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Abstract  In this paper, a zero-truncation of Poisson-Akash distribution (PAD) of Shanker (2017) named ‘zero-truncated 
Poisson-Akash distribution (ZTPAD)’ has been introduced and investigated. A general expression for rth factorial moment 
about origin has been obtained and hence its raw moments and central moments have been given. The expressions for 
coefficient of variation, skewness, kurtosis, and the index of dispersion of the distribution have been presented. The method 
of moments and the method of maximum likelihood estimation have also been discussed for estimating its parameter. Three 
examples of observed real datasets have been given to test the goodness of fit of ZTPAD over zero-truncated Poisson 
distribution (ZTPD), zero-truncated Poisson-Lindley distribution (ZTPLD) and zero-truncated Poisson-Sujatha distribution 
(ZTPSD) and the ZTPAD gives quite satisfactory fit in all datasets. 
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1. Introduction 
In probability theory, zero-truncated distributions are 

certain discrete distributions having support the set of 
positive integers. Zero-truncated distributions are suitable 
models for modeling data when the data to be modeled 
originate from a mechanism which generates data excluding 
zero counts.  

Suppose ( )0 ;P x θ  is the original distribution. Then the 

zero-truncated version of ( )0 ;P x θ can be defined as  
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The Poisson-Akash distribution (PAD) having probability 
mass function (pmf)  
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was introduced by Shanker (2017). Shanker (2017) studied 
its various statistical properties, estimation of parameter 
using both the method of moments and the method of 
maximum  likelihood,  and applications of PAD  to model  
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count data from different fields of knowledge. Shanker et al  
(2016) has detailed study about the applications of PAD for 
modeling data from various fields of knowledge. The PAD 
arises from the Poisson distribution when its parameter λ
follows Akash distribution introduced by Shanker (2015) 
with probability density function (pdf) 
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Detailed discussion about mathematical and statistical 
properties, estimation of parameter and applications for 
modeling lifetime data of Akash distribution has been 
mentioned in Shanker (2015) and shown that (1.3) is a better 
model than both exponential and Lindley (1958) 
distributions for modeling lifetime data from engineering 
and biomedical sciences.  

In this paper, a zero-truncated Poisson-Akash distribution 
(ZTPAD) has been suggested by taking the zero-truncated 
version of PAD introduced by Shanker (2017). The moments 
about origin and moments about mean of ZTPAD have been 
obtained and thus expressions for coefficient of variation, 
skewness, kurtosis, and index of dispersion have been given. 
Estimation of its parameter has been discussed using both the 
method of moments and the method of maximum likelihood 
estimation. Finally, applications of ZTPAD to three 
observed real datasets have been given to test its goodness of 
fit over zero-truncated Poisson distribution (ZTPD), 
Zero-truncated Poisson-Lindley distribution (ZTPLD), and 
zero-truncated Poisson-Sujatha distribution (ZTPSD). 
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2. Zero-Truncated Poisson-Akash Distribution 
Using (1.1) and (1.2), the pmf of zero-truncated Poisson-Akash distribution (ZTPAD) can be obtained as 
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The ZTPAD can also be obtained by compounding size-biased Poisson distribution (SBPD) having pmf. 
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when the parameter λ  of SBPD follows a continuous distribution having pdf 
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where 0, 0.λ θ> >  
The pmf of ZTPAD is thus obtained as 
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Figure 1.  Graphs of the pmf of ZTPAD for varying values of the parameter θ  
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which is the pmf of ZTPAD with parameter θ , obtained earlier in (2.1). The main reason for finding the pmf of ZTPAD as a 
mixture of SBPD with an assumed continuous distribution (2.3) is to obtain the moments easily. The graph of the pmf of 
ZTPAD for varying values of the parameter θ  has been shown in figure 1. The graphs show that the pmf is monotonically 
decreasing for increasing values of the parameter θ . 

Since 
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 is a decreasing function of x, ( )1 ;P x θ is log-concave. 

Therefore, ZTPAD is unimodal, has increasing failure rate (IFR), and hence increasing failure rate average (IFRA). It is new 
better than used (NBU), new better than used in expectation (NBUE), and has decreasing mean residual life (DMRL). 
Detailed discussions and interrelationships between these aging concepts are available in Barlow and Proschan (1981). 

