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Abstract  Sorghum is the largest crop in Sudan, where Sudan is one of the most important countries producing sorghum in 
the world. Sudan is the fifth country after China, India, USA and Nigeria in sorghum production worldwide. Sorghum is the 
most important crop and livestock feed. The study aims at forecasting the sorghum production in Sudan. The study using 
Box-Jenkins methodology in time series analysis which is the optimal method applied to the pattern. This method consists of 
four steps namely identification, estimation, diagnostic checking, and forecasting by ARIMA models. Future forecasts drawn 
there show that the sorghum production will be likely to increases in coming years.  
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1. Introduction 
Sorghum is the fifth most important cereal crop grown in 

the world and is used for food, fodder and production of 
alcoholic beverages. Overall it is an important crop type of 
food in Africa, Central America and South Asia. Food and 
Agriculture Organization (FAO) reported. The average 
annual yield in 2010 across the world was reported as 1.37 
Tone’s/Ha, with the highest yields recorded in Jordan (12.7 
T/Ha). In the USA this figure was 4.5 T/Ha. Sorghum is the 
staple food for most people living in Sudan, except for the 
northern areas (Nahr al-Nil and Northern states) where wheat 
is more common. Sorghum is the largest crop (ranked by 
area) in Sudan with about 6.5 million Ha grown in 2009 [1]. 

Most of it is rain-fed. The geographical of distribution of 
sorghum is; Gadarif State (eastern Sudan) is the most 
important region for sorghum production, where about 5-6 
million feddan are cultivated on an annual basis. Mainly to 
large scale farming where agricultural machinery is used. 
The dominant varieties grown are the traditional (Feterita) 
types e.g. (Arfa Gadmek, Abdalla Mustafa, Korolo. Tetron 
and Dabar) are grown on a limited scale. Some progressive 
farmers in south Gadarif grow the improved varieties, Wad 
Ahmed and Tabat. Sudan was exporting some quantities of 
sorghum in the 80’s and 90’s but reached almost zero levels 
in 2000. At the same time Sudan started to import 300 to 400  
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thousand Tonnes per year to cover its needs. Sorghum cannot 
be planted until soil temperatures have reached 17°C and 
requires an average temperature of at least 25°C to produce 
maximum grain yields while maximum photosynthesis 
potential is achieved at daytime temperatures of around 30°C. 
Night time temperatures below 13°C for more than a few 
days can severely affect potential grain production. Sorghum 
is drought tolerant and is able to grow economically in low 
rainfall areas, below 450 mm. However, in order to achieve 
high yields 100mm rainfall equivalent irrigation water 
should be applied per month if sufficient rainfall does not 
occur. Soil should be subject to soil analysis for nutrients 
availability. Organic manure and nitrogen fertilizers are the 
two main sources of plant nutrition when sufficient water is 
available through rainfall or irrigation. Most of the crop is 
manually harvested and left in open air to dry until grain 
moisture content is below 10%. Usually sowing takes place 
from mid-June until mid-July. Timing is very important for 
achieving yield potential as the growing season is long 
(usually 90–120 days) and late sown crops suffer loss of 
production. Seed rate is typically 3 Kg/Feddan which is 
enough to produce 42000–52000 plants per Feddan. In 
rain-fed areas this rate can be increased to 3.5Kg per Feddan 
to compensate for the less favorable conditions [2]. 

Africa accounts only for a quarter of world's sorghum 
production. Nigeria and Sudan contribute nearly half of the 
sorghum production in Africa [3]. Sudan is one of the most 
important countries producing sorghum in the world. It has 
the fifth rank after China, India, USA and Nigeria in 
sorghum production, but it is number one in per capita area 
and grain consumption for human beings [4]. 
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Sudan shares in total sorghum production which is 
amounting to 6.51% and 19.6% of the world and Africa 
production respectively in 2009/2010 season. Sorghum is 
produced in the three sub-sectors in the Sudan, namely; the 
irrigated, mechanized and traditional rainfed subsectors. The 
traditional rainfed sub-sector is mainly found in Kordofan, 
Darfur plus a large area in the Central States. The 
contribution of this sub-sector to the total sorghum output is 
estimated at only 29.91 percent (about 541 thousand metric 
tons) from an area of about 1.353million feddan in 2011/12. 
The low share of this sub-sector is due to the production of 
sorghum mainly for subsistence [4]. 

