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Abstract  This work compares the performances of univariate and multivariate time series models. Five time series 
variables from Nigeria’s gross domestic products were used for the comparative study. These series were modelled using 
both the univariate and multivariate time series framework. The performances of the two methods were evaluated based on 
the mean error incurred by each approach. The results showed that the univariate linear stationary models perform better than 
the multivariate models.  
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1. Introduction 
In making choices between alternative courses of action, 

decision makers often need predictions of some variables of 
interest. Many of such variables used for predictive purposes 
are in form of time series. Some variables are economical in 
nature and the economy partly depends on the interplay of 
these variables with respect to time. An intrinsic feature of a 
time series is that, typically, adjacent observations are 
dependent. The nature of this dependence among 
observations of a time series is of considerable practical 
interest.  

Unlike the analyses of random samples of observations in 
other aspect of statistics, the analysis of time series is based 
on the assumption that successive values in the data file 
represent consecutive measurements taken at equally time 
intervals. There are two main goals of time series analysis: 
identification of the nature of the phenomenon represented 
by the sequence of observations and forecasting (predicting 
future values of the time series variable). The goals require 
that the pattern of observed data be identified, described and 
established so that it can be interpreted and integrated with 
other data.  

In data analysis, variables of interest can be univariate or 
multivariate. In the case of univariate data analysis, the 
response variable is influenced by only one factor; whereas 
in the case multivariate, the response variable is influenced 
by multiple factors.  

A univariate data is characterized by a single variable. It  
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does not deal with causes or relationships. Its descriptive 
properties can be identified in some estimates such as central 
tendency (mean, mode, median), dispersion (range, variance, 
maximum, minimum, quartile, and standard deviation), the 
frequency distributions, bar chart, histogram, pie chart, line 
graph, box and whisker plot. The univariate data analysis is 
known for its limitation in the determination of relationship 
between two or more variables, correlations, comparisons, 
causes, explanations, and contingency between variables. 
Generally, it does not supply further information on the 
dependent and independent variables and as such is 
insufficient in any analysis involving more than one variable.  

In order to obtain results from such multiple indicator 
problems, multivariate data analysis is usually employed. 
This will not only help consider several characteristics in a 
model but will also bring to light the effect of the extraneous 
variables (stochastic terms). 

In the same light, time series analysis can either be 
univariate or multivariate. The term univariate time series 
refers to one that consists of single observations recorded 
sequentially over equal time increments. Unlike other areas 
of statistics, univariate time series model contains lag values 
of itself as independent variables. These lag variables can 
play the role of independent variables as in multiple 
regression. An example of the univariate time series is the 
Box et al (2008) Autoregressive Integrated Moving Average 
(ARIMA) models.  

On the other hand, multivariate time series model is an 
extension of the univariate case and involves two or more 
input variables. It does not limit itself to its past information 
but also incorporate the past of other variables. Multivariate 
processes arise when several related time series are observed 
simultaneously over time, instead of observing a single 
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series as in univariate case. It emerged in quest of studying 
the interrelationship among time series variables. These 
relationships are often studied through consideration of the 
correlation structures among the component series. 

Both univariate and multivariate time series models are 
meant for forecasting purposes. There is need, however, to 
compare the efficiencies of these two models. This is the 
intent of this work. 

2. Literature Review  
Henry and Prebo (2005) examined the interrelationships 

among geophysical variables using the correlation structure 
of multivariate time series technique. Three of the five 
variables were found to be interrelated and were modelled as 
multivariate variables while the remaining two were not put 
to use in the analytical process. Henry and Prebo (2005) 
found that the predictions by the multivariate model with 
only the interrelated variables were quite good. They pointed 
out that adding of uncorrelated variables in multivariate 
analysis was not necessary. 

George (2005) compared the performance of Box-Jenkins 
univariate model with transfer function models using two 
economic variables (inflation and Gross domestic product). 
It was discovered that though univariate analysis could only 
address one time series variable at a time; it performs far 
better than the transfer function models in terms of 
forecasting. 

Ben et al (2010) proposed a class of nonparametric 
multivariate model to model nonlinear relationships between 
input and output time series. The multivariate model was 
smoothed with unknown functional forms, and the noise was 
assumed to be a stationary autoregressive moving average 
process. Modelling the correlation of the noise enabled the 
multivariate functions to be estimated more efficiently. 

Oluwatomi et al (2011) made use of vector autoregressive 
model analysis with impulse response functions and other 
test to determine the inter relationship between oil price and 
investment. The result showed that oil price have negligible 
effect on real GDP. The work further recommended a 
further assessment using GARCH models. 

Makridakis and Clay (2012) examined the accuracy of 
combined forecasts consisting of weighted averages of 
forecasts from individual univariate time series method. Five 
different procedures were used to estimate weights and two 
of the procedures outperformed the others. Both of these 
procedures relate the weights to reciprocals of sums of 
squared errors as oppose to basing the weights directly on an 
estimated covariance matrix of forecast errors obtained in 
Multivariate method. The research led to a proposed 
algorithm for estimation of large number of component time 
series models. It was deduced that if maximum likelihood 
estimate are wanted for a large model, the algorithm may 
reduce the computations considerably by supplying good 
initial estimates. However, in the model identification stage 
of multivariate time series, the work suggested an estimation 

of a number of alternative models for which the algorithm 
was required. 

Saul et al (2013) applied a multivariate technique to 
efficiently quantify the frequency response of the system that 
generated respiratory sinus arrhythmia at broad range 
physiologically important frequencies. The technique 
presented sensitively identifies even the subtle changes in 
autonomic balance that occur with change in posture. Hence, 
it was recommended in assessing autonomic regulation in 
humans with cardiovascular pathology. 

