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Abstract  A size-biased Poisson-Sujatha distribution (SBPSD) has been proposed by size-biasing the Poisson-Sujatha 
distribution (PSD) of Shanker (2016 b), a Poisson mixture of Sujatha distribution introduced by Shanker (2016 a). The first 
four moments about origin and moments about mean have been obtained and hence expressions for coefficient of variation 
(C.V.), skewness, kurtosis and index of dispersion have been given. The estimation of its parameter has been discussed using 
maximum likelihood estimation and method of moments. Three examples of real data-sets have been presented to test the 
goodness of fit of SBPSD over size-biased Poisson distribution (SBPD) and size-biased Poisson-Lindley distribution 
(SBPLD). 
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1. Introduction 
Size-biased distributions are a particular case of weighted 

distributions which arise naturally in practice when 
observations from a sample are recorded with probability 
proportional to some measure of unit size. In field 
applications, size-biased distributions can arise either 
because individuals are sampled with unequal probability by 
design or because of unequal detection probability. 
Size-biased distributions come into play when organisms 
occur in groups, and group size influences the probability of 
detection. Fisher (1934) firstly introduced these distributions 
to model ascertainment biases which were later formalized 
by Rao (1965) in a unifying theory for problems where the 
observations fall in non-experimental, non-replicated and 
non-random categories. Size-biased distributions have 
applications in environmental science, econometrics, social 
science, biomedical science, human demography, ecology, 
geology, forestry etc. Van Duesen (1986) has detailed study 
about the applications of size-biased distributions for fitting 
distributions of diameter at breast height (DBH) data arising 
from horizontal point sampling (HPS). Later, Lappi and 
Bailey (1987) have applied size-biased distributions to 
analyze HPS diameter increment data. The applications of 
size-biased distributions to  the analysis  of data relating to  
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human population and ecology can be found in Patil and Rao 
(1977, 1978). A number of research have been done relating 
to size-biased distributions and their applications in different 
fields of knowledge by different researchers including 
Scheaffer (1972), Patil and Ord (1976), Singh and Maddala 
(1976), Patil (1981), McDonald (1984), Gove (2000, 2003), 
Correa and Wolfson (2007), Drummer and McDonald 
(1987), Ducey (2009), Alavi and Chinipardaz (2009), Mir 
and Ahmad (2009), Ducey and Gove (2015), are some 
among others. 

Let a random variable X  has probability distribution 
( )0 ; ; 0,1, 2,..., 0P x xθ θ= > . If sample units are 

weighted or selected with probability proportional to xα , 
then the corresponding size-biased distribution of order α  
is given by its probability mass function 
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∞

=
′ = =∑ . When 1α = , 

the distribution is known as simple size-biased distribution 
and is applicable for size-biased sampling and for 2α = , 
the distribution is known as area-biased distribution and is 
applicable for area-biased sampling. 

The Poisson-Sujatha distribution (PSD) having 
probability mass function (p.m.f.) 
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has been introduced by Shanker (2016 b) for modeling count 
data in various fields of knowledge. Its various properties, 
estimation of parameter and applications has been discussed 
in detail by Shanker (2016 b) and shown that it is better than 

Poisson and Poisson-Lindley distributions. Shanker and 
Hagos (2016) has detailed study about the applications of 
PSD for modeling count data-sets from ecology, genetics 
and other areas of biological sciences and concluded that in 
most of the data-sets it gives better fit that Poisson and 
Poisson-Lindley distributions. 

The PSD arises from the Poisson distribution when its 
parameter λ  follows Sujatha distribution introduced by 
Shanker (2016 a) with probability density function (p.d.f.) 
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The p.m.f. of the size-biased Poisson-Sujatha distribution (SBPSD) with parameter θ  can be obtained as 
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 is the mean of the PSD with p.m.f. (1.1). 

The p.m.f. of SBPSD can also be obtained from the size-biased Poisson distribution (SPBD) with p.m.f. 
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when its parameter λ  follows size-biased Sujatha distribution (SBSD) with p.d.f. 
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which is the p.m.f. of SBPSD. 
It would be recalled that the p.m.f. of size-biased Poisson-Lindley distribution (SBPLD) given by  

( ) ( )
( )

3

2 2

2
; 1,2,3,...,; 0

2 1 x

x x
P X x x

θθ θ
θ θ +

+ +
= = = >

+ +
                     (1.7) 

 



 American Journal of Mathematics and Statistics 2016, 6(4): 145-154 147 
 

has been introduced by Ghitany and Mutairi (2008), which is a size-biased version of Poisson-Lindley distribution introduced 
by Sankaran (1970). Ghitany and Mutairi (2008) have discussed its various mathematical and statistical properties, estimation 
of the parameter using maximum likelihood estimation and the method of moments, and goodness of fit. Shanker et al (2015) 
has detailed study on the applications of size-biased Poisson-Lindley distribution (SBPLD) for modeling data on 
thunderstorms and observed that in most data – sets, SBPLD gives better fit than size-biased Poisson distribution (SBPD). 

