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Abstract  The aim of this paper is to provide proof of the Littlewood conjecture (theorem). The Littlewood conjecture 
proposed by John Edensor Littlewood close to 90 years ago. There are numerous applications of the conjecture to this day; 
however, a complete proof over real number is yet to be provided. The conjecture proposes that the limit inferior (roughly 
speaking the lower bound of limit) of multiplication between an infinitely large number, n, and the distances between two real 
numbers each multiplied by n, from their closest integer approaches zero. This paper provides a proof of the Littlewood 
conjecture. The proof segregates the real numbers in two forms of rational and irrational numbers. All parts of the proof 
utilize the analytical approach of limit. Initially, a proof of rational numbers is provided. In consequent to such proof, the 
validity of the conjecture is revealed by the Archimedean's property of real number followed by squeeze theorems for all real 
numbers. After such claim, it would be evident that the Littlewood conjecture is a special form of a bigger limit inferior which 
approaches zero. 
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1. Introduction 
Littlewood Conjecture is an interesting conjecture in 

mathematics which was proposed by John Edensor 
Littlewood close to 90 years ago. The conjecture considered 
an open problem in mathematics since 2016. The presented 
paper proves the conjecture while it generalizes it to a 
theorem which states that limit inferior of multiplication of a 
finite number of real number's distance from the nearest 
integer is always zero. By limit inferior, we are referring to 
the lower bound of the limit upon its existence. For example 
limit inferior of cosine function for real value would be -1, 
which can be represented as follow. 

infim (l ) 1
n

cos n
→∞

= −  

It suffices to say that since the value of the "n" and 
distance between two points are always non-negative values 
we can securely assume their multiplications would be at 
least zero. That is in the subsequent sections of the existing 
paper we would not investigate if negative values are 
possible solutions to the Littlewood conjecture. 

2. Preliminaries 
Littlewood Conjecture states that 

|| || . || || 0liminfn n n nα β→∞ = , where ||b|| for b∈   
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(set of all real numbers) means the distance of b from the 
closest integer while ,α β ∈ . Moreover liminfn nx→∞  
is defined as follow. 

inf : lim(inf )lim n mn n m n
x x

→∞ →∞ ≥
=  

In the present paper the Littlewood conjecture is proven 
to be correct by first proving the conjecture for rational 
number and then extending it to all real numbers. At the end 
the conjecture is extended to cover more terms as follow. 

1 2inf || ||li || || .m .. || || 0,pn
n n n n pα α α

→∞
= ∈  

To get limit inferior, we need to realize where the lowest 
point may occur. It is evident that the function does not 
result in a negative value since each term is non-negative. 
Therefore, it is safe to assume the lowest possible value is 
zero. On the other side, we propose that with the correct 
choice of n values we always would get zeros from the 
function in a periodic manner that will be explained in the 
proceeding sections. 

3. Proof of Littlewood Conjecture 
Lemma 1.  

, , , inflim || |||| || 0n n n nα β α β α β→∞∀ ∈ ∨ ∈ =  , 

where for φ ∈ , we denote || ||φ  as the distance to the 
nearest integer. 

Proof. To provide the proof, we need to separate the 
proof into four main cases. Without loss of generality 
assume α  is rational. Therefore, α  can be write as 
follow. 
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: , , 0p p q q
q

α = ∈ ≠  

Where   is the set of all integers. 
Case 1. 0α ≥  Now we try to write α  as mixed fraction. 

1: , , , 0,0
2

t tr r t q q
q q

α = ∈ ≠ ≤ <  

Note in such case the closest integer to α  would be r 

|| || || || || || | |t t t tr r r r
q q q q

α = = + = − − =  

Also Note 

lim liminf || || . || || inf || || . || || inf || || . || |m |li
n n n

t tn n n n nr n n nr n n
q q

α β β β
→∞ →∞ →∞

= = +  

inf | | . || |lim li| inf || || . |m | ||
n n

t tn nr nr n n n n n
q q

β β
→∞ →∞

= − − =  

Without loss of generality take: , :n n kq k∈ ≤ ∈   

inf || || . || || inf || || . || || inf || || .lim |lim lim | ||
n k k

t tn n n kq kq kq kq kt kq
q q

β β β
→∞ →∞ →∞

= =  

Note || || | | 0kt kt kt kt∈ ⇒ = − =  and , ,k q t∈  we need to prove for any 0>  there exist an 0A >  

such for all k A>  the | ( || || . || ||) 0 |kq kt kqβ − <   holds. Since | ||kt‖  is an integer then || || 0kt =  the 
following can be concluded. 