Elkhtem and Karama (2014) considered the nature of 
crude oil as a mixture of hydrocarbons with different boiling 
temperatures. Control became essential for the fractionation 
column to keep products at the limitations. The paper 
revealed the identification of multivariate function for 
relevant different developed control strategy based on the 
different hydrocarbons being considered as components of 
the time varying crude oil variable. 

Gabriel (2015) encouraged the use of multivariate time 
series as a preferred modeling tool. He pointed out that the 
era of univariate time series modeling is running out of time. 
He argued that since any variable under consideration is 
usually influenced by external factors; every researcher 
should incorporate every suspected influential variable into 
the time domain analysis. He applied multivariate techniques 
to investment, income and consumption variables. The 
residuals obtained by fitting the model were consistent with 
white noise process and the model was accepted as a good fit. 

So far, the multivariate concept has been so much 
applauded in recent times. However, there is need, not to 
quickly jump into conclusion; but rather, put the two time 
series approaches (univariate and multivariate) to test by 
allowing them to compete. The motive of this work is to 
compare the statistical abilities of the two models using some 
available statistics and Gross domestic product variables as 
case study. 

3. Methodology 
3.1. Univariate Process 

3.1.1. Stationarity 
A time series is said to be stationary if the statistical 

property is constant through time. A non stationary series 𝑋𝑋𝑡𝑡  
can be made stationary by differencing: 

𝑥𝑥𝑡𝑡 = 𝑋𝑋𝑡𝑡 − 𝑋𝑋𝑡𝑡−1 

3.1.2. White Noise Process 

A process {𝜀𝜀𝑡𝑡} is said to be a white noise process with 
mean 0 and variance 𝜎𝜎𝜀𝜀2 written {𝜀𝜀𝑡𝑡}~𝑊𝑊𝑊𝑊(0,𝜎𝜎𝜀𝜀2), if it is a 
sequence of uncorrelated random variables from a fixed 
distribution. 

3.1.3. Backward Shift Operator 

This is defined as 𝐵𝐵𝑗𝑗𝑋𝑋𝑡𝑡 = 𝑋𝑋𝑡𝑡−𝑗𝑗  
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3.1.4. Difference Operator 

This is defined as ∇= 1 − 𝐵𝐵. 

3.1.5. Autoregressive (AR) Model 

An autoregressive model expresses a time series 𝑋𝑋𝑡𝑡  as a 
linear function of its past values. The 𝑝𝑝𝑝𝑝ℎ  order 𝐴𝐴𝐴𝐴(𝑝𝑝) 
process is given by  

𝑥𝑥𝑡𝑡 = 𝜙𝜙1𝑥𝑥𝑡𝑡−1 + 𝜙𝜙2𝑥𝑥𝑡𝑡−2 + ⋯+ 𝜙𝜙𝑝𝑝𝑥𝑥𝑡𝑡−𝑝𝑝 + 𝜀𝜀𝑡𝑡  
  ⇒  𝜙𝜙(𝐵𝐵)𝑥𝑥𝑡𝑡 = 𝜀𝜀𝑡𝑡                             (1) 

where 𝑥𝑥𝑡𝑡 = 𝑋𝑋𝑡𝑡 − 𝜇𝜇 ; 𝜙𝜙(𝐵𝐵) = (1 − 𝜙𝜙1𝐵𝐵 − 𝜙𝜙2𝐵𝐵2 −⋯− 𝜙𝜙𝑝𝑝𝐵𝐵𝑝𝑝), 
and 𝜀𝜀𝑡𝑡  is a white noise process. 

The process is stationary if the roots of 𝜙𝜙(𝐵𝐵) = 0 lie 
outside the unit circle. 

3.1.6. Moving Average Model 

Similarly, a time series 𝑋𝑋𝑡𝑡  is said to follow a moving 
average process of order 𝑞𝑞 denoted as  𝑀𝑀𝑀𝑀(𝑞𝑞) if it can be 
linearly represented as 

                  𝑥𝑥𝑡𝑡 = 𝜃𝜃(𝐵𝐵)𝜀𝜀𝑡𝑡                    (2) 
where 

𝜃𝜃(𝐵𝐵) = �1 − 𝜃𝜃1𝐵𝐵 − 𝜃𝜃2𝐵𝐵2 −⋯− 𝜃𝜃𝑞𝑞𝐵𝐵𝑞𝑞� 
The process is invertible if the roots of 𝜃𝜃(𝐵𝐵) = 0  lie 

outside the unit circle.  

3.1.7. Mixed Autoregressive Moving Average (ARMA) 
Model 

According to Box et al (2008), the mixed autoregressive 
moving average model is the combination of 𝑀𝑀𝑀𝑀(𝑞𝑞) and 
𝐴𝐴𝐴𝐴(𝑝𝑝) and is represented as 

𝑥𝑥𝑡𝑡 − 𝜙𝜙𝑥𝑥𝑡𝑡−1 − 𝜙𝜙2𝑥𝑥𝑡𝑡−2 −⋯−𝜙𝜙𝑝𝑝𝑥𝑥𝑡𝑡−𝑝𝑝  

= 𝜀𝜀𝑡𝑡 − 𝜃𝜃𝜀𝜀𝑡𝑡−1 − 𝜃𝜃2𝜀𝜀𝑡𝑡−2 −⋯− 𝜃𝜃𝑞𝑞𝜀𝜀𝑡𝑡−𝑞𝑞 .      (3) 
Thus, 

𝜙𝜙(𝐵𝐵)𝑥𝑥𝑡𝑡 = 𝜃𝜃(𝐵𝐵)𝜀𝜀𝑡𝑡  

3.1.8. Autoregressive Integrated Moving Average (ARIMA) 
Model 

For a non stationary series, we have the 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝,𝑑𝑑, 𝑞𝑞) 
represented as 

𝜙𝜙(𝐵𝐵)∇𝑑𝑑𝑋𝑋𝑡𝑡 = 𝜃𝜃(𝐵𝐵)𝜀𝜀𝑡𝑡               (4) 
where 𝑑𝑑 is the degree of differencing of 𝑋𝑋𝑡𝑡 . 