The graphs of the probability mass functions of SBPSD and SBPLD for selected values of their parameter θ  are shown in 
figure 1. 

  

 

Figure 1.  Graphs of pmf of SBPSD and SBPLD for selected values of the parameter θ  

2. Moments  
Using (1.6), the r th factorial moment about origin of the SBPSD (1.3) can be obtained as 
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Using gamma integral and a little algebraic simplification, the r th factorial moment about origin of SBPSD (1.3) can be 
obtained as 
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Taking 1, 2,3,and 4r =  in (2.1), the first four factorial moments about origin can be obtained and using the relationship 
between moments about origin and factorial moments about origin, the first four moments about origin of the SBPSD (1.3) 
are thus obtained as 
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Now, using the relationship between moments about mean and the moments about origin, the moments about mean of the 
SBPSD (1.3) are thus obtained as 

( )
( )

5 4 3 2

2 22 2

2 6 30 78 120 72

2 6

θ θ θ θ θ
µ

θ θ θ

+ + + + +
=

+ +
 

( )
( )

8 7 6 5 4 3 2

3 33 2

2 10 66 300 912 1896 2448 2160 864

2 6

θ θ θ θ θ θ θ θ
µ

θ θ θ

+ + + + + + + +
=

+ +
 

( )

11 10 9 8 7 6 5

4 3 2

4 44 2

22 214 1488 7284 26496 71688
2

145944 219168 234144 155520 46656

2 6

θ θ θ θ θ θ θ

θ θ θ θ
µ

θ θ θ

 + + + + + +
  + + + + + =

+ +
 

The coefficient of variation ( ).C V , coefficient of Skewness ( )1β , coefficient of Kurtosis ( )2β and index of dispersion 

( )γ  of the SBPSD (1.3) are thus obtained as  
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It can be easily verified that SBPSD is over-dispersed ( )2µ σ< , equi-dispersed ( )2µ σ= and under-dispersed for 

( ) 1.961384θ θ ∗< = > = . It should be noted that SBPLD is over-dispersed ( )2µ σ< , equi-dispersed ( )2µ σ= and 

under-dispersed for ( ) 1.671162θ θ ∗< = > = . 

To study the characteristics of 1 2 1 2, , . , ,C Vµ µ β β′ and γ  of SBPSD and SBPLD for various values of the parameter

θ , the numerical values of these characteristics have been presented in table 1. 

Table 1.  Characteristics of 1 2 1 2, , . , , andC Vµ µ β β′
 
for SBPSD and SBPLD for selected values of the parameter θ  

 Values of θ for SBPSD 

 1 2 3 4 5 6 

1 'µ  4.555556 2.571429 1.952381 1.666667 1.507317 1.407407 

2µ  7.580247 2.530612 1.346939 0.872222 0.630434 0.48834 

CV 0.604366 0.61864 0.594442 0.560357 0.526763 0.496525 

1β  1.138007 1.360076 1.554876 1.719786 1.864608 1.996131 

2β  4.820343 5.497561 6.191562 6.820256 7.394639 7.935729 

γ  1.663957 0.984127 0.689895 0.523333 0.418249 0.346979 

 
 Values of θ for SBPLD 

 1 2 3 4 5 6 

'1µ  3.666667 2.25 1.8 1.583333 1.457143 1.375 

2µ  5.555556 1.9375 1.093333 0.743056 0.556735 0.442708 

CV 0.642824 0.61864 0.580903 0.544425 0.512061 0.483901 

1β  1.318047 1.49478 1.649924 1.790721 1.921224 2.043701 

2β  5.4744 6.057232 6.599941 7.118613 7.625214 8.125813 

γ  1.515152 0.861111 0.607407 0.469298 0.382073 0.32197 

 
The graphs of coefficient of variation (C.V), coefficient of Skewness ( )1β , coefficient of Kurtosis ( )2β  

and index of 

dispersion ( )γ  of SBPSD and SBPLD are shown in figure 2 
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Figure 2.  Graphs of coefficient of variation (C.V), coefficient of Skewness ( )1β , coefficient of Kurtosis ( )2β , and index of dispersion ( )γ  for 

SBPSD and SBPLD for selected values of their parameter θ  

3. Properties of SBPSD 
3.1. Unimodality and Increasing Failure Rate 

Since 

( )
( )

( )
( ) ( )

2
1

2 2
1

2 4 51; 1 11 1
; 1 4 3 4

xP x
P x x x x

θ θθ
θ θ θ θ θ

 + + ++    = + +   + + + + + +   
 

is a deceasing function of x , ( )1 ;P x θ is log-concave. Therefore, SBPSD is unimodal, has an increasing failure rate (IFR), 
and hence increasing failure rate average (IFRA). It is new better than used in expectation (NBUE) and has decreasing mean 
residual life (DMRL). The definitions, concepts and interrelationship between these aging concepts have been discussed in 
Barlow and Proschan (1981). 