Recall that the pmf of zero-truncated Poisson- Lindley distribution (ZTPLD) given by  
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has been introduced by Ghitany et al (2008 b). The pmf of Poisson-Lindley distribution (PLD) given by 
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has been obtained by Sankaran (1970) by compounding Poisson distribution with Lindley distribution, introduced by Lindley 
(1958) having pdf 
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Ghitany et al (2008 a) have detailed study about various properties, estimation of parameter and the application of Lindley 
distribution for modeling waiting time data in a bank. Shanker et al (2015 a) have detailed and critical study on modeling of 
lifetimes data using both exponential and Lindley distribution and observed that there are many examples where exponential 
distribution gives better fit than the Lindley distribution. Shanker and Hagos (2015 a) have discussed the applications of PLD 
for modeling data from biological sciences. Shanker et al (2015 b) have done extensive study on the comparison of ZTPD and 
ZTPLD with respect to their applications in datasets excluding zero-counts and showed that in demography and biological 
sciences ZTPLD gives better fit than ZTPD while in social sciences ZTPD gives better fit than ZTPLD. 

Note that the pmf of zero-truncated Poisson-Sujatha distribution (ZTPSD) given by  
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has been introduced by Shanker and Hagos (2015 b) for modeling count data excluding zero counts from different fields of 
knowledge. Various interesting properties, estimation of parameter and applications of ZTPSD have been mentioned in 
Shanker and Hagos (2015 b).  

Shanker (2016 b) has obtained the Poisson-Sujatha distribution (PSD) having pmf 
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Shanker (2016 b) obtained the PSD as a Poisson mixture of Sujatha distribution when the parameter λ  of the Poisson 
distribution follows Sujatha distribution, introduced by Shanker (2016 a) having pdf 
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Shanker (2016 a) has detailed study about various mathematical and statistical properties, estimation of parameter and 
applications of Sujatha distribution for modeling lifetime data from biomedical science and engineering and it has been 
observed that Sujatha distribution is a better model than both exponential and Lindley (1958) distributions. Shanker and 
Hagos (2016 b) have discussed applications of PSD to model data from ecology and genetics and observed that PSD is a 
better model than both the Poisson and Poisson-Lindley distributions. Shanker and Hagos (2016 c) have studied comparative 
study on ZTPD, ZTPLD and ZTPSD for modeling data from biological science, demography and thunderstorms.  
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3. Moments  
The r th factorial moment about origin of ZTPAD (2.1) can be obtained as 

( )
( )( ) ( ) ( )( ) ( )| ; where 1 2 .... 1r r

r E E X X X X X X rµ λ ′ = = − − − +  
. 

Using (2.4), we have 

( )
( )

( ) ( ) ( ) ( )
3 1

2 2 2
4 3 2

10

1 2 1 2 3
1 !2 7 6 2

x
r

r
x

ex e d
x

λ
θ λθ λµ θ λ θ λ θ θ λ

θ θ θ θ

∞ − −∞
−

=

   ′ = ⋅ + + + + + +    −+ + + +   
∑∫  

( ) ( ) ( ) ( )
3

21 2 2
4 3 2

0

1 2 1 2 3
!2 7 6 2

x r
r

x r

ex e d
x r

λ
θ λθ λλ θ λ θ λ θ θ λ

θ θ θ θ

∞ − −∞
− −

=

   = ⋅ + + + + + +    −+ + + +   
∑∫  

Taking x x r= + , we get  

( ) ( ) ( ) ( ) ( )
3

21 2 2
4 3 2

00

1 2 1 2 3
!2 7 6 2

x
r

r
x

ex r e d
x

λ
θ λθ λµ λ θ λ θ λ θ θ λ

θ θ θ θ

∞ −∞
− −

=

   ′ = + ⋅ + + + + + +    + + + +   
∑∫  

( ) ( ) ( ) ( )
3

21 2 2
4 3 2

0

1 2 1 2 3
2 7 6 2

r r e dθ λθ λ λ θ λ θ λ θ θ λ
θ θ θ θ

∞
− − = + ⋅ + + + + + +  + + + + ∫  

Using gamma integral and a little algebraic simplification, we get the expression for the r th factorial moment about origin 
of ZTPAD as  
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Substituting 1, 2,3,and 4r =  in equation (3.1), the first four factorial moments about origin can be obtained and using the 
relationship between moments about origin and factorial moments about origin, the first four moments about origin of 
ZTPAD can be obtained as 
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Again using the relationship between moments about origin and central moments, the central moments of ZTPAD are thus 
obtained as 
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Finally, the coefficient of variation (C.V), coefficient of Skewness ( )1β , coefficient of Kurtosis ( )2β , and index of 