3.1.9. Autocovariance and Autocorrelation Functions 

The autocovariance function at lag 𝑘𝑘 is given as    
  𝛾𝛾𝑘𝑘   =  cov[𝑋𝑋𝑡𝑡 ,𝑋𝑋𝑡𝑡+𝑘𝑘] 

The autocorrelation function at lag 𝑘𝑘 is given as 

  𝜌𝜌𝑘𝑘 = 𝐸𝐸{(𝑋𝑋𝑡𝑡−𝜇𝜇)(𝑋𝑋𝑡𝑡+𝑘𝑘−𝜇𝜇 )}
�𝐸𝐸{(𝑋𝑋𝑡𝑡−𝜇𝜇 )}𝐸𝐸{(𝑋𝑋𝑡𝑡+𝑘𝑘−𝜇𝜇 )2}

= 𝛾𝛾𝑘𝑘
𝛾𝛾0

            (5) 

The autocovariance and autocorrelation are estimated by  

𝑟𝑟𝑘𝑘 =
𝑐𝑐𝑘𝑘
𝑐𝑐0

 

where 𝑐𝑐𝑘𝑘  =
1
𝑁𝑁  
∑(𝑋𝑋𝑡𝑡 − 𝑋𝑋� ) (𝑋𝑋𝑡𝑡+𝑘𝑘  − 𝑋𝑋�), 𝑘𝑘 =  0,1, 2 , … ,𝐾𝐾  is 

the estimate of 𝛾𝛾𝑘𝑘  and 𝑟𝑟𝑘𝑘  is the estimate of 𝜌𝜌𝑘𝑘 . 

3.1.10. Diagnostic Checks 
After fitting the model, the next step is to check whether 

the fitted model is adequate or not. This is accomplished by 
investigating the behaviour of the residuals. One of such 
ways is to examine the residual Autocorrelation function 
(ACF). If the ACF plot does not show any significant spike 
above or below the ± 2 √𝑛𝑛⁄  line, then the model is adequate. 

This ACF test is equivalent to using Ljung-Box statistic 
which is defined as 

𝑄𝑄 = 𝑛𝑛(𝑛𝑛 + 2)∑ 𝑟𝑟𝑘̂𝑘
2

𝑛𝑛−𝑘𝑘
𝑚𝑚
𝑘𝑘=1                (6) 

where 𝑛𝑛 =  the sample size and 𝑟̂𝑟𝑘𝑘  is the estimated 
autocorrelation at lag k. 

In this test, the first 𝑚𝑚 autocorrelations are examined for 
model adequacy. According to Box et al (2008), under the 
null hypothesis that the residual is random (i.e. the residuals 
are serially uncorrelated) against the alternative; 
𝑄𝑄~𝜒𝜒(𝑚𝑚−𝑝𝑝−𝑞𝑞)

2 . Thus, if the model is inappropriate, the 
average values of 𝑄𝑄 will be inflated. On the other hand if the 
model is adequate, the calculated 𝑄𝑄 will be less than 𝑄𝑄∗ 
obtained from the chi-square table. In other words, obtaining 
an adequate model means the residuals follow a white noise 
process. 

3.2. Multivariate Time Series 

The methods applied in the multivariate process are 
outlined below. The bold letters indicate vectors or 
matrices. 

3.2.1. White Noise Process 

A white noise process 𝜺𝜺𝒕𝒕 = (𝜀𝜀1𝑡𝑡 , … , 𝜀𝜀𝑛𝑛𝑛𝑛 )′  is a 
continuous random vector satisfying 𝐸𝐸(𝜺𝜺𝒕𝒕) = 𝟎𝟎, 
𝚺𝚺𝜺𝜺 = 𝐸𝐸(𝜺𝜺𝒕𝒕𝜺𝜺𝒕𝒕′ ), 𝜺𝜺𝒕𝒕 and 𝜺𝜺𝒔𝒔 are independent for 𝑠𝑠 ≠ 𝑡𝑡.  

3.2.2. Cross Correlation 

The cross correlation for 𝑙𝑙𝑙𝑙𝑙𝑙 𝑘𝑘 is given as  

𝑟𝑟(𝑥𝑥𝑥𝑥) = 𝐶𝐶𝑥𝑥𝑥𝑥
𝑆𝑆𝑥𝑥𝑆𝑆𝑦𝑦

               (7) 

𝐶𝐶𝑥𝑥𝑥𝑥 = 1
𝑛𝑛
∑ (𝑥𝑥𝑡𝑡 − 𝑥̅𝑥)𝑛𝑛−𝑘𝑘
𝑡𝑡=1 (𝑦𝑦𝑡𝑡+𝑘𝑘 − 𝑦𝑦�)     𝑘𝑘 = 0,  1,2 …  

where 𝑥̅𝑥  and 𝑦𝑦�  are the sample means of 𝑥𝑥𝑡𝑡  𝑎𝑎𝑎𝑎𝑎𝑎  𝑦𝑦𝑡𝑡 , 
𝑠𝑠𝑥𝑥   and 𝑠𝑠𝑦𝑦   are the sample standard deviations respectively. 

