 

< lim
𝑗→∞

‖𝑥𝑘𝑖 − 𝑥̅‖ 

= lim
𝑘→∞

‖𝑥𝑘 − 𝑥̅‖ 

This is a contradiction. Thus, the sequence { 𝑥𝑘 } 
converges to 𝑥̅ ∈ Sol(F, Fix(T)). 

4. Conclusions 
This paper presented an iterative algorithm for solving 

variational inequalities over the fixed point set of a 
nonexpansive mapping T. By choosing the suitable regular 
parameters, we show that the sequences generated by the 
algorithm globally converge to a solution of Problem   
VI(F, fix(T)). Comparing with the current methods, the 
fundamental difference here is that, the algorithm only 
requires the continuity of the mapping F and convergence 
of the proposed algorithms only require F to satisfy 
monotonicity. Moreover, in general, computing the exact 
subgradient of a subdifferentiable function is too expensive, 
our algorithm only requires to compute approximate.  
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