| ( || || . || ||) 0 | | ( .0. || ||) 0 | | 0 0 | 0kq kt kq kq kqβ β− = − = − =  

and 

0 inf || || . || ||m 0li
k

kq kq kt kqβ
→∞

< ∴ − =  

Therefore, for the presented case the proceeding statement is coorect. 

inf || || . || ||l 0im
n

n n nα β
→∞

=  

Case 2. 0α ≥  Now we try to write α  in mixed fraction format. 

1: , , , 0, 1
2

t tr r t q q
q q

α = ∈ ≠ ≤ <  

In the presented case, the closest integer to α  would be r+1 

|| || || || || || | 1 | |1 |t t t t q tr r r r
q q q q q

α −
= = + = + − − = − =  

Also Note 

lim liminf || || . || || inf || || . || || inf || || . || |m |li
n n n

t tn n n n nr n n nr n n
q q

α β β β
→∞ →∞ →∞

= = +  

inf | ( 1) | . || || inf |lim lim | . || ||
n n

t tn n r nr n n n nr n nr n n
q q

β β
→∞ →∞

= + − − = + − −  

inf || || . || |l |im
n

tn n n n
q

β
→∞

= −  
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Without loss of generality take: , :n n kq k∈ ≤ ∈   

lim liminf || || . || || inf || || . || || inf || || . | |im | |l
n k k

t tn n n n kq kq kq kq kq kq kt kq
q q

β β β
→∞ →∞ →∞

− = − = −  

Note ,|| || | ( ) | 0kt kq kt kt kq kt kq kt∈ ⇒ − ∈ = − − − =   and , ,k q t∈  we need to prove for any 0>  

there exist an 0A >  such for all k A>  the | ( || || . || ||) 0 |kq kq kt kqβ− − <   holds. Since | ||kq kt−‖  is an 
integer then || || 0kq kt− =  the following can be concluded. 

| ( || || . || ||) 0 | | ( .0. || ||) 0 | | 0 0 | 0kq kq kt kq kq kqβ β− − = − = − =  

and   

0 inf || || . || ||m 0li
k

kq kq kt kqβ
→∞

< ∴ − =  

Therefore, for the presented case the proceeding statement is coorect. 

inf || || . || ||l 0im
n

n n nα β
→∞

=  

Case 3. 0α <  Now we try to write α  in mixed fraction. 

1( ) : , , , 0, 0
2

t tr r t q q
q q

α = − ∈ ≠ ≤ <  

Note in such case the closest integer to α  would be -r 

|| || || ( ) || || ( ) || | ( ( )) | | | | |t t t t t tr r r r r r
q q q q q q

α = − = − + = − − − + = − + + = =  

Also Note 

lim liminf || || . || || inf || || . || || infli || || . || ||m
n n n

t tn n n n nr n n nr n n
q q

α β β β
→∞ →∞ →∞

= − = − −  

inf | ( ) | . || || inf || || .lim lim || ||
n n

t tn nr nr n n n n n
q q

β β
→∞ →∞

= − − − =  

Without loss of generality take: , :n n kq k∈ ≤ ∈   

inf || || . || | inf || || . || || inf || || .lim |lim lim | ||
n kq kq

t tn n n kq kq kq kq kt kq
q q

β β β
→∞ →∞ →∞

= =  

Note || || | | 0kt kt kt kt∈ ⇒ = − =  and , ,k q t∈  we need to prove for any 0>  there exist an 0A >  

such for all k A>  the | ( || || . || ||) 0 |kq kt kqβ − <   holds. Since | ||kt‖  is an integer then || || 0kt =  the 
following can be concluded. 

| ( || || . || ||) 0 | | ( .0. || ||) 0 | | 0 0 | 0kq kt kq kq kqβ β− = − = − =  

and 

0 inf || || . || |im | 0l
k

kq kt kqβ
→∞

< ∴ =  

Therefore, for the presented case the proceeding statement is coorect. 

inf || || . || ||l 0im
n

n n nα β
→∞

=  

Case 4. 0α <  Now we try to write α  in mixed fraction. 