3.2.3. Vector Autoregressive (VAR) Model 

The basic 𝑝𝑝-lag Vector autoregressive VAR(𝑝𝑝) model is 
of the form. 

𝒙𝒙𝒕𝒕 = 𝒄𝒄 + 𝚷𝚷𝟏𝟏𝒙𝒙𝒕𝒕−𝟏𝟏 + 𝚷𝚷𝟐𝟐𝒙𝒙𝒕𝒕−𝟐𝟐 + ⋯+ 𝚷𝚷𝒑𝒑𝒙𝒙𝒕𝒕−𝒑𝒑 + 𝛆𝛆𝒕𝒕  ; 

 𝑡𝑡 = 0, ±1, ±2, …                (8) 
where 
𝒙𝒙𝒕𝒕 = (𝑥𝑥1𝑡𝑡 , … , 𝑥𝑥𝑛𝑛𝑛𝑛 )′  is a (𝑛𝑛 × 1) vector of time series 

variables, 
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𝜫𝜫𝒊𝒊  are fixed (𝑛𝑛 × 𝑛𝑛) coefficient matrices, 
𝒄𝒄 = (𝑐𝑐1, … , 𝑐𝑐𝑛𝑛)′  is a fixed (𝑛𝑛 × 1) vector of intercept 

terms allowing for the possibility of non zero mean 𝐸𝐸(𝒙𝒙𝒕𝒕), 
𝜺𝜺𝒕𝒕 = (𝜀𝜀1𝑡𝑡 , … , 𝜀𝜀𝑛𝑛𝑛𝑛 )′  is an (𝑛𝑛 × 1)  vector white noise 

process or innovation process. That is, 
𝐸𝐸(𝜺𝜺𝒕𝒕) =  0,𝐸𝐸(𝜺𝜺𝒕𝒕𝜺𝜺𝒕𝒕′ ) =  𝚺𝚺𝜺𝜺 and 𝐸𝐸(𝜺𝜺𝒕𝒕𝜺𝜺𝒔𝒔′ ) = 𝟎𝟎 for 𝑠𝑠 ≠ 𝑡𝑡. 
𝚺𝚺𝜺𝜺 =  Covariance matrix which is assumed to be non 

singular if not otherwise stated. 
The model can be written in the matrix form as 

⎝

⎜
⎛

𝑥𝑥1𝑡𝑡
𝑥𝑥2𝑡𝑡

.

.
𝑥𝑥𝑛𝑛𝑛𝑛⎠

⎟
⎞

=

⎝

⎜
⎛

𝑐𝑐1
𝑐𝑐2
.
.
𝑐𝑐𝑛𝑛⎠

⎟
⎞

+ 

⎝

⎜
⎛
𝜋𝜋11

1

𝜋𝜋21
1

.

.
𝜋𝜋𝑛𝑛1

1

     

𝜋𝜋12
1

𝜋𝜋22
1

.

.
𝜋𝜋𝑛𝑛2

1

         

.

.

.

.

.

      

.

.

.

.

.

    

𝜋𝜋1𝑘𝑘
1

𝜋𝜋2𝑘𝑘
1

.

.
𝜋𝜋𝑛𝑛𝑛𝑛1

  

⎠

⎟
⎞

⎝

⎜
⎛

𝑥𝑥1𝑡𝑡−1
𝑥𝑥2𝑡𝑡−1

.

.
𝑥𝑥𝑛𝑛𝑛𝑛−1⎠

⎟
⎞

+

⎝

⎜
⎛
𝜋𝜋11

2

𝜋𝜋21
2

.

.
𝜋𝜋𝑛𝑛1

2

     

𝜋𝜋12
2

𝜋𝜋22
2

.

.
𝜋𝜋𝑛𝑛2

2

         

.

.

.

.

.

      

.

.

.

.

.

    

𝜋𝜋1𝑛𝑛
2

𝜋𝜋2𝑛𝑛
2

.

.
𝜋𝜋𝑛𝑛𝑛𝑛2

  

⎠

⎟
⎞

⎝

⎜
⎛

𝑥𝑥1𝑡𝑡−2
𝑥𝑥2𝑡𝑡−2

.

.
𝑥𝑥𝑛𝑛𝑛𝑛−2⎠

⎟
⎞

+ ⋯+

⎝

⎜⎜
⎛
𝜋𝜋11
𝑝𝑝

𝜋𝜋21
𝑝𝑝

.

.
𝜋𝜋𝑛𝑛1
𝑝𝑝

     

𝜋𝜋12
𝑝𝑝

𝜋𝜋22
𝑝𝑝

.

.
𝜋𝜋𝑛𝑛2
𝑝𝑝

         

.

.

.

.

.

      

.

.

.

.

.

    

𝜋𝜋1𝑛𝑛
𝑝𝑝

𝜋𝜋2𝑛𝑛
𝑝𝑝

.

.
𝜋𝜋𝑛𝑛𝑛𝑛
𝑝𝑝

  

⎠

⎟⎟
⎞

⎝

⎜
⎛

𝑥𝑥1𝑡𝑡−𝑝𝑝
𝑥𝑥2𝑡𝑡−𝑝𝑝

.

