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Abstract  In this paper a new one parameter continuous distribution named, ‘Amarendra Distribution’ having 
monotonically increasing hazard rate for modeling lifetime data, has been suggested. Its first four moments about origin and 
moments about mean have been obtained and expressions for coefficient of variation, skewness and kurtosis have been given. 
Various other characteristics such as its hazard rate function, mean residual life function, stochastic ordering, mean deviations, 
Bonferroni and Lorenz curves have been discussed. The condition under which Amarendra distribution is over-dispersed, 
equi-dispersed, and under-dispersed has been given along with conditions under which Akash, Shanker, Sujatha, Lindley and 
exponential distributions are over-dispersed, equi-dispersed, and under-dispersed. Estimation of its parameter has been 
discussed using method of maximum likelihood and the method of moments. The applicability and the goodness of fit of the 
proposed distribution over one parameter Akash, Shanker, Sujatha, Lindley and exponential distributions have been 
illustrated with two real lifetime data- sets from medical science and engineering. 

Keywords  Lindley distribution, Akash distribution, Shanker distribution, Sujatha distribution, Mathematical and 
statistical properties, Estimation of parameter, Goodness of fit 

 

1. Introduction 
The analyzing and modeling of lifetime data are crucial in 

almost all applied sciences including biomedical science, 
engineering, insurance, finance, amongst others. A number 
of lifetime distributions for modeling lifetime data such as 
Akash, Shanker, Sujatha, Lindley, exponential, gamma, 
lognormal, and Weibull are available in statistical literature. 
The Akash, Shanker, Sujatha, Lindley, exponential, and 
Weibull distributions are more popular than the gamma and 
the lognormal distributions because the survival functions of 
the gamma and the lognormal distributions cannot be 
expressed in closed forms and both require numerical 
integration. Akash, Shanker, Sujatha, Lindley, and 
exponential distributions consists of one parameter and 
Akash, Shanker, Sujatha, and Lindley distributions have 
advantage over exponential distribution that the exponential 
distribution has constant hazard rate whereas Akash, 
Shanker, Sujatha, and Lindley distributions have 
monotonically increasing hazard rate. Further, it has been 
shown by Shanker (2015 a, 2015 b, 2015 c) that the nature of 
Akash, Shanker, and Sujatha distributions are more flexible 
than Lindley and exponential distributions for modeling 
lifetime data. 

The probability density function (p.d.f.) and the 
cumulative distribution function (c.d.f.) of Lindley (1958)  
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distribution are given by  
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It can be easily shown that the density (1.1) is a 
two-component mixture of an exponential distribution with 
scale parameter θ  and a gamma distribution having shape 
parameter 2 and a scale parameter θ  with their mixing 

proportions 
1

θ
θ +

 and 
1

1θ +
 respectively. Ghitany et al 

(2008) have discussed various properties of this distribution 
and showed that in many ways (1.1) provides a better model 
for some applications than the exponential distribution. The 
Lindley distribution has been modified, extended, 
generalized suiting their applications in different areas of 
knowledge by many researchers including Hussain ( 2006), 
Zakerzadeh and Dolati (2009), Nadarajah et al (2011), Deniz 
and Ojeda (2011), Bakouch et al (2012), Shanker and Mishra 
(2013 a, 2013 b), Shanker and Amanuel (2013),  Shanker et 
al (2013), Elbatal et al (2013), Ghitany et al (2013), Merovci 
(2013), Liyanage and Pararai (2014), Ashour and Eltehiwy 
(2014), Oluyede and Yang (2014), Singh et al (2014), 
Sharma et al (2015), Shanker et al (2015 a, 2015 b), Alkarni 
(2015), Pararai et al (2015), Abouammoh et al (2015) are 
some among others. 