2. Sorghum Production Model 
As is generally known, developing a time series model 

from such data starts by exploring the main features inherent 
in the series. Among these features are stationarity and the 
existence of seasonality (cyclical pattern) in the data. 
Appropriate statistical procedures will now be used for 
investigating these aspects of the series in an attempt to 
determine the suitable time series model that fits it. 

2.1. Testing for Stationarity 

Stationary series vary around the constant mean level, 
neither decreasing nor increasing systematically over time, 
with constant variance. Certain time series models, namely 

Box-Jenkins model, assume the existence of stationarity. 
General Box-Jenkins model includes difference operators, 
autoregressive terms, moving average terms, seasonal 
difference operators, seasonal autoregressive terms, and 
seasonal moving average terms. This phase is founded on the 
study of autocorrelation and partial autocorrelation. The 
Box-Jenkins model assumes the stationarity of the series 
under investigation, which means that the series has constant 
mean, constant variance, and constant autocorrelation 
structure. Thus first step in developing a Box-Jenkins model 
is to determine if the series is stationary and if there is any 
significant seasonality that needs to be modeled [5]. 
Consider the AR (1) model: 

yt –  μ = ϕ1(yt−1 −  μ) + at          (1) 
For this model the autoregressive polynomial equation is 

1 − ϕ1z = 0 and therefore is the root of the autoregressive 
polynomial.  

Thus, for the AR (1) model to be stationarity it is required 
that  z1

AR = 1

∅1�
1
∅1
�

> 1 𝑎𝑎𝑎𝑎𝑎𝑎  therefore |∅1| < 1 . Similarly, 

for an MA (1) model yt − μ = at − θ1at−1 to be invertible 
it is required that = z1

AR |1/θ1| and therefore |θ1|  < 1.  
For the stationarity and invariability conditions for other 

popular Box-Jenkins models like the AR (2), MA (2), and 
ARMA (1,1) models, see ADF and PACF result. By 
definition, all AR (p) models are invertible while all MA (q) 
models are stationarity. 

Table (1).  Sudan Sorghum production annually 1960-2015 

Year Production change rate Year Production change rate Year Production change rate 

1960 1051 NA 1979 2408 15.38% 1998 4830 65.41% 

1961 1434 36.44% 1980 2068 -14.12% 1999 2435 -49.59% 

1962 1266 -11.72% 1981 3277 58.46% 2000 2760 13.35% 

1963 1348 6.48% 1982 1938 -40.86% 2001 4470 61.96% 

1964 1138 -15.58% 1983 1806 -6.81% 2002 2930 -34.45% 

1965 1094 -3.87% 1984 1110 -38.54% 2003 5190 77.13% 

1966 851 -22.21% 1985 3600 224.32% 2004 2700 -47.98% 

1967 1980 132.67% 1986 3400 -5.56% 2005 4275 58.33% 

1968 870 -56.06% 1987 1370 -59.71% 2006 4327 1.22% 

1969 1451 66.78% 1988 4400 221.17% 2007 4999 15.53% 

1970 1534 5.72% 1989 1800 -59.09% 2008 3869 -22.60% 

1971 1590 3.65% 1990 1500 -16.67% 2009 4192 8.35% 

1972 1343 -15.53% 1991 3360 124.00% 2010 2630 -37.26% 

1973 1625 21.00% 1992 4050 20.54% 2011 4605 75.10% 

1974 1744 7.32% 1993 2400 -40.74% 2012 4524 -1.76% 

1975 2026 16.17% 1994 3700 54.17% 2013 2249 -50.29% 

1976 1800 -11.15% 1995 2450 -33.78% 2014 6281 179.28% 

1977 2017 12.06% 1996 4200 71.43% 2015 5500 -12.43% 

1978 2087 3.47% 1997 2920 -30.48% 
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Figure (1).  Show the Sudan sorghum production 1960-2015 