.
𝑥𝑥𝑛𝑛𝑛𝑛−𝑝𝑝⎠

⎟
⎞

+

⎝

⎜
⎛

𝜀𝜀1𝑡𝑡
𝜀𝜀2𝑡𝑡

.

.
𝜀𝜀𝑛𝑛𝑛𝑛⎠

⎟
⎞

      (9) 

3.2.4. Stable VAR (𝒑𝒑) Processes 
The process (8) is stable if its reverse characteristic 

polynomial of the VAR(𝑝𝑝) has no roots in and on the 
complex unit circle.  Formally 𝐱𝐱𝐭𝐭 is stable if   

det (𝐼𝐼𝑛𝑛 − 𝛱𝛱1𝑧𝑧 − ⋯−𝛱𝛱𝑝𝑝𝑧𝑧𝑝𝑝) ≠ 0  for │𝑧𝑧│ ≤ 1.   (10) 

A stable VAR(𝑝𝑝) process 𝒙𝒙𝒕𝒕, 𝑡𝑡 = 0, ±1, ±2, …, is 
stationary. 

3.2.5. Autocovariances of a Stable VAR(p) Process 

For a vector autoregressive process of order 𝑝𝑝 [𝑉𝑉𝑉𝑉𝑉𝑉(𝑝𝑝)], 
we have 
𝒙𝒙𝒕𝒕 − 𝝁𝝁 = 𝝅𝝅𝟏𝟏(𝒙𝒙𝒕𝒕−𝟏𝟏 − 𝝁𝝁) + ⋯+ 𝝅𝝅𝒑𝒑�𝒙𝒙𝒕𝒕−𝒑𝒑 − 𝝁𝝁� + 𝜺𝜺𝒕𝒕  , (11) 

Post multiplying both sides by (𝒙𝒙𝒕𝒕−𝒌𝒌 − 𝝁𝝁)′  and taking 
expectation, we have for k= 0 using Γx(𝑖𝑖) =  Γx(−𝑖𝑖)′  

Γx(0) = 𝝅𝝅𝟏𝟏(𝒙𝒙𝒕𝒕−𝟏𝟏 − 𝝁𝝁) + ⋯+ 𝝅𝝅𝒑𝒑�𝒙𝒙𝒕𝒕−𝒑𝒑 − 𝝁𝝁� + 𝚺𝚺𝜺𝜺 

=  𝝅𝝅𝟏𝟏Γx(1)′ + ⋯+ 𝝅𝝅𝒑𝒑Γx(𝑝𝑝)′ + 𝚺𝚺𝜺𝜺        (12) 

If ℎ > 0 
Γx(𝑘𝑘) = 𝝅𝝅𝟏𝟏Γx(𝑘𝑘 − 1) + ⋯+ 𝝅𝝅𝒑𝒑Γx(𝑘𝑘 − 𝑝𝑝)    (13) 

These equations can be used to compute the 
autocovariance functions Γx(k)  for 𝑘𝑘 ≥ 𝑝𝑝,  if 𝝅𝝅𝟏𝟏, … ,𝝅𝝅𝒑𝒑 
and Γx(p − 1), … , Γx(0) are known. 

3.2.6. Autocorrelation of a Stable VAR(p) Process 

For a stable VAR (𝑝𝑝) process, the autocorrelations are 
given by 

𝑅𝑅𝑥𝑥(𝑘𝑘) = 𝐷𝐷−1Γx(k)𝐷𝐷−1            (14) 
where 𝐷𝐷 is a diagonal matrix with the standard deviation 
of the component of 𝒙𝒙𝒕𝒕 on the main diagonal. Thus, 

𝐷𝐷−1 =

⎣
⎢
⎢
⎡

1
�𝛾𝛾11 (0)

⋯ 0

⋮ ⋱ ⋮
0 ⋯ 1

�𝛾𝛾𝑛𝑛𝑛𝑛 (0)⎦
⎥
⎥
⎤
         (15) 

and the correlation between 𝑥𝑥𝑖𝑖 ,𝑡𝑡  and 𝑥𝑥𝑗𝑗 ,𝑡𝑡−𝑘𝑘  is  

𝜌𝜌𝑖𝑖𝑖𝑖 (𝑘𝑘) =
𝛾𝛾𝑖𝑖𝑖𝑖 (𝑘𝑘) 

�𝛾𝛾𝑖𝑖𝑖𝑖 (0) �𝛾𝛾𝑗𝑗𝑗𝑗 (0) 
          (16) 

which is just the 𝑖𝑖𝑖𝑖 − th element of 𝑅𝑅𝑥𝑥(𝑘𝑘). 

3.2.7. VAR Order Selection 

To determine the order of the VAR process, the three 
order selection criteria listed below are used: 

(i)  Akaike Information Criterion 
This is expressed as 
𝐴𝐴𝐴𝐴𝐴𝐴(𝑝𝑝) =
𝐼𝐼𝐼𝐼│𝚺𝚺�𝜺𝜺(𝑝𝑝)│ + 2

𝑁𝑁
(number of estimated parameter)  

= 𝐼𝐼𝐼𝐼│𝚺𝚺�𝜺𝜺(𝑝𝑝)│ + 2𝑝𝑝𝑝𝑝 2

𝑁𝑁
                    (17) 

(ii) Hannan-Quin Criterion 
This is given as  
𝐻𝐻𝐻𝐻(𝑝𝑝) =
𝐼𝐼𝐼𝐼│𝚺𝚺�𝜺𝜺(𝑝𝑝)│ + 2𝐼𝐼𝐼𝐼n

𝑁𝑁
(freely estimated parameters)  