The probability density function (p.d.f.) and the 
cumulative distribution function (c.d.f.) of Akash 
distribution introduced by Shanker (2015 a) are given by  
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Shanker (2015 a) has shown that the density (1.3) is a 
two-component mixture of an exponential distribution with 
scale parameter θ  and a gamma distribution having shape 
parameter 3 and a scale parameter θ  with their mixing 

proportions 
2

2 2
θ

θ +
 and 

2

2
2θ +

 respectively. Shanker 

(2015 a) has discussed its various mathematical and 
statistical properties including its shape, moment generating 
function, moments, skewness, kurtosis, hazard rate function, 
mean residual life function, stochastic orderings, mean 
deviations, distribution of order statistics, Bonferroni and 
Lorenz curves, Renyi entropy measure, stress-strength 
reliability, some amongst others. Shanker (2016 a) has 
obtained Poisson mixture of Akash distribution named, 
Poisson-Akash distribution (PAD) and discussed its various 
mathematical and statistical properties, estimation of its 
parameter and applications for various count data-sets. 
Shanker et al (2015 c) has detailed and critical study about 
modeling and analyzing lifetime data from various fields of 
knowledge using one parameter Akash, Lindley and 
exponential distributions. Further, Shanker (2016 b, 2016 c) 
has also obtained the size-biased and zero-truncated versions 
of PAD, derived their important mathematical and statistical 
properties, and discussed the estimation of parameter and 
applications for count-data-sets. 

The probability density function (p.d.f.) and the 
cumulative distribution function (c.d.f.) of Shanker 
distribution introduced by Shanker (2015 b) are given by  
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Shanker (2015 b) has shown that the density (1.5) is a 
two-component mixture of an exponential distribution with 
scale parameter θ  and a gamma distribution having shape 
parameter 2 and a scale parameter θ  with their mixing 

proportions 
2

2 1
θ

θ +
 and 2

1
1θ +

 respectively. Shanker 

(2015 b) has discussed its various mathematical and 
statistical properties including its shape, moment generating 
function, moments, skewness, kurtosis, hazard rate function, 
mean residual life function, stochastic orderings, mean 
deviations, distribution of order statistics, Bonferroni and 
Lorenz curves, Renyi entropy measure, stress-strength 
reliability , some amongst others. Further, Shanker (2016 d) 
has obtained Poisson mixture of Shanker distribution named 

Poisson-Shanker distribution (PSD) and discussed its 
various mathematical and statistical properties, estimation of 
its parameter and applications for various count data-sets. 
Shanker and Hagos (2016 a, 2016 b) have obtained the 
size-biased and zero-truncated versions of Poisson-Shanker 
distribution (PSD), derived their interesting mathematical 
and statistical properties, discussed the estimation of 
parameter and applications for count data-sets from different 
fields of knowledge. 

The probability density function (p.d.f.) and cumulative 
distribution function (c.d.f.) of Sujatha distribution 
introduced by Shanker (2015 c) are given by 
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Shanker (2015 c) has shown that the density (1.7) is a 
three-component mixture of an exponential distribution with 
scale parameter θ , a gamma distribution having shape 
parameter 2 and a scale parameter θ , and a gamma 
distribution having shape parameter 3 and a scale parameter 

θ  with their mixing proportions 
2

2 2
θ

θ θ+ +
, 

2 2
θ

θ θ+ +
 

and 
2

2
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 respectively. Shanker (2015 c) has 

discussed its various mathematical and statistical properties 
including its shape, moment generating function, moments, 
skewness, kurtosis, hazard rate function, mean residual life 
function, stochastic orderings, mean deviations, distribution 
of order statistics, Bonferroni and Lorenz curves, Renyi 
entropy measure, stress-strength reliability, some amongst 
others. Further, Shanker (2016 e) has obtained Poisson 
mixture of Sujatha distribution named, Poisson-Sujatha 
distribution (PSD) and discussed its various mathematical 
and statistical properties, estimation of its parameter and 
applications for various count data-sets. Shanker and Hagos 
(2016 c, 2016 d) have obtained the size-biased and 
zero-truncated versions of Poisson-Sujatha distribution 
(PSD), derived their interesting mathematical and statistical 
properties, discussed the estimation of parameter and 
applications for count data-sets. Shanker and Hagos (2016 e) 
has also done an extensive study on comparative study of 
zero-truncated Poisson, Poisson-Lindley and 
Poisson-Sujatha distribution and shown that in most of the 
data-sets zero-truncated Poisson-Sujatha distribution gives 
much closer fit. 