1( ) : , , , 0, 1
2

t tr r t q q
q q

α = − ∈ ≠ ≤ <  

Note in such case the closest integer to α  would be -(r+1) 
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|| || || ( ) || || ( ) || | ( 1) ( ( )) | | 1 | | 1 | 1t t t t t tr r r r r r
q q q q q q

α = − = − + = − + − − + = − − + + = − + = −  

Also Note 

inf || || . || || inf || ||lim lim li. || || inf || || . || |m |
n n n

t tn n n n nr n n nr n nr n n
q q

α β β β
→∞ →∞ →∞

= − = − − + + +  

inf || || . || |l |im
n

tn n n n
q

β
→∞

= − +  

Without loss of generality take: , :n n kq k∈ ≤ ∈   

lim liinf || || . || || infm li|| || . || || inf || | . | ||m | |
n kq kq

t tn n n n kq kq kq kq kq kq kt kq
q q

β β β
→∞ →∞ →∞

− + = − + = − +  

Note , | | || || 0kt kq kq kt kq kt∈ ⇒ − + ∈ ⇒ − + =   and , ,k q t∈  we need to prove for any 0>  there 

exist an 0A >  such for all k A>  the | ( || || . || ||) 0 |kq kq kt kqβ− + − <   holds. Since | ||kq kt− +‖  is an 
integer then || || 0kq kt− + =  the following can be concluded. 

| ( || || . || ||) 0 | | ( .0. || ||) 0 | | 0 0 | 0kq kq kt kq kq kqβ β− + − = − = − =  

and  

0 inf || || . || || 0lim
k

kq kq kt kqβ
→∞

< ∴ − + =  

Therefore, for the presented case the proceeding statement is coorect. 

inf || || . || ||l 0im
n

n n nα β
→∞

=  

That is, we have shown the Littlewood conjecture holds for all rational number. 

Corollary 1.1. Given 1 2, ,..., , , 0, : ,1 , ,p i ip p i i pα α α α α∈ ∈ ≠ ∃ ∈ ≤ ≤ ∈     then we can conclude that 

1 2inf || |||| || ..li . || | 0m |pn
n n n nα α α

→∞
=  

By Lemma 1. we know the | ||inα‖  would be equal to zero. We need to prove for any 0>  there exist an 0A >  

such for all n A>  the 1 2| ( || |||| || ... || || ... || ||) 0 |i pn n n n nα α α α − <   holds. Since | ||inα‖  is an integer then 

|||| |||| 0inα =  the following can be concluded. 

1 2 1 2| ( || |||| || ... || || ... || ||) 0 | | ( || |||| || ...0... || ||) 0 | | 0 0 | | 0 0 | 0i p pn n n n n n n n nα α α α α α α− = − = − = − =  

and   

1 20 inf || |||| || ... | (| |m ) 0li |pn
n n n nα α α

→∞
< ∴ =  

Hence, we can conclude the following for the case that at least one of 1 2, ,..., pα α α  is a rational number. 

1 2inf || |||| || ... || || ... | |i 0m |l |i pn
n n n n nα α α α

→∞
=  

Lemma 2. lim, , inf || |||| || 0
n

n n nα β α β
→∞

∀ ∈ = , where for φ ∈ , we denote || || || || .nmin nφ φ∈= −


 

Proof. To provide the proof, we need to the matters into four main cases. Without loss of generality we proceed with 
proof with focusing on α  an arbitrary the irrational number (  ). 

Case 5. 
1, 0, , 0
2

c cα α∈ > ∈ < <   

We can express α  as follow. 

cα α= +    
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Where     is the floor function. 

Note: 

|| || || ||cα α= +    

The closest integer to cα α= +    with the given constrains would be α    

|| || | ( ) | || || || || || || || ||c c c c cα α α α+ = − + = − = ⇒ =            

1 1,0 , , : 0
2 2

c c d e d c e∈ < < ∃ ∈ < < < <   

Without loss of generality assume , ,c d e c s e c s− > − ∃ ∈ − =  
By Archimedes Axiom 