= 𝐼𝐼𝐼𝐼│𝚺𝚺�𝜺𝜺(𝑝𝑝)│ + 2𝐼𝐼𝐼𝐼n𝑁𝑁
𝑁𝑁

 𝑝𝑝𝑛𝑛2               (18) 

(iii) Schwarz Criterion 
This can be expressed as 
𝑆𝑆𝑆𝑆(𝑝𝑝) =
𝐼𝐼𝐼𝐼│𝚺𝚺�𝜺𝜺(𝑝𝑝)│ + 𝐼𝐼𝐼𝐼n𝑁𝑁

𝑁𝑁
(freely estimated parameters)  

= 𝐼𝐼𝐼𝐼│𝚺𝚺�𝜺𝜺(𝑝𝑝)│ + 2𝐼𝐼𝐼𝐼𝐼𝐼
𝑁𝑁

 𝑝𝑝𝑛𝑛2                (19) 

For the three criteria, the order p is chosen so as to 
minimize the values of the criteria. In other words, we 
chose the lag p for which the values of the criteria are the 
smallest. 

where 𝑝𝑝 is the VAR order, 
𝚺𝚺�𝜺𝜺 is the estimate of white noise covariance matrix Σ𝜀𝜀 , 
𝑛𝑛 is the number of time series components of the vector 

time series 
𝑁𝑁 is the sample size.  

3.3. Diagnostic Checks 
The diagnostic checks of the fitted model involve 

examination of the behaviour of the residuals. The method 
to be used is the Lutkepohl (2005) approach. According to 
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him; if 𝜌𝜌𝑢𝑢𝑢𝑢 (𝑖𝑖)  is the true correlation coefficients 
corresponding to the 𝑟𝑟𝑢𝑢𝑢𝑢 (𝑖𝑖), then we have the following 
hypothesis test at 5% level to check whether or not a given 
multivariate series follows a white noise process or not. The 
hypothesis states: 

𝐻𝐻0: 𝜌𝜌𝑢𝑢𝑢𝑢 (𝑖𝑖) = 0 
Against 

 𝐻𝐻1: 𝜌𝜌𝑢𝑢𝑢𝑢 (𝑖𝑖) ≠ 0 
Decision 
Reject 𝐻𝐻0 │𝑟𝑟𝑢𝑢𝑢𝑢 ,𝑖𝑖│ > 2

√𝑁𝑁
. 

Thus in practical sense, we compute the correlation of the 
series to be tested (possibly after some stationary 
transformation) and compare their absolute value with 2

√𝑁𝑁
. 

3.4. Model Evaluation 
After fitting the univariate and the multivariate models 

and confirming the adequacy of the models; a comparative 
study between the two approaches shall be based on the 
following statistics: 

(i) The Mean Square Error (MSE)  

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑁𝑁
��X𝑖𝑖 − 𝑋𝑋�𝑖𝑖�

2
𝑁𝑁

𝑖𝑖=1

 

(ii) The mean absolute error (MAE)    

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑁𝑁
� │

𝑁𝑁

𝑖𝑖=1
X𝑖𝑖 − 𝑋𝑋�𝑖𝑖│ 

(iii) The mean absolute percentage error (MAPE)  

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = �
 1
𝑁𝑁
��

X𝑖𝑖 − 𝑋𝑋�𝑖𝑖
X𝑖𝑖

�
𝑁𝑁

𝑖𝑖−1

� × 100 

where X𝑖𝑖  are the observed values (series) and 𝑋𝑋�𝑖𝑖  are the 
estimated values. 

The performance evaluation is used to determine the 
model that is most efficient and reliable for modeling GDP 
variables.  

4. Data Analysis and Results  
The data used for this work is a quarterly data of the 

different sectors (variables) of the Nigerian Gross Domestic 
Products obtained from National Bureau of Statistics (NBS) 
for the period of 1981-2013. These different sectors are 
Agriculture (𝑥𝑥1𝑡𝑡), Industry (𝑥𝑥2𝑡𝑡), Building & Construction 
(𝑥𝑥3𝑡𝑡), Wholesale & Retail (𝑥𝑥4𝑡𝑡) and Services (𝑥𝑥5𝑡𝑡). The 
software used for the analysis are the gretl and Minitab. 

4.1. Raw Data Plots    

The raw data plots of the five series are displayed in figure 
1 of the appendix A. From this plots, it is evidenced that the 
series are non-stationary; hence first differencing 
transformation was applied and stationarity was obtained. 
The differenced series are plotted in figure 2 of the appendix 
A. 

4.2. Fitting the Univariate Models 
The different univariate models that were fitted to the 

different series 𝑥𝑥1𝑡𝑡 , 𝑥𝑥2𝑡𝑡 , 𝑥𝑥3𝑡𝑡 , 𝑥𝑥4𝑡𝑡  and 𝑥𝑥5𝑡𝑡  are displayed in 
table 1 below. The five models underwent diagnostic 
checks and were found to be adequate as informed by the 
values of 𝑄𝑄 statistics.  

Table 1.  Fitted Univariate Models and the Computed Values of the 𝑸𝑸 
Statistic 

𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉𝑉 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑄𝑄 𝑄𝑄∗ 

𝑥𝑥1𝑡𝑡  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(1,1,0) 23.421 36.42 

𝑥𝑥2𝑡𝑡  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(1,1,1) 19.312 35.17 

𝑥𝑥3𝑡𝑡  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(1,1,0) 25.933 36.42 

𝑥𝑥4𝑡𝑡  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(1,1,1) 21.771 35.17 

𝑥𝑥5𝑡𝑡  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴(1,1,1) 21.356 35.17 

The first 𝑚𝑚 = 25 autocorrelations were considered in the 
diagnostic checks. As highlighted in the methodology, the 
adequacies of the models are based on the fact that the 𝑄𝑄 ‘s 
are less than the 𝑄𝑄∗’s. 