Now consider the practical implications of stationarity and 
invariability in Box-Jenkins models. When a Box-Jenkins 
model is stationarity, its observations yt satisfy the following 
three properties:  

1. E(y)t =μ             (i.e. the mean of    ∀tyt  is 
constant for all time periods)  

2. Var(yt ) = σy
2       (i.e. the variance of ∀tyt  is 

constant for all time periods)  
3. Cov(ytyt−j) = γj    (i.e. the covariance between 

yt and yt−j is constant for all time periods and fixed   
j, j = 1, 2,)   

These three conditions give rise to what is called weak 
stationarity (or just stationarity for short). The practical 
implication of stationarity is that only one realization of the 
time series yt is needed for us to be able to consistently 
estimate the mean μ, the variance σy

2, the covariance γj, and 
the autocorrelation ρj with the sample statistics y�, sy

2, cj and 
 rj. These statistics are defined as:   

𝑦𝑦� = ∑ 𝑦𝑦𝑡𝑡𝑇𝑇
𝑡𝑡=1
𝑇𝑇

 𝑟𝑟𝑗𝑗                   (2) 

where T denotes the total number of observations available 
on yt (sample mean) 

𝑆𝑆𝑦𝑦2 = ∑ (𝑦𝑦𝑡𝑡−𝑦𝑦�)2𝑇𝑇
𝑡𝑡=1

𝑇𝑇
  (Sample variance)       (3) 

𝐶𝐶𝑗𝑗 =
∑ (𝑦𝑦𝑡𝑡− 𝑦𝑦�)�𝑦𝑦𝑡𝑡−𝑗𝑗−𝑦𝑦��𝑇𝑇
𝑡𝑡=1

𝑇𝑇
   (Sample covariance)  (4) 

  𝑟𝑟j =
cj

Sy
2 =

∑ (yt − y�)�yt−j − y��T
t=j+1

∑ (yt − y�)T
t=1

 

(Sample autocorrelation)            (5) 
Stationarity can be accessed from a run sequence plot. The 

run sequence plot should show constant location and scale. It 

can also be detected from an autocorrelation plot. 
Specifically, non-stationarity is often indicated by an 
autocorrelation plot with very slow decay. 

Box and Jenkins recommend differencing non-stationary 
series one or more times to achieve stationarity. Doing so 
produces an ARIMA model, with "I" short for "Integrated". 
But its first difference, expressed as Δy

t 
= y

t 
− y

t−1 
= u

t 
, is 

stationary, so y is integrated of order 1”, or y ~ I (1).  

2.2. Seasonality in Box-Jenkins Models  

Box-Jenkins models can be extended to include seasonal 
autoregressive and seasonal moving average terms.   

Model identification: seasonality of order s is revealed 
by "spikes” at s, 2s, 3s, lags of the autocorrelation function.  

Model estimation: to make a series stationary, may need 
to take sth differences of the raw data before estimation. 
These seasonal effects may themselves follow AR and MA 
processes.  

At the model identification stage, our goal is to detect 
seasonality, if it exists, and to identify the order for the 
seasonal autoregressive and seasonal moving average terms. 
For Box-Jenkins models, it isn’t necessary to remove 
seasonality before fitting the model. Instead, it can include 
the order of the seasonal terms in the model specification to 
the ARIMA estimation software.   