1, 1 1, : ho o os oe oc h oe h oc e c
s o

∃ ∈ > ⇒ > ⇒ − > ∃ ∈ < < ⇒ < <   

Where 
1, 0 , ,
2

h hd c e v c s v c v s
o o
∈ < < < < < ∈ − = ⇒ − =   

1, 1 1,o o os oc ov
s

∃ ∈ > ⇒ > ⇒ − >  

: ,ll oe l oc e c
o

∃ ∈ < < ⇒ < <  

1 1, 0 0
2 2

l l h l h hd v c e c
o o o o o o
∈ < < < < < < < ⇒ < < ⇒ < <  

Assign 1 1|| || || ||h h h
o o o

α α= ⇒ = = Note 

1lim liminf || || . || || inf || || . || ||
n n

hn n n n n n
o

α β β
→∞ →∞

=  

Without loss of generality take: , :n n ko k∈ ≤ ∈   

inf || || . || || inf || || . || || inf || || .lim |lim lim | ||
n k k

h hn n n ko ko ko ko kh ko
o o

β β β
→∞ →∞ →∞

= =  

Note || || | | 0kh kh kh kh∈ ⇒ = − = . We need to prove for any 0>  there exist an 0A >  such for all 

k A>  the | ( || || . || ||) 0 |ko kh koβ − <   holds. Since | ||kh‖  is an integer then || || 0kh =  the following can be 
concluded. 

| ( || || . || ||) 0 | | ( .0. || ||) 0 | | 0 0 | 0ko kh ko ko koβ β− = − = − =  

and 

0 inf || || . || |im | 0l
k

ko kh koβ
→∞

< ∴ =  

Now take 2
l
o

α =  

2|| || || ||l l
o o

α = =  

Also Note 
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2lim liminf || || . || || inf || || . || ||
n n

ln n n n n n
o

α β β
→∞ →∞

=  

Without loss of generality take: , :n n ko k∈ ≤ ∈   

inf || || . || || inf || || . || || inf || || .lim |lim lim | ||
n k k

l ln n n ko ko ko ko kl ko
o o

β β β
→∞ →∞ →∞

= =  

Note || || | | 0kl kl kl kl∈ ⇒ = − = . We need to prove for any 0>  there exist an 0A >  such for all k A>  

the | ( || || . || ||) 0 |ko kl koβ − <   holds. Since | ||kl‖  is an integer then || || 0kl =  the following can be concluded. 

| ( || || . || ||) 0 | | ( .0. || ||) 0 | | 0 0 | 0ko kl ko ko koβ β− = − = − =  

and 

0 inf || || . || |im | 0l
k

ko kl koβ
→∞

< ∴ =  

Note  

inf || || . || || ilim li nf || || . || || inf || || . ||im |l |m
n n n

l h l hc n n n n nc n n n n
o o o o

β β β
→∞ →∞ →∞

< < ⇒ ≤ ≤  

0 inf || |lim | . || || 0
n

n nc nβ
→∞

⇒ ≤ ≤
 

By Squeeze theorem 

inf || || . || ||l 0im
n

n nc nβ
→∞

⇒ =  

From || || || ||cα =   

inf || || . || ||l 0im
n

n n nα β
→∞

⇒ =  

Case 6. 
1, 0, , 1
2

c cα α∈ > ∈ < <   

We can express α  as follow. 

cα α= +    

Note 

|| || || ||cα α= +    

The closest integer to cα α= +    with the given constrains would be 1α +    

|| || | 1 ( ) | ||1 || || || || || ||1 ||c c c c cα α α α+ = + − + = − = ⇒ = −            

1 1 1, 1 1 0 1
2 2 2

c c c c∈ < < ⇒ − > − > − ⇒ < − <  

1, : 0 1
2

d e d c e∃ ∈ < < − < <  

Without loss of generality assume (1 ) (1 ), , (1 )c d e c s e c s− − > − − ∃ ∈ − − =  
By Archimedes Axiom  

1, 1 (1 ) 1o o os oe o c
s

∃ ∈ > ⇒ > ⇒ − − >  

: (1 ) (1 )hh oe h o c e c
o

∃ ∈ < < − ⇒ < < −  

Where 
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1,0 (1 ) , , (1 ) (1 )
2