4.3. Fitting the Multivariate Model 

The autocorrelations of the five component series are 
displayed in table 2 below. The correlations are quite high 
indicating that the five variables are interrelated. Thus, 
multivariate technique can be applied.  

Table 2.  Correlation Table of the Differenced Series 

 
𝑥𝑥1𝑡𝑡 . 𝑥𝑥2𝑡𝑡  𝑥𝑥3𝑡𝑡  𝑥𝑥4𝑡𝑡  𝑥𝑥5𝑡𝑡  

𝑥𝑥𝑖𝑖𝑖𝑖 . 1 
    

𝑥𝑥2𝑡𝑡  0.954784 1 
   

𝑥𝑥3𝑡𝑡  0.666825 0.664304 1 
  

𝑥𝑥4𝑡𝑡  0.767769 0.864995 0.695682 1 
 

𝑥𝑥5𝑡𝑡  0.682775 0.667073 0.794183 0.892509 1 

4.4. Residual Cross Correlation 

The residual cross correlations of the fitted univariate 
components are shown in table 3 below. As clearly seen, the 
cross correlations are quite high; suggesting strong 
relationship among the variables. Thus, multivariate 
consideration is obvious. 

Table 3.  Residual Cross Correlation Table of the Differenced Series  

 
𝑥𝑥1𝑡𝑡 . 𝑥𝑥2𝑡𝑡  𝑥𝑥3𝑡𝑡  𝑥𝑥4𝑡𝑡  𝑥𝑥5𝑡𝑡  

𝑥𝑥1𝑡𝑡 . 
 

0.855 0.767 0.768 0.683 

𝑥𝑥2𝑡𝑡  
  

0.764 0.765 0.667 

𝑥𝑥3𝑡𝑡  
   

0.696 0.794 

𝑥𝑥4𝑡𝑡  
    

0.993 

𝑥𝑥5𝑡𝑡  
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4.5. VAR Order Selection 

Table 5 of the appendix A shows the values of the three model selection criteria at different lags. Clearly the three model 
selection criteria attain their minimum at lag 1 as indicated by the values with the asterisk. Thus, the selected model is 
𝑉𝑉𝑉𝑉𝑉𝑉(1). 

4.6. The Multivariate Model with the Significant Parameters 

The multivariate 𝑉𝑉𝑉𝑉𝑉𝑉(1) time series model with the significant parameters is: 

1

2

3

4

5

18.2057 0.6268 0.0125 0.3028 2.0804 3.1373

32.4675 0.0106 0.7796 0.0000 0.0000 0.8521

0.0272 0.007 0.0051 0.5229 0.0127 0.0044

3.2784 0.0143 0.0636 0.9170 0.62

1.51173

t

t

t

t

t

y

y

y

y

y

− −

−

+

− − −

−

=

   
   
   
   
   
        

1 1 1

2 1 2

3 1 3

4 1 4

5 1 5

70 0.0000

0.0000 0.0217 0.1356 0.0000 0.2351

t t

t t

t t

t t

t t

y

y

y

y

y

ε

ε

ε

ε

ε

−

−

−

−

−
−

+

    
    
    
    
    
            

      (20) 

This can be expressed explicitely as: 

𝑦𝑦1𝑡𝑡 = 18.2057 + 0.6268𝑦𝑦1𝑡𝑡−1 − 0.0125𝑦𝑦2𝑡𝑡−2 + 13.3028𝑦𝑦3𝑡𝑡−1 + 2.0804𝑦𝑦4𝑡𝑡−1 − 3.1373𝑦𝑦5𝑡𝑡−1 
𝑦𝑦2𝑡𝑡 = 32.4675 + 0.0106𝑦𝑦1𝑡𝑡−1 + 0.7796𝑦𝑦2𝑡𝑡−2 − 0.8521𝑦𝑦5𝑡𝑡−1 
𝑦𝑦3𝑡𝑡 = 0.0272 + 0.007𝑦𝑦1𝑡𝑡−1 + 0.0051𝑦𝑦2𝑡𝑡−2 + 0.5229𝑦𝑦3𝑡𝑡−1 + 0.0127𝑦𝑦4𝑡𝑡−1 + 0.0044𝑦𝑦5𝑡𝑡−1 
𝑦𝑦4𝑡𝑡 = −3.2784 − 0.0143𝑦𝑦1𝑡𝑡−1 + 0.0636𝑦𝑦2𝑡𝑡−1 − 0.917𝑦𝑦3𝑡𝑡−1 + 0.627𝑦𝑦4𝑡𝑡−1 
𝑦𝑦5𝑡𝑡 = −1.51173 + 0.0217𝑦𝑦2𝑡𝑡−2 − 0.1356𝑦𝑦3𝑡𝑡−1 + 0.2351𝑦𝑦5𝑡𝑡−1 

 

4.7. Stability of the VAR (1) Process 
Using expression (10), the roots of 𝐼𝐼𝑛𝑛 − 𝛱𝛱1𝑧𝑧 − ⋯−

𝛱𝛱𝑝𝑝𝑧𝑧𝑝𝑝 = 0  are 𝑧𝑧1 = 5.23, 𝑧𝑧2 = −7.41, 𝑧𝑧3 = −1.57, 𝑧𝑧4 =
11.2, 𝑧𝑧5 = 8.11. 