Although Akash, Shanker, Sujatha, Lindley, and 
exponential distributions have been used to model various 
lifetime data from biomedical science and engineering, there 
are many situations where these distributions may not be 
suitable from applied and theoretical point of view. 
Therefore, to obtain a new distribution which is more 
flexible than the Akash, Shanker, Sujatha, Lindley and 
exponential distributions, we introduced a distribution by 
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considering a four component mixture of exponential ( )θ , a 

gamma ( )2,θ , a gamma ( )3,θ  and a gamma ( )4,θ  

with their mixing proportions
3
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The probability density function (p.d.f.) of a new one 
parameter lifetime distribution can be introduced as  
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We would name this distribution as ‘Amarendra Distributiuon’. The corresponding cumulative distribution function of 
Amarendra distribution (1.9) can be obtained as 
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The graphs of the p.d.f. and the c.d.f. of Amarendra distribution (1.9) for different values of θ  are shown in figures 1 and 
2. 

 

 

Figure 1.  Graph of the pdf of Amarendra distribution for different values of parameter θ  

 

Figure 2.  Graph of the cdf of Amarendra distribution for different values of parameter θ  
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2. Moment Generating Function, Moments and Related Measures  
The moment generating function of Amarendra distribution (1.9) can be obtained as 
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and thus the first four moments about origin are given by 
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Using the relationship between moments about mean and the moments about origin, the moments about mean of the 
Amarendra distribution (1.9) are obtained as   
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The coefficient of variation ( ).C V , coefficient of skewness ( )1β , coefficient of kurtosis ( )2β , and index of 

dispersion ( )γ  of Amarendra distribution (1.9) are thus obtained as 
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The condition under which Amarendra distribution is over-dispersed, equi-dispersed, and under-dispersed has been given 
along with conditions under which Akash, Shanker, Sujatha, Lindley and exponential distributions are over-dispersed, 
equi-dispersed, and under-dispersed in table 1. 

Table 1.  Over-dispersion, equi-dispersion and under-dispersion of Amarendra, Akash, Shanker, Sujatha, Lindley and exponential distributions for 
varying values of their parameter θ 

Distribution 
Over-dispersion 

( )2µ σ<  

Equi-dispersion 

( )2µ σ=  

Under-dispersion 

( )2µ σ>  

Amarendra 1.525763580<θ  1.525763580=θ  1.525763580θ >  

Akash 1.515400063θ <  1.515400063θ =  1.515400063θ >  

Shanker 1.171535555<θ  1.171535555θ =  1.171535555θ >  

Sujatha 1.364271174θ <  1.364271174θ =  1.364271174θ >  

Lindley 1.170086487θ <  1.170086487θ =  1.170086487θ >  

Exponential 1<θ  1=θ  1>θ  

3. Mathematical and Statistical Properties 
3.1. Hazard Rate Function and Mean Residual life Function 

Let X  be a continuous random variable with p.d.f. ( )f x  and c.d.f. ( )F x . The hazard rate function (also known as 

the failure rate function) and the mean residual life function of X  are respectively defined as  
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The corresponding hazard rate function, ( )h x  and the mean residual life function, ( )m x  of Amarendra distribution 
(1.9) are thus given by  
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of ( )h x
 

and ( )m x  of Amarendra distribution (1.9) for different values of its parameter are shown in figures 3 and 4, 
respectively. 

 

Figure 3.  Graph of hazard rate function of Amarendra distribution for different values of parameter θ  

   

Figure 4.  Graph of mean residual life function of Amarendra distribution for different values of parameter θ  
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It is also obvious from the graphs of ( )h x  and ( )m x  that ( )h x  is monotonically increasing function of x  and θ , 

whereas ( )m x  is monotonically decreasing function of x  and θ .  

3.2. Stochastic Orderings 
Stochastic ordering of positive continuous random variables is an important tool for judging the comparative behaviour of 

continuous distributions. A random variable X  is said to be smaller than a random variable Y in the  

(i) stochastic order ( )stX Y≤  if ( ) ( )X YF x F x≥ for all x  

(ii) hazard rate order ( )hrX Y≤ if ( ) ( )X Yh x h x≥  for all x  

(iii) mean residual life order ( )mrlX Y≤ if ( ) ( )X Ym x m x≤ for all x  

(iv) likelihood ratio order ( )lrX Y≤ if 
( )
( )

X

Y

f x
f x

 decreases in x . 