h hd c e v c s v c v s
o o
∈ < < − < < < ∈ − − = ⇒ − − =   

1, 1 (1 ) 1,o o os o c ov
s

∃ ∈ > ⇒ > ⇒ − − >  

: (1 ) (1 ),ll oe l o c e c
o

∃ ∈ < < − ⇒ < < −  

1 1,0 (1 ) (1 ) 0
2 2

l l h l h hd v c e c
o o o o o o
∈ < < < < − < < < ⇒ < − < ⇒ < <  

Assign 1 1|| || || ||h h h
o o o

α α= ⇒ = =  Note  

1lim liminf || || . || || inf || || . || ||
n n

hn n n n n n
o

α β β
→∞ →∞

=  

Without loss of generality take: , :n n ko k∈ ≤ ∈   

inf || || . || || inf || || . || || inf || || .lim |lim lim | ||
n ko ko

h hn n n ko ko ko ko kh ko
o o

β β β
→∞ →∞ →∞

= =  

Note || || | | 0kh kh kh kh∈ ⇒ = − = . We need to prove for any 0>  there exist an 0A >  such for all 

k A>  the | ( || || . || ||) 0 |ko kh koβ − <   holds. Since | ||kh‖  is an integer then || || 0kh =  the following can be 
concluded. 

| ( || || . || ||) 0 | | ( .0. || ||) 0 | | 0 0 | 0ko kh ko ko koβ β− = − = − =  

and   

0 inf || || . || |im | 0l
k

ko kh koβ
→∞

< ∴ =  

Now take 2
l
o

α =  

2|| || || ||l l
o o

α = =  

Also Note 

2lim liminf || || . || || inf || || . || ||
n n

ln n n n n n
o

α β β
→∞ →∞

=  

Without loss of generality take: , :n n ko k∈ ≤ ∈   

inf || || . || || inf || || . || || inf || || .lim |lim lim | ||
n k k

l ln n n ko ko ko ko kl ko
o o

β β β
→∞ →∞ →∞

= =  

Note || || | | 0kl kl kl kl∈ ⇒ = − = . We need to prove for any 0>  there exist an 0A >  such for all k A>  

the | ( || || . || ||) 0 |ko kl koβ − <   holds. Since | ||kl‖  is an integer then || || 0kl =  the following can be concluded. 

| ( || || . || ||) 0 | | ( .0. || ||) 0 | | 0 0 | 0ko kl ko ko koβ β− = − = − =  

and  

0 inf || || . || |im | 0l
k

ko kl koβ
→∞

< ∴ =  

Note: 
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lim lim(1 ) inf || || . || || inf || (1 ) || . || || inf || || . |lim | ||
n n n

l h l hc n n n n n c n n n n
o o o o

β β β
→∞ →∞ →∞

< − < ⇒ ≤ − ≤  

0 inf || |lim | . || || 0
n

n nc nβ
→∞

⇒ ≤ ≤  

By Squeeze theorem 

inf || (1 ) || . || || 0lim
n

n n c nβ
→∞

⇒ − =  

Since || || || (1 ) || inf || || . ||li || 0m nc n n nα α β→∞= − ⇒ =  

Case 7. 
1, 0, , 0
2

c cα α∈ < ∈ < <   

We can express α  as follow. 

cα α= −    

Where     is the floor function. 
Note: 

|| || || ||cα α= −    

The closest integer to cα α= −    with the given constrains would be α    

|| || | ( ) | || || || || || ||c c c cα α α α− = − − = ⇒ =            

1 1,0 , , : 0
2 2

c c d e d c e∈ < < ∃ ∈ < < < <   

Without loss of generality take 
, ,c d e c s e c s− > − ∃ ∈ − =  

By Archimedes Axiom 

1, 1 1, : ho o os oe oc h oe h oc e c
s o

∃ ∈ > ⇒ > ⇒ − > ∃ ∈ < < ⇒ < <   

Where 

1, 0 , ,
2

h hd c e v c s v c v s
o o
∈ < < < < < ∈ − = ⇒ − =   

1, 1 1,o o os oc ov
s

∃ ∈ > ⇒ > ⇒ − >  

: ,ll oe l oc e c
o

∃ ∈ < < ⇒ < <  

1 1, 0 0
2 2

l l h l h hd v c e c
o o o o o o
∈ < < < < < < < ⇒ < < ⇒ < <  

Assign 1 1|| || || ||h h h
o o o

α α= ⇒ = =  

Note 

1lim liminf || || . || || inf || || . || ||
n n

hn n n n n n
o

α β β
→∞ →∞

=  

Without loss of generality take: , :n n ko k∈ ≤ ∈   
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inf || || . || || inf || || . || || inf || || .lim |lim lim | ||
n k k

h hn n n ko ko ko ko kh ko
o o

β β β
→∞ →∞ →∞

= =  

Note || || | | 0kh kh kh kh∈ ⇒ = − = . We need to prove for any 0>  there exist an 0A >  such for all 

k A>  the | ( || || . || ||) 0 |ko kh koβ − <   holds. Since | ||kh‖  is an integer then || || 0kh =  the following can be 
concluded. 

