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Abstract  In this paper firstly a general expression for the rth factorial moment of size biased Poisson-Lindley distribution 
(SBPLD) has been obtained and hence its first four moments about origin have been given. The expression for moment 
generating function and the first inverse moment of SBPLD has also been obtained. To test the goodness of fit of SBPLD over 
size-biased Poisson distribution (SBPD) for modeling thunderstorms, SBPLD has been fitted to a number of data sets related 
to thunderstorms using maximum likelihood estimate and it has been found that SBPLD gives much closer fit than SBPD, and 
thus SBPLD can be considered as an important alternative tool for modeling thunderstorms. 
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1. Introduction 
Size-biased distributions arise in practice when 

observations from a sample are recorded with unequal 
probabilities, having probability proportional to some 
measure of unit size. These distributions were firstly 
introduced by Fisher (1934) to model ascertainment biases 
which were later formalized by Rao (1965) in a unifying 
theory. Van Deusen (1986) discussed size-biased 
distribution theory and applied it to fitting distributions of 
diameter at breast height (DBH) data arising from horizontal 
point sampling (HPS). Later, Lappi and Bailey (1987) used 
size-biased distributions to analyze HPS diameter increment 
data. Most of the statistical applications of size biased 
distributions, especially to the analysis of data relating to 
human population and ecology, can be found in Patil and 
Rao (1977, 1978). Some of the recent results on size-biased 
distributions pertaining to parameter estimation in forestry 
with special emphasis on Weibull family have been reviewed 
by Gove (2003). 

If a random variable X have distribution f(x;θ ) then a 
simple size-biased distribution is defined by its probability 
function f *(x; θ ) = ( ) 1;x f x θ µ′ , where 1µ′  is the 
mean of the original distribution.  

In this paper, a general expression for the rth     
factorial moment of size-biased Poisson-Lindley distribution  
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(SBPLD) has been obtained and hence its first four moments 
about origin has been derived. The expression for moment 
generating function and the first inverse moment has also 
been obtained. It seems that no work has been done on the 
applications of SBPLD to model thunderstorms. The SBPLD 
has been fitted to some data sets related to thunderstorms to 
test its goodness of fit over SBPD and it has been found that 
SBPLD provides much closer fit than SBPD. This shows that 
the SBPLD is more flexible than SBPD for modeling 
thunderstorms. 

2. Size-Biased Poisson-Lindley 
Distribution (SBPLD) 

A size biased Poisson-Lindley distribution (SBPLD) 
given by its probability mass function (pmf) 
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has been obtained by Ghitany and Mutairi (2008) by size 
biasing the Poisson -Lindley distribution of Sankaran (1970) 
having pmf  
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It is to be mentioned that Sankaran (1970) obtained the 
distribution (2.2) to model count data by mixing the Poisson 
distribution with the Lindley (1958) distribution having pdf 

( ) ( )
2

1 , 1
1

xf x x e θθθ
θ

−= +
+

; x > 0, θ  > 0  (2.3) 

 

mailto:shankerrama2009@gmail.com


 American Journal of Mathematics and Statistics 2015, 5(6): 354-360 355 
 

Further, it is to be noted that SBPLD can also be obtained 
by mixing size biased Poisson distribution (SBPD) having 
pmf 
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when its parameter λ  follows the size biased Lindley 
distribution (SBLD) with pdf 
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which is the size biased Poisson-Lindley distribution 
(SBPLD). 

The SBPLD has been extensively studied by Ghitany and 
Mutairi (2008) and they have discussed its various properties. 
The SBPLD has been generalized by many researchers. 
Shanker and Mishra (2015) introduced a size biased two 
parameter Poisson-Lindley distribution(SBTPPLD) by size 
biasing the two parameter Poisson-Lindley distribution of 
Shanker and Mishra (2014), which has been obtained by 
compounding Poisson distribution with a two parameter 
Lindley distribution introduced by Shanker and Mishra 
(2013 a). A size biased quasi Poisson-Lindley distribution 
has been introduced by Shanker and Mishra (2013 b) by size 
biasing a quasi Poisson-Lindley distribution of Shanker and 
Mishra (2015) ,which is the Poisson mixture of a quasi 
Lindley distribution introduced by Shanker and Mishra 
(2013 c). Shanker (2013) obtained a size biased version of 
discrete two parameter Poisson-Lindley distribution of 
Shanker et al (2012), which is a Poisson Mixture of a two 
parameter Lindley distribution for modeling waiting and 
survival times data of Shanker et al (2013). Further, Shanker 
et al (2014) obtained size biased new quasi Poisson-Lindley 
distribution by size biasing the new quasi Poisson-Lindley 
distribution of Shanker and Tekie (2014), which is a Poisson 
mixture of a new quasi Lindley distribution introduced by 
Shanker and Amanuel (2013). 