The following results due to Shaked and Shanthikumar (1994) are well known for establishing stochastic ordering of 
distributions 

lr hr mrlX Y X Y X Y≤ ⇒ ≤ ⇒ ≤  

stX Y≤
⇓  

The Amarendra distribution is ordered with respect to the strongest ‘likelihood ratio’ ordering as shown in the following 
theorem: 

Theorem: Let X ∼  Amarendra distribution ( )1θ  and Y ∼  Amarendra distribution ( )2θ . If 1 2θ θ> , then 

lrX Y≤  and hence hrX Y≤ , mrlX Y≤  and stX Y≤ . 
Proof: We have  
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Thus for 1 2θ θ> , ( )
( )log 0X

Y

f x
f x

d
dx

< . This means that lrX Y≤  and hence hrX Y≤ , mrlX Y≤ and stX Y≤ . 

3.3. Mean Deviations 

The amount of scatter in a population is evidently measured to some extent by the totality of deviations from the mean and 
the median. These are known as the mean deviation about the mean and the mean deviation about the median and are defined 
by 

( ) ( )1
0

X x f x dxδ µ
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= −∫  and ( ) ( )2
0

X x M f x dxδ
∞

= −∫ , respectively, 

where ( )E Xµ =  and ( )Median M X= .  

The measures, ( )1 Xδ  and ( )2 Xδ , can be calculated using the following relationships 
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Using p.d.f. (1.9) and expression for the mean of Amarendra distribution, we get 
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Using expressions (3.3.1), (3.3.2), (3.3.3) and (3.3.4), the mean deviation about mean, ( )1 Xδ  and the mean deviation 

about median, ( )2 Xδ  of Amarendra distribution (1.9), after some algebraic simplifications, can be obtained as 

 ( )
( ) ( ) ( )

( )
3 3 2 2 2

1 3 2

2 1 2 3 2 1 6 3 1 24

2 6

e
X

θ µθ µ µ µ θ µ µ θ µ
δ

θ θ θ θ

− + + + + + + + + + =
+ + +

            (3.3.5) 

and 

( )

( ) ( )
( ) ( )

( )

4 4 3 2 3 3 2

2 2

2 3 2

4 3 2 1
2

2 6 1 6 4 1 24

2 6

M
M M M M M M M

e
M M M

X

θ
θ θ

θ θ
δ µ

θ θ θ θ

−
 + + + + + + +
 
 + + + + + + = −

+ + +

           (3.3.6) 
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3.4. Bonferroni and Lorenz Curves 

The Bonferroni and Lorenz curves (Bonferroni, 1930) and Bonferroni and Gini indices have applications not only in 
economics to study income and poverty, but also in other fields like reliability, demography, insurance and medicine. The 
Bonferroni and Lorenz curves are defined as 

( ) ( ) ( ) ( ) ( )
0 0

1 1 1q

q q

B p x f x dx x f x dx x f x dx x f x dx
p p p

µ
µ µ µ

∞ ∞ ∞   
= = − = −   

      
∫ ∫ ∫ ∫      (3.4.1) 

and         ( ) ( ) ( ) ( ) ( )
0 0

1 1 1q

q q

L p x f x dx x f x dx x f x dx x f x dxµ
µ µ µ

∞ ∞ ∞   
= = − = −   

      
∫ ∫ ∫ ∫       (3.4.2) 

respectively or equivalently 

( ) ( )1

0

1 p

B p F x dx
pµ

−= ∫                                (3.4.3) 

and                                    ( ) ( )1

0

1 p

L p F x dx
µ

−= ∫                                 (3.4.4) 

respectively, where ( )E Xµ =  and ( )1q F p−= . 