| ( || || . || ||) 0 | | ( .0. || ||) 0 | | 0 0 | 0ko kh ko ko koβ β− = − = − =  

and 

0 inf || || . || |im | 0l
k

ko kh koβ
→∞

< ∴ =  

Take 2
l
o

α =  

2|| || || ||l l
o o

α = =  

Also Note 

2lim liminf || || . || || inf || || . || ||
n n

ln n n n n n
o

α β β
→∞ →∞

=  

Without loss of generality take: , :n n ko k∈ ≤ ∈   

inf || || . || || inf || || . || || inf || || .lim |lim lim | ||
n k k

l ln n n ko ko ko ko kl ko
o o

β β β
→∞ →∞ →∞

= =  

Note || || | | 0kl kl kl kl∈ ⇒ = − = . We need to prove for any 0>  there exist an 0A >  such for all k A>  

the | ( || || . || ||) 0 |ko kl koβ − <   holds. Since | ||kl‖  is an integer then || || 0kl =  the following can be concluded. 

| ( || || . || ||) 0 | | ( .0. || ||) 0 | | 0 0 | 0ko kl ko ko koβ β− = − = − =  

and  

0 inf || || . || |im | 0l
k

ko kl koβ
→∞

< ∴ =  

Note: 

inf || || . || || ilim li nf || || . || || inf || || . ||im |l |m
n n n

l h l hc n n n n nc n n n n
o o o o

β β β
→∞ →∞ →∞

< < ⇒ ≤ ≤  

0 inf || |lim | . || || 0
n

n nc nβ
→∞

⇒ ≤ ≤  

By Squeeze theorem 

inf || || . || ||l 0im
n

n nc nβ
→∞

⇒ =  

From || || || ||cα =  

inf || || . || ||l 0im
n

n n nα β
→∞

⇒ =  

Case 8. 
1, 0, , 1
2

c cα α∈ < ∈ < <   

We can express α  as follow. 

(1 )cα α= + −    

Note 

|| || || (1 ) ||cα α= + −    
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The closest integer to (1 )cα α= + −    with the given constrains would be α    

 

|| (1 ) || | ( (1 )) | || 1 || || || || 1||c c c cα α α α+ − = − + − = − + ⇒ = −            

1 1 11 1 0 0 1
2 2 2

c c c< < ⇒ − > − > ⇒ < − <  

1, : 0 1
2

d e d c e∃ ∈ < < − < <  

Without loss of generality  
(1 ) (1 ), , (1 )c d e c s e c s− − > − − ∃ ∈ − − =  

By Archimedes Axiom 

1, 1 (1 ) 1o o os oe o c
s

∃ ∈ > ⇒ > ⇒ − − >  

: (1 ) (1 )hh oe h o c e c
o

∃ ∈ < < − ⇒ < < −  

Where 

1,0 (1 ) , , (1 ) (1 )
2

h hd c e v c s v c v s
o o
∈ < < − < < < ∈ − − = ⇒ − − =   

1, 1 (1 ) 1 ,o o os o c ov
s

∃ ∈ > ⇒ > ⇒ − − >  

: (1 ) (1 ),ll oe l o c e c
o

∃ ∈ < < − ⇒ < < −  

1 1,0 (1 ) (1 ) 0
2 2

l l h l h hd v c e c
o o o o o o
∈ < < < < − < < < ⇒ < − < ⇒ < <  

Assign 1
h
o

α =   

1|| || || ||h h
o o

α⇒ = =  

Note  

1lim liminf || || . || || inf || || . || ||
n n

hn n n n n n
o

α β β
→∞ →∞

=  

Without loss of generality , :n n ko k∈ ≤ ∈   

inf || || . || || inf || || . || || inf || || .lim |lim lim | ||
n k k

h hn n n ko ko ko ko kh ko
o o

β β β
→∞ →∞ →∞

= =  

Note || || | | 0kh kh kh kh∈ ⇒ = − = . We need to prove for any 0>  there exist an 0A >  such for all 

k A>  the | ( || || . || ||) 0 |ko kh koβ − <   holds. Since | ||kh‖  is an integer then || || 0kh =  the following can be 
concluded. 