Once stationarity and seasonality have been addressed, 
the next step is to identify the order (the p and q) of the 
autoregressive and moving average terms. The primary 
tools for doing this are the autocorrelation plot and the 
partial autocorrelation plot. The sample autocorrelation plot 
and the sample partial autocorrelation plot are compared to 
the theoretical behaviour of these plots when the order is 
known.   
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2.3. Order of Autoregressive Process (p)  

Specifically, for an AR(1) process, the sample 
autocorrelation function should have an exponentially 
decreasing appearance. However, higher-order AR 
processes are often a mixture of exponentially decreasing 
and damped sinusoidal components. For higher-order 
autoregressive processes, the sample autocorrelation needs 
to be supplemented with a partial autocorrelation plot. The 
partial autocorrelation of an AR (p) process becomes zero at 
lag p+1 and greater, so we examine the sample partial 
autocorrelation function to see if there is evidence of a 
departure from zero. This is usually determined by placing a 
95% confidence interval on the sample partial 
autocorrelation plot (most software programs that generate 
sample autocorrelation plots will also plot this confidence 
interval). If the software program does not generate the 
confidence band, it is approximately ±2/N, with N denoting 
the sample size. The data is AR (p) if: ACF will decline 
steadily, or follow a damped cycle and PACF will cut off 
suddenly after p lags.  

2.4. Order of Moving Average Process (q)  

The autocorrelation function of a MA (q) process 
becomes zero at lag q+1 and greater, so we examine the 
sample autocorrelation function to see where it essentially 
becomes zero. Alternating positive and negative, 
Autoregressive model. Use the partial autocorrelation plot 
to decaying to zero help identify the order. One or more 
spikes, rest are Moving average model, order identified by 
where plot essentially zero becomes zero. Decay, starting 
after a few lags mixed autoregressive and moving average 
model. All zero or close to zero Data is essentially random. 
High values at fixed intervals Include seasonal 

autoregressive term. No decay to zero series is not 
stationary. 

The data is MA (q) if: ACF will cut off suddenly after q 
lags and PACF will decline steadily, or follow a damped 
cycle.  
It’s not indicated to build models with:  

– Large numbers of MA terms   
– Large numbers of AR and MA terms together, well see 

very (suspiciously) high t-statistics. 
This happens because of high correlation (“collinearity”) 

among regressors, not because the model is good. It is 
observable from Fig (2) above that the time series is likely 
to have random walk pattern. More over ACFs suffered 
from linear decline and there is only one significant spike 
for PACFs. The correlogram also suggests that ARIMA   
(1, 0, 0) may be an appropriate model. Then, we take the 
first-difference of "sorghum” to see whether the time series 
becomes stationary before further finding AR (p) and MA 
(q). 

To realise whether first difference can get 
level-stationary time series or not, so the results are: Now, 
the first-difference series "sorghum" becomes stationary as 
shown in line graph Figure (3) and is white noise as it 
shows no significant patterns in the graph of correlogram 
Figure (4). And the unit root test also confirms the 
first-difference becomes stationary since the ADF value is 
less than 1% Critical Value l. 

2.5. Box-Jenkins Model Estimation 

The main approaches to fitting Box-Jenkins models are 
non-linear least squares and maximum likelihood estimation. 
Maximum likelihood estimation is generally the preferred 
technique. (Box & Jenkins; 1994). 

 

Figure (2).  First difference Sudan sorghum production (1960-2015) 
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Autocorrelation Partial Correlation  AC PAC Q-Stat Prob 

       