The Bonferroni and Gini indices are thus defined as 

( )
1

0

1B B p dp= − ∫                                  (3.4.5) 

and                                      ( )
1

0

1 2G L p dp= − ∫                                 (3.4.6) 

respectively. 
Using p.d.f. of Amarendra distribution (1.9), we get  

( )

( ) ( ) ( )
( )

( )

4 4 3 2 3 3 2 2 2

5 3 2

4 3 2 1 2 6 1

6 4 1 24
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q

q

q q q q q q q q q

q
x f x dx e θ

θ θ θ

θ

θ θ θ θ

∞
−

  + + + + + + + + + +   
 + + +  =  

+ + + 
 
  

∫       (3.4.7) 

Now using equation (3.4.7) in (3.4.1) and (3.4.2), we get  

( )

( ) ( ) ( )
( )

4 4 3 2 3 3 2 2 2

3 2

4 3 2 1 2 6 1

6 4 1 241 1
2 6 24

q
q q q q q q q q q

e
q

B p
p

θ
θ θ θ

θ
θ θ θ

−
  + + + + + + + + + +   
 + + +  = − 

+ + + 
 
  

    (3.4.8) 

and          
( )

( ) ( ) ( )
( )

4 4 3 2 3 3 2 2 2

3 2

4 3 2 1 2 6 1

6 4 1 24
1

2 6 24

q
q q q q q q q q q

e
q

L p

θ
θ θ θ

θ
θ θ θ

−
 + + + + + + + + + + 
 
+ + +  = −

+ + +

    (3.4.9) 

Now using equations (3.4.8) and (3.4.9) in (3.4.5) and (3.4.6), the Bonferroni and Gini indices of Amarendra distribution 
(1.9) are obtained as 
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( ) ( ) ( )
( )

4 4 3 2 3 3 2 2 2

3 2

4 3 2 1 2 6 1

6 4 1 24
1

2 6 24

q
q q q q q q q q q

e
q

B

θ
θ θ θ

θ
θ θ θ

−
 + + + + + + + + + + 
 
+ + +  = −
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       (3.4.10) 

 

( ) ( ) ( )
( )

4 4 3 2 3 3 2 2 2

3 2

4 3 2 1 2 6 1
2
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1

2 6 24

q
q q q q q q q q q

e
q

G

θ
θ θ θ

θ
θ θ θ

−
 + + + + + + + + + + 
 
+ + +  = − +

+ + +

    (3.4.11) 

4. Estimation of the Parameter 
4.1. Maximum Likelihood Estimation (MLE) of the Parameter 

Let ( )1 2 3, , , ... , nx x x x  be a random sample of size n  from Amarendra distribution (1.9). The likelihood function, L
of (1.9) is given by 

( )
4

2 3
3 2

1

1
2 6

n n
n x

i i i
i

L x x x e θθ
θ θ θ

−

=

 
= + + + + + + 

∏  

The natural log likelihood function thus obtained as 

( )
4

2 3
3 2

1
ln ln ln 1

2 6

n

i i i
i

L n x x x n xθ θ
θ θ θ =

 
= + + + + − + + + 

∑  

where x  is the sample mean. Now   

( )2

3 2

3 2 2ln 4
2 6

nd L n nx
d

θ θ

θ θ θ θ θ

+ +
= − −

+ + +
 

The maximum likelihood estimate, θ̂  of θ  is the solution of the equation ln 0d L
dθ

=  and is given by the solution of the 

following non linear equation 

( ) ( ) ( )4 3 21 2 1 6 1 24 0x x x xθ θ θ θ+ − + − + − − =                     (4.1.1) 

4.2. Method of Moment Estimation (MOME) of the Parameter 

Let ( )1 2 3, , , ... , nx x x x  be a random sample of size n  from Amarendra distribution (1.9). Equating the first population 

moment about origin to the corresponding sample mean x , the method of moment (MOM) estimate θ  of θ  of 
Amarendra distribution is found as the solution of the same non-linear equation (4.1.1), confirming that the ML estimate and 
MOM estimate of θ  are identical.    

5. Applications and Goodness of Fit 
A number of data-sets have been fitted using Amarendra distribution to test its goodness of fit over one parameter Akash, 

Shanker, Sujatha, Lindley and exponential distributions. In this section, we present the fitting of Amarendra distribution to 
two real data -sets using maximum likelihood estimate and the  goodness of fit is compared with the one parameter Akash, 
Shanker, Sujatha, Lindley and exponential distributions and it is clear from the fitting of these distributions that Amarendra 
distribution provides better fit for modeling lifetime data. 