| ( || || . || ||) 0 | | ( .0. || ||) 0 | | 0 0 | 0ko kh ko ko koβ β− = − = − =  

and 

0 inf || || . || |im | 0l
k

ko kh koβ
→∞

< ∴ =  
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Now take 2
l
o

α =  

2|| || || ||l l
o o

α = =  

Also Note 

2lim liminf || || . || || inf || || . || ||
n n

ln n n n n n
o

α β β
→∞ →∞

=  

Without loss of generality take: , :n n ko k∈ ≤ ∈   

inf || || . || || inf || || . || || inf || || .lim |lim lim | ||
n k k

l ln n n ko ko ko ko kl ko
o o

β β β
→∞ →∞ →∞

= =  

Note || || | | 0kl kl kl kl∈ ⇒ = − = . We need to prove for any 0>  there exist an 0A >  such for all k A>  

the | ( || || . || ||) 0 |ko kl koβ − <   holds. Since | ||kl‖  is an integer then || || 0kl =  the following can be concluded. 

| ( || || . || ||) 0 | | ( .0. || ||) 0 | | 0 0 | 0ko kl ko ko koβ β− = − = − =  

and  

0 inf || || . || |im | 0l
k

ko kl koβ
→∞

< ∴ =  

Note: 

lim lim(1 ) inf || || . || || inf || (1 ) || . || || inf || || . |lim | ||
n n n

l h l hc n n n n n c n n n n
o o o o

β β β
→∞ →∞ →∞

< − < ⇒ ≤ − ≤  

0 inf || |lim | . || || 0
n

n nc nβ
→∞

⇒ ≤ ≤  

By Squeeze theorem 

inf || (1 ) || . || || 0lim
n

n n c nβ
→∞

⇒ − =  

Since || || || (1 ) || inf || || . ||li || 0m
n

c n n nα α β
→∞

= − ⇒ =  

In all cases we have concluded the following. 

inf || || . || ||l 0im
n

n n nα β
→∞

=  

Therefore we can say the Little Conjecture holds for all real numbers. 

Corollary 2.1. Given 1 2, ,..., , , 0,p p pα α α ∈ ∈ ≠  Then we can conclude that  

1 2inf || |||| || ..li || || 0m .n pn n n nα α α→∞ =  

Without loss of generality, by Lemma 2 we have the following. 

1 2 1 2inf || |||| || ...0... || || inf || |||| || ... || || ...l |im |l |i (|mp i pn n
n n n n n n n n nα α α α α α α

→∞ →∞
≤  

1 2inf || |||| || ...0... | (| ||lim pn
n n n nα α α

→∞
≤  

1 20 inf || |||| || ... || || ... ||m || 0li i pn
n n n n nα α α α

→∞
⇒ ≤ ≤  

1 20 inf || |||| || ... || ||l m 0i pn
n n n nα α α

→∞
⇒ ≤ ≤  

By Squeeze theorem 

1 2inf || |||| || ..li . || | 0m |pn
n n n nα α α

→∞
=  

 



124 Kaveh Mozafari:  Generalization and Proof of the Littlewood Conjecture  
 

 

4. Generalization 
It suffices to focus on the generalized form of Littlewood 

conjecture based on the provided proof. Consequently, the 
following theorem is expectedly obtained. 

Theorem 3. 1 2, ,..., , , 0,p p pα α α∀ ∈ ∈ ≠ 

1 2inf || |||| || ..li || || 0m .n pn n n nα α α→∞ = , where for 

φ ∈ , we denote || || || || .nmin nφ φ∈= −


 

Proof. To prove the theorem we refer to the Corollary 1.1. 
and Corollary 2.1. which are resulted from Lemma 1. and 
Lemma 2. respectively. The two corollary contain all 
possibilities of 1 2, ,..., pα α α  over the real numbers. 
Therefore we can conclude. 

1 2inf || |||| || ..li . || | 0m |pn
n n n nα α α

→∞
=  

The possible applications of the theorem are beyond the 
scope of the presented paper, and hopefully, subsequent 
papers would cover portions of such claim. 
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