dispersion ( )γ  of ZTPAD are obtained as 
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The condition under which ZTPAD is over-dispersed ( )2µ σ< , equi-dispersed ( )2µ σ= , and under-dispersed 

( )2µ σ>  are presented in table 1 along with ZTPSD and ZTPLD. 

Table 1.  Over-dispersion, equi-dispersion and under-dispersion of ZTPAD, ZTPSD and ZTPLD 

Distributions 
Over-dispersion 

( )2µ σ<  

Equi-dispersion 

( )2µ σ=  

Under-dispersion 

( )2µ σ>  

ZTPAD 1.602780θ <  1.602780θ =  1.602780θ >  

ZTPSD 1.548329θ <  1.548329θ =  1.548329θ >  

ZTPLD 1.25863θ <  1.25863θ =  1.25863θ >  

The nature and behavior of coefficient of variation, coefficient of skewness, coefficient of kurtosis, and index of dispersion 
of ZTPAD for varying values of the parameter θ  are shown in figure 2. It is obvious that the coefficient of variation and the 
index of dispersion are monotonically decreasing while the coefficient of skewness and coefficient of kurtosis are 
monotonically increasing for increasing values of the parameter θ . 



232 Rama Shanker:  Zero-Truncated Poisson-Akash Distribution and Its Applications  
 

 

  

  

Figure 2.  Graphs of coefficient of variation, coefficient of skewness, coefficient of kurtosis, and index of dispersion of ZTPAD for varying values of the 
parameter θ  

4. Estimation of Parameter 
4.1. Method of Moment Estimate (MOME) 

Let 1 2, ,..., nx x x  be a random sample of size n  from the ZTPAD (2.1). Equating the population mean to the 

corresponding sample mean, the MOME θ  of θ  is the solution of the following non-linear equation 
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4.2. Maximum Likelihood Estimate (MLE) 

Let 1 2, ,..., nx x x  be a random sample of size n from the ZTPAD (2.1) and let xf  be the observed frequency in the 

sample corresponding to ( 1, 2,3,..., )X x x k= =  such that 
1

k

x
x
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=∑ , where k  is the largest observed value having 

non-zero frequency. The likelihood function L of the ZTPAD is given by 
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The log likelihood function is given by 
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and the log likelihood equation is thus obtained as 
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The maximum likelihood estimate θ̂  of θ  is the solution of the equation log 0d L
dθ

=  and is given by the solution of the 

following non-linear equation 
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where x  is the sample mean. This non-linear equation can be solved by any numerical iteration methods such as Newton- 
Raphson method, Bisection method, Regula –Falsi method etc. In this paper Newton-Raphson method has been used to solve 
the above non-linear equation to estimate the parameter. The initial value of the parameter has been taken from the MOME 
estimate of the parameter. 

5. Applications 
The ZTPAD has been fitted to a number of real datasets to test its goodness of fit over ZTPD, ZTPLD and ZTPSD and it 

has been observed that in most cases it gives better fit. Maximum likelihood estimate of the parameter has been used to fit 
ZTPD, ZTPLD, ZTPSD, and ZTPAD. Here three examples of real datasets have been presented. The dataset in table 2 is the 
data regarding the number of counts of flower heads as per the number of fly eggs reported by Finney and Varley (1955), the 
dataset in table 3 is the data regarding the number of snowshoe hares counts captured over 7 days reported by Keith and 
Meslow (1968) and the dataset in table 4 is the data regarding the number of European red mites on apple leaves reported by 
Garman (1923).  