In order to compare the goodness of fit of these distributions, 2 ln L− , AIC (Akaike Information Criterion), AICC 
(Akaike Information Criterion Corrected), BIC (Bayesian Information Criterion), and K-S Statistics ( Kolmogorov-Smirnov 
Statistics) for two real data sets have been computed and presented in table 2. The formulae for computing AIC, AICC, BIC, 
and K-S Statistics are as follows:  
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2 ln 2AIC L k= − + , 
( )

( )
2 1

1
k k

AICC AIC
n k

+
= +

− −
, 2 ln lnBIC L k n= − +  and 

( ) ( )0Sup n
x

D F x F x= − , where k = the number of parameters, n = the sample size, and ( )nF x = the empirical 

distribution function. The best distribution is the distribution which corresponds to the lower values of 2 ln L− , AIC, AICC, 
BIC, and K-S statistics  

Data set 1: The first data set represents the lifetime’s data relating to relief times (in minutes) of 20 patients receiving an 
analgesic and reported by Gross and Clark (1975, P. 105). The data are as follows: 

1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 

1.5, 1.2, 1.4, 3.0, 1.7, 2.3, 1.6, 2.0  

Data set 2: The second data set is the strength data of glass of the aircraft window reported by Fuller et al (1994): 

18.83,    20.80,    21.657,    23.03,     23.23,    24.05,    24.321,    25.50,      25.52,     25.80,     

26.69,   26.77,    26.78,     27.05,      27.67,    29.90,    31.11,     33.20,      33.73,      33.76, 

33.89,    34.76,    35.75,     35.91,      36.98,    37.08,    37.09,     39.58,     44.045,     45.29,    45.381 

Table 2.  MLE’s, 2 ln L− , AIC, AICC, BIC, and K-S Statistics of the fitted distributions of data -sets 1 and 2 

 Model Parameter 
estimate 2 ln− L  AIC AICC BIC K-S statistic 

Data 1 

Amarendra 
Sujatha 
Shanker 
Akash 

1.4807 
1.1367 
0.8039 
1.1569 

55.64 
57.50 
59.70 
59.50 

57.64 
59.50 
61.80 
61.70 

57.86 
59.72 
62.00 
61.72 

58.63 
60.49 
62.80 
61.72 

0.286 
0.309 
0.315 
0.320 

Lindley 0.8161 60.50 62.50 62.72 63.49 0.341 

Exponential 0.5263 65.67 67.67 67.90 68.67 0.389 

Data 2 

Amarendra 
Akash 
Sujatha 
Shanker 

0.1283 
0.0971 
0.0956 
0.0647 

233.41 
240.70 
241.50 
252.30 

235.41 
242.70 
243.50 
254.30 

235.55 
242.80 
243.64 
254.50 

236.84 
244.10 
244.94 
255.80 

0.225 
0.266 
0.270 
0.326 

Lindley 0.0629 253.99 255.99 256.13 257.42 0.333 

Exponential 0.0324 274.53 276.53 276.67 277.96 0.426 

 

It is obvious from above table that Amarendra distribution 
gives much closer fit than Akash, Shanker, Sujatha, Lindley 
and exponential distributions and hence it may be preferred 
over Akash, Shanker, Sujatha, Lindley and exponential 
distributions for modeling various lifetime data from 
medical science and engineering.  

6. Concluding Remarks 
A new lifetime distribution named, ‘Amarendra 

distribution’ has been introduced to model lifetime data. Its 
moment generating function, moments about origin and 
moments about mean and expressions for skewness and 
kurtosis have been given. Various mathematical and 
statistical properties of the distribution such as its hazard rate 
function, mean residual life function, stochastic ordering, 
mean deviations, Bonferroni and Lorenz curves, have been 
discussed. The method of maximum likelihood and the 
method of moments for estimating its parameter have also 
been discussed. Two examples of real lifetime data- sets 

have been presented to show the applications and goodness 
of fit of Amarendra distribution over one parameter Akash, 
Shanker, Sujatha, Lindley and exponential distributions. 
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teacher and supervisor Professor Amarendra Mishra, 
Department of Statistics, Patna University, Patna, India. 
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