3.2. Generating Function 

Probability Generating Function: The probability generating function of the SBPSD (1.3) can be obtained as 
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Moment Generating Function: The moment generating function of the SBPSD (1.3) is thus given by 
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4. Estimation of the Parameter 
4.1. Maximum Likelihood Estimate (MLE) 

Let 1 2, ,..., nx x x  be a random sample of size n from the SBPSD (1.3) and let xf  be the observed frequency in the 

sample corresponding to ( 1, 2,3,..., )X x x k= =  such that 
1

k

x
x

f n
=

=∑ , where k  is the largest observed value having 

non-zero frequency. The likelihood function L of the SBPSD (1.3) is given by 
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The log likelihood function can be obtained as 
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The first derivative of the log likelihood function is thus given by  
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where x  is the sample mean. 

The maximum likelihood estimate (MLE), θ̂  of θ  of SBPSD (1.3) is the solution of the equation 
log 0d L
dθ

=  and is 

given by the solution of the following non-linear equation 
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Table 2.  Distribution of number of counts of sites with particles from Immunogold data 

No. of sites with 
particles 

Observed 
Frequency 

Expected Frequency 

SBPD SBPLD SBPSD 

1 
2 
3 
4 
5 

122 
50 
18 
4 
4 

111.3 
64.1 

18.5
3.5
0.6







 

119.0 
53.8 
18.0 

5.3
1.9





 

119.3 
53.4 
17.9 

5.3
2.1





 

Total 198 198.0 198.0 198.0 

ML estimate  ˆ 0.575758θ =  ˆ 4.050987θ =  ˆ 4.511904θ =  

2χ   4.64 0.43 0.32 

d.f.  1 2 2 

p-value  0.0312 0.8065 0.8521 

Table 3.  Distribution of snowshoe hares captured over 7 days  

No. times hares 
caught 

Observed 
Frequency 

Expected Frequency 

SBPD SBPLD SBPSD 

1 
2 
3 
4 
5 

184 
55 
14 
4 
4 

170.6 
72.5 

15.4
2.2
0.3







 

177.3 
62.5 

16.4
3.8
1.0







 

177.5 
62.3 

16.4
3.8
1.0







 

Total 261 261.0 261.0 261.0 

ML estimate  ˆ 0.425287θ =  ˆ 5.351256θ =  ˆ 5.799735θ =  

2χ   6.22 1.18 1.11 

d.f.  1 1 1 

p-value  0.0126 0.2773 0.2921 

Table 4.  Number of counts of pairs of running shoes owned by 60 members of an athletics club, reported by Simonoff (2003, p. 100) 

Number of pairs of 
running shoes 

Observed 
frequency 

Expected Frequency 

SBPD SBPLD SBPSD 

1 18 15.0 20.3 20.0 
2 18 20.8 17.4 17.5 

3 12 14.4 10.9 11.1 

4 
5 

7 
5 

6.6
3.2





 5.9 
5.5 

6.0 
5.4 

Total 60 60.0 60.0 60.0 

ML Estimate  ˆ 1.383333θ =  ˆ 1.818978θ =  ˆ 2.208089θ =  

2χ  
 1.87 0.64 0.47 

d.f.  2 3 3 

P-value  0.3926 0.8872 0.9254 
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The non-linear equation (4.1.1) can be solved by any 
numerical iteration methods such as Newton- Raphson 
method, Bisection method, Regula –Falsi method etc. In the 
present paper, Newton-Raphson method has been used to 
solve the above non-linear equation to find maximum MLE 
of the parameter. 

4.2. Method of Moment Estimate (MOME) 
Equating the population mean to the corresponding 

sample mean, the method of moment estimate (MOME) θ  
of θ  of SBPSD (1.3) is the solution of the following cubic 
equation in θ  

( ) ( ) ( )3 21 2 2 6 2 24 0x x xθ θ θ− + − + − + =  

where x  is the sample mean. 

5. Goodness of Fit 
In this section the goodness of fit of SBPSD, SBPLD and 

SBPD has been presented for three count data- sets. The 
fitting of these distributions are based on maximum 
likelihood estimates of the parameter. The first data-set is 
immunogold assay data of Cullen et al. (1990) regarding the 
distribution of number of counts of sites with particles from 
immunogold assay data, the second data-set is animal 
abundance data of Keith and Meslow (1968) regarding the 
distribution of snowshoe hares captured over 7 days, and the 
third data-set is number of counts of pairs of running shoes 
owned by 60 members of an athletics club, reported by 
Simonoff (2003). 

6. Concluding Remarks 
A size-biased Poisson mixture of size-biased Sujatha 

distribution named, “size-biased Poisson-Sujatha 
distribution (SBPSD)” has been proposed by size-biasing the 
Poisson-Sujatha distribution (PSD) of Shanker (2016 b), a 
Poisson mixture of Sujatha distribution introduced by 
Shanker (2016 a). Its moments and other distributional 
properties including moments, coefficient of variation, 
skewness, kurtosis and index of dispersion have been studied. 
The estimation of its parameter has been discussed using 
maximum likelihood estimation and method of moments. 
Three examples of real data-sets have been presented to test 
the goodness of fit of SBPSD over size-biased Poisson 
distribution (SBPD) and size-biased Poisson-Lindley 
distribution (SBPLD). 
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