It is obvious from the values of Chi-square ( )2χ  and p-value that ZTPAD gives much closer fit than ZTPD, ZTPLD and 

ZTPSD. Therefore, ZTPAD can be considered as an important tool for modeling count data excluding zero-count over ZTPD, 
ZTPLD and ZTPSD. 

The fitted plots of ZTPD, ZTPLD, ZTPSD and ZTPAD for datasets in tables 2, 3, and 4 have been shown in figure 3 and it 
is also obvious that ZTPAD gives closer fit in all datasets.  

 

Table 2.  The numbers of counts of flower heads as per the number of fly eggs reported by Finney and Varley (1955) 

Number of fly 
eggs 

Observed 
Frequency 

Expected Frequency 

ZTPD ZTPLD ZTPSD ZTPAD 

1 
2 
3 
4 
5 
6 
7 
8 
9 

22 
18 
18 
11 
9 
6 
3 
0 
1 

15.3 
21.9 
20.8 
14.9 
8.5 

4.1
1.7
0.6
0.3








 

26.8 
19.8 
13.9 
9.5 
6.4 

4.2
2.7
1.7
3.0








 

26.3 
19.8 
14.1 
9.7 
6.5 

4.2
2.7
1.7
2.9








 

25.1 
19.8 
14.7 
10.3 
6.9 

4.4
2.8
1.7
2.3








 

Total 88 88.0 88.0 88.0 88.0 

ML estimate  ˆ 2.860402θ =  ˆ 0.718559θ =  ˆ 0.981370θ =  ˆ 1.021503θ =  

2χ   6.677 3.743 2.76 2.09 

d.f.  4 4 4 4 

p-value  0.1540 0.4419 0.5987 0.7192 
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Table 3.  The number of snowshoe hares counts captured over 7 days, reported by Keith and Meslow (1968) 

Number of times 
hares caught 

Observed 
frequency 

Expected Frequency 

ZTPD ZTPLD ZTPSD ZTPAD 

1 184 176.6 182.6 182.6 183.3 

2 55 66.0 55.3 55.3 54.4 
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16.4 
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1.9



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16.3 

4.9
2.1





 

Total 261 261.0 261.0 261.0 261.0 

ML Estimate  0.7 71ˆ 561θ =  2.8 57ˆ 639θ =  ˆ 3.320063θ =  ˆ 3.218636θ =  

2χ   2.450 0.610 0.575 0.460 

d.f.  1 2 2 2 

P-value  0.1175 0.7371 0.7501 0.7945 

Table 4.  Number of European red mites on apple leaves, reported by Garman (1923) 

Number of 
European red mites 

Observed 
frequency 

Expected Frequency 

ZTPD ZTPLD ZTPSD ZTPAD 

1 38 28.7 36.2 35.5 35.8 
2 17 25.7 20.4 20.8 20.5 
3 10 15.3 11.2 11.5 11.4 
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

 

Total 80 80.0 80.0 80.0 80.0 

ML Estimate  1.7 15ˆ 916θ =  1.1 82ˆ 855θ =  1.5 11ˆ 395θ =  1.5 72ˆ 754θ =  

2χ   9.827 2.427 2.561 2.260 

d.f.  2 3 3 3 

P-value  0.0073 0.4886 0.4644 0.5202 
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Figure 3.  Fitted plots of ZTPD, ZTPLD, ZTPSD and ZTPAD for datasets in tables 2, 3, and 4 

 
 

6. Concluding Remarks 
A zero-truncated Poisson-Akash distribution (ZTPAD) 

has been introduced. The general expression for the rth 
factorial moment about origin has been obtained and thus its 
raw moments and central moments have been given. The 
coefficients of variation, skewness, kurtosis, and the index of 
dispersion of ZTPAD have been obtained. The method of 
moments and the method of maximum likelihood estimation 
have been discussed for estimating the parameter of ZTPAD. 
The goodness of fit of ZTPAD has been discussed with three 
examples of real datasets and the fit has been compared with 
ZTPD, ZTPLD and ZTPSD and the fit by ZTPAD has been 
found to be quite satisfactory. Therefore, ZTPAD can be 
considered one of the important distributions to model count 
datasets which structurally excludes zero counts. 
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