Since �𝑧𝑧𝑗𝑗 � > 1   ∀ 𝑗𝑗 , the process is stable. This also 
implies that the process is stationary. 

5. Diagnostic Checks 
The above fitted model (20) has to be subjected to 

diagnostics checks to ascertain whether the model is 
adequate or not. This is achieved by following the hypothesis 
stated in section 3.3 of the methodology. That is, 

  𝐻𝐻0: 𝜌𝜌𝑢𝑢𝑢𝑢 (𝑖𝑖) = 0 
Against 

𝐻𝐻1: 𝜌𝜌𝑢𝑢𝑢𝑢 (𝑖𝑖) ≠ 0 
Since  

𝑁𝑁 = 132 ⇒
2

√132
= 0.1741 

Then 
𝐻𝐻0 is rejected if  │𝑟𝑟𝑢𝑢𝑢𝑢 ,𝑖𝑖│ > 2

√𝑁𝑁
= 0.1741. 

Now, examining the residual correlation matrices at 
different lags in appendix B; it clearly shows that none of the 
residual autocorrelations │𝑟𝑟𝑢𝑢𝑢𝑢 ,𝑖𝑖│ is greater than 0.1741. In 
other words, the residuals follow a white noise process. This 
confirms the adequacy of the model. 

6. Performances of the Estimated 
Models 

So far, adequate models have been fitted in the univariate 
and multivariate cases. The next step involves fishing out the 
most preferred models. This will be achieved by subjecting 
the models to the model evaluation test described in section 
3.4 of the methodology. The test involves comparisons of the 
values of the different types of errors incurred by the models. 
The results are tabulated in table 4 below. 

Table 4.  Error Comparison Table between Univariate and multivariate 
Models 

𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽𝑽 
𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼𝑼 𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 

𝑴𝑴𝑴𝑴𝑴𝑴 𝑴𝑴𝑴𝑴𝑴𝑴 𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 𝑴𝑴𝑴𝑴𝑴𝑴 𝑴𝑴𝑴𝑴𝑴𝑴 𝑴𝑴𝑴𝑴𝑴𝑴𝑴𝑴 

𝑥𝑥1𝑡𝑡  2.123 0.133 14.11 4.442 1.221 17.11 

𝑥𝑥2𝑡𝑡  3.222 0.174 16.13 4.875 0.311 17.72 

𝑥𝑥3𝑡𝑡  5.711 0.321 21.03 6.933 1.301 28.55 

𝑥𝑥4𝑡𝑡  3.115 0.183 17.32 5.661 1.222 21.64 

𝑥𝑥5𝑡𝑡  4.028 0.245 19.01 9.113 0.724 29.73 

As seen in the above table, the univariate models incur less 
error than the multivariate models in all the component series. 
Hence, the univariate model is the most efficient. 
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7. Discussion and Conclusions 
Multivariate analysis has been embraced over the years; 

perhaps, due to its ability to carry other variables along. As 
noted in the review, Gabriel (2015) and others have 
celebrated multivariate methods and encouraged full 
attention towards it. The attention of many has been diverted 
from univariate modelling to multivariate analysis. However, 
the main goal of time series analysis is prediction, and a good 
model is the one that can predict the actual values of the data 
with less error. Of course, if a model can predict the real 

values of the data well; it is obvious that the forecasts are 
reliable. In this work, the truth is revealed. Despite the loud 
praises sung to multivariate models, its complications and 
newness, the univariate time series models with its simplicity 
have proven to perform better than the multivariate methods. 
It is therefore pertinent that model builders should not rely so 
much on the newness of any methods of analysis but should 
always carry out comparative analysis to determine the best 
option.  

Appendix A 

 

Figure 1.  Raw data plots of the series 

 

Figure 2.  Time series plots of the differenced series 

Index

Da
ta

130117104917865523926131

5000

4000

3000

2000

1000

0

Variable

X3t
X4t
X5t

X1t
X2t

Time Series Plot of X1t, X2t, X3t, X4t, X5t

Index

Da
ta

130117104917865523926131

1000

500

0

-500

-1000

-1500

Variable

DX3t
DX4t
DX5t

DXit
DX2t

Time Series Plot of DXit, DX2t, DX3t, DX4t, DX5t

 



210 I. A. Iwok et al.:  A Comparative Study between Univariate and Multivariate Linear Stationary Time Series Models  
 

Table 5.  Model selection criteria table 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑝𝑝(𝐿𝐿𝐿𝐿) 𝐴𝐴𝐴𝐴𝐴𝐴 𝐵𝐵𝐵𝐵𝐵𝐵 HQC 

1 464.07333  −11.2345553∗ −10.53768∗ −9.951552∗ 

2 531.21692 0.00000 -7.936949 -6.659348 -7.418109 

3 589.49804 0.00000 -8.491634 -6.633306 -7.736958 

4 674.85161 0.00000 -9.497527 -7.058472 -8.507015 

5 768.61450 0.00000 -10.643575 -7.623792 -9.417227 

6 788.63349 0.02890 -10.560558 -6.960048 -9.098374 

7 802.20315 0.34896 -10.370052 -6.188815 -8.672033 

8 819.69297 0.08857 -10.244883 -5.482918 -8.311027 

9 858.89334 0.00000 -10.481556 -5.138863 8.311863 

10 881.00490 0.01024 -10.433415 -4.509995 -8.027887 

11 896.66187 0.17883 -10.277696 -3.773550 -7.636334 

12 918.5338 0.01158 -10.225564 -3.140689 -7.348363 
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