. |***   | . |***   | 1 0.440 0.440 11.426 0.001 

. |****  | . |***   | 2 0.509 0.391 26.995 0.000 

. |****  | . |**    | 3 0.547 0.349 45.303 0.000 

. |***   | . |*.    | 4 0.476 0.166 59.466 0.000 

. |***   | . | .    | 5 0.451 0.071 72.444 0.000 

. |***   | . |*.    | 6 0.474 0.098 87.031 0.000 

. |***   | . | .    | 7 0.428 0.040 99.189 0.000 

. |***   | .*| .    | 8 0.362 -0.068 108.05 0.000 

. |***   | . | .    | 9 0.376 -0.027 117.84 0.000 

. |**    | .*| .    | 10 0.295 -0.105 123.98 0.000 

. |**    | . | .    | 11 0.328 0.019 131.76 0.000 

. |*.    | .*| .    | 12 0.192 -0.172 134.47 0.000 

. |**    | . | .    | 13 0.257 0.008 139.46 0.000 

. |*.    | .*| .    | 14 0.118 -0.165 140.55 0.000 

. |*.    | . | .    | 15 0.156 -0.004 142.47 0.000 

. |*.    | . | .    | 16 0.099 -0.053 143.26 0.000 

. |*.    | . |*.    | 17 0.122 0.086 144.50 0.000 

. |*.    | . | .    | 18 0.077 0.034 145.01 0.000 

. | .    | . | .    | 19 0.011 -0.043 145.02 0.000 

. | .    | . | .    | 20 0.024 -0.021 145.08 0.000 

. | .    | . | .    | 21 -0.011 0.008 145.09 0.000 

. | .    | . | .    | 22 -0.047 -0.060 145.30 0.000 

. | .    | . |*.    | 23 -0.017 0.075 145.33 0.000 

.*| .    | .*| .    | 24 -0.103 -0.138 146.41 0.000 

Figure (3).  Correlogram graph Sudan sorghum production (1960-2015) 

 

3. Box-Jenkins Model Diagnostics 
Model diagnostics for Box-Jenkins models is similar to 

model validation for non-linear least squares fitting. That is, 
the error term ut is assumed to follow the assumptions for a 
stationary unvaried process. The residuals should be white 
noise (or independent when their distributions are normal) 
drawings from a fixed distribution with a constant mean and 
variance. If the Box-Jenkins model is a good model for the 
data, the residuals should satisfy these assumptions. If these 
assumptions are not satisfied, we need to fit a more 
appropriate model. That is, we go back to the model 
identification step and try to develop a better model. 

Hopefully the analysis of the residuals can provide some 
clues as to a more appropriate model. The residual analysis 
is based on:  

𝐐𝐐(𝐒𝐒) = 𝒏𝒏∑𝒓𝒓 (𝒌𝒌)𝟐𝟐   
 
≈  𝛘𝛘𝟐𝟐   (𝐒𝐒)         (6) 

1. Random residuals: the Box-Pierce Q-statistic: where 
r(k) is the k-th residual autocorrelation and summation 
is over first s autocorrelations.  

 

2. Fit versus parsimony: the Schwartz Bayesian Criterion 
(SBC):  

SBC = ln {RSS/n} + (p+d+q) ln (n)/n, where RSS = 
residual sum of squares, n is sample size, and (p+d+q) the 
number of parameters.  

Having investigation the main feature of sorghum 
production data for 1960 – 2015 in an attempt the lay the 
foundation for choice of the appropriate method of fitting a 
model which best fits the data, and having conclude that the 
as in table one is an RIMA (1, 1) model it is now time for 
fitting it to the data .i.e its parameters be will now obtained 
from sorghum production data. 

Model with high adjusted R2 indicates that the regression 
line perfectly fits the data, small value of Akaike info 
criterion is best model and Durbin-Watson around 2 
indicates no autocorrelation in the model Table (3). 

The findings have shown that between 1960 and 2015, 
Sudanese sorghum production at an annual increasing. 
Growth in production is attributed to changes in harvested 
area land. To more increase productivity growth, farmers 
should be provided with new technology, access to modern 
inputs, and adequate logistical support. 
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Autocorrelation Partial Correlation  AC PAC Q-Stat Prob 

       

*****| .    | *****| .    | 1 -0.637 -0.637 23.520 0.000 

. |*.    | ***| .    | 2 0.132 -0.460 24.545 0.000 

. | .    | **| .    | 3 0.046 -0.265 24.673 0.000 

. | .    | .*| .    | 4 -0.053 -0.184 24.847 0.000 

. | .    | .*| .    | 5 0.003 -0.176 24.847 0.000 

. | .    | .*| .    | 6 0.020 -0.148 24.872 0.000 

. | .    | . | .    | 7 0.045 0.019 25.002 0.001 

.*| .    | .*| .    | 8 -0.130 -0.100 26.123 0.001 

. |*.    | .*| .    | 9 0.118 -0.086 27.070 0.001 

.*| .    | **| .    | 10 -0.113 -0.238 27.954 0.002 

. |*.    | . |*.    | 11 0.207 0.089 31.007 0.001 

**| .    | .*| .    | 12 -0.271 -0.104 36.351 0.000 

. |**    | . |*.    | 13 0.262 0.106 41.479 0.000 

**| .    | . | .    | 14 -0.214 -0.057 44.989 0.000 

. |*.    | . | .    | 15 0.140 0.072 46.535 0.000 

.*| .    | . | .    | 16 -0.076 -0.033 46.997 0.000 

. | .    | .*| .    | 17 0.005 -0.071 46.999 0.000 

. | .    | . | .    | 18 0.070 -0.012 47.413 0.000 

.*| .    | . | .    | 19 -0.108 -0.003 48.435 0.000 

. |*.    | . | .    | 20 0.086 -0.046 49.094 0.000 

. | .    | . |*.    | 21 -0.014 0.089 49.113 0.000 

. | .    | .*| .    | 22 -0.053 -0.106 49.382 0.001 

. | .    | . | .    | 23 0.066 0.062 49.805 0.001 

. | .    | . |*.    | 24 0.034 0.079 49.920 0.001 

Figure (4).  Correlogram graph of the first difference Sudan sorghum production (1960-2015) 

Table (2).  Dukey f test first difference of Sudan sorghum production (1960-2015) 

   t-Statistic Prob.* 

Augmented Dickey-Fuller test statistic -7.550792 0.0000 

Test critical values: 1% level  -3.562669  

 5% level  -2.918778  

 10% level  -2.597285  

  

 



 American Journal of Mathematics and Statistics 2016, 6(4): 175-181 181 
 

Table (3).  Model parameter 

Variable Coefficient Std. Error t-Statistic Prob. 

D(SORGHUM(-1)) -3.322081 0.439965 -7.55079 0.0000 

D(SORGHUM(-1),2) 1.198036 0.329272 3.638445 0.0007 

D(SORGHUM(-2),2) 0.341042 0.154784 2.203346 0.0324 

C 224.461 134.9889 1.662811 0.1029 

R-squared 0.87356 Mean dependent var -16.5962 

Adjusted R-squared 0.865658 S.D. dependent var 2614.65 

S.E. of regression 958.3413 Akaike info criterion 16.64209 

Sum squared resid 44084064 Schwarz criterion 16.79218 

Log likelihood -428.6943 Hannan-Quinn criter. 16.69963 

F-statistic 110.5423 Durbin-Watson stat 2.073076 

Prob(F-statistic) 0.0000 

    

Table (4).  Show Sorghum production forecasting 

Year Production change rate Year Production change rate 

2016 5870 6.30% 2024 6656 1.23% 

2017 6113 3.98% 2025 6744 1.30% 

2018 6109 -0.07% 2026 6829 1.24% 

2019 6247 2.21% 2027 6915 1.24% 

2020 6303 0.89% 2028 7001 1.23% 

2021 6406 1.61% 2029 7087 1.21% 

2022 6482 1.17% 2030 7173 1.20% 

2023 6574 1.40% 
   

 

4. Conclusions 
The forecasting findings have shown that between 1960 

and 2015, Sudanese sorghum production at an annual 
increasing. Growth in production is attributed to changes in 
harvested area land. For more increase productivity growth, 
farmers should be provided with new technology, access to 
modern inputs, and sufficient logistical support. 
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