3. Moments 
The rth factorial moment of the SBPLD (2.1) can be 

obtained as 
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Taking (x+r) in place of x, we get 
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The expression within bracket is clearly ( )rλ + and 
hence we have 
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Using gamma integral and little algebraic simplification, 
we get finally a general expression for the rth factorial 
moment of the SBPLD as 
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  r = 1,2,3,…                            (3.4) 

Substituting r = 1,2,3 and 4 in (3.4), the first four factorial 
moments can be obtained and then using the relationship 
between factorial moments and moments about origin, the 
first four moments about origin of the SBPLD were obtained 
as 
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and the variance of SBPLD is obtained as 
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Generating Function: The probability generating 
function of SBPLD is given by 
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The moment generating function of SBPLD is thus 
obtained as 
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First Inverse Moment: The first inverse moment of 
SBPLD is given by  
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4. Estimation of Parameters 
4.1. Maximum Likelihood (ML) Estimates 

Let ( )1 2, , , nx x x  be a random sample of size n from 

the SBPLD (2.1). Let xf  be the observed frequency in the 

sample corresponding to X x=  ( 1, 2,3,...,x k= ) such 

that 
1

k

x
x

f n
=

=∑ , where k is the largest observed value 

having non-zero frequency. The likelihood function, L , of 
the SBPLD (2.1) is given by 
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The log likelihood function is given by 
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The maximum likelihood estimate, θ̂  of θ  is the 

solution of the equation 
log 0d L
dθ

=  and is given by 

solution of the following non-linear equation 
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where x  is the sample mean. It has been shown by Ghitany 

and Mutairi (2008) that the ML estimator θ̂  of θ is 
consistent and asymptotically normal.    

4.2. Estimates from Moments 

Let 1 2, , , nx x x  be a random sample of size n from the 
SBPLD (2.1). Equating the first moment about origin to the 
sample mean, the method of moment (MOM) estimate, θ , 
of θ  is given by 
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where x  is the sample mean. It has been shown by Ghitany 

and Mutairi (2008) that the MOM estimator θ̂  of θ  is 
positively biased, consistent and asymptotically normal. 

5. Applications of SBPLD to Model 
Thunderstorms 

The Poisson distribution is a suitable model for the 
situations where events seem to occur at random such as the 
number of customers arriving at a service point, the number 
of telephone calls arriving at an exchange , the number of 
fatal traffic accidents per week in a given state, the number of 
radioactive particle emissions per unit of time, the number of 
meteorites that collide with a test satellite during a single 
orbit, the number of organisms per unit volume of some fluid, 
the number of defects per unit of some materials, the number 
of flaws per unit length of some wire, etc. However, the 
Poisson distribution requires events to be independent- a 
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condition which is rarely satisfied completely. In 
thunderstorm activity, the occurrence of successive 
thunderstorm events (THE’s) is often dependent process 
meaning that the occurrence of a THE indicates that the 
atmosphere is unstable and the conditions are favorable for 
the formation of further thunderstorm activity. The negative 
binomial distribution (NBD) is a possible alternative to the 
Poisson distribution when successive events are possibly 
dependent [see Johnson et al, 2005]. The theoretical and 
empirical justification for using the NBD to describe THE 
activity has been fully explained and discussed by Falls et al 
(1971). Further, for fitting Poisson distribution to the count 
data equality of mean and variance should be satisfied. 
Similarly, for fitting NBD to the count data, mean should be 
less than the variance. In THE, these conditions are not fully 
satisfied.  

As a model to describe the frequencies of thunderstorms 
(TH’s), given an occurrence of THE, the size biased Poisson 
distribution (SBPD) or zero truncated Poisson distribution 
(ZTPD) can be considered. But ZTPD does not give 
satisfactory fit to THE due to the basic assumption that 
events are independent with stable probabilities. Further, 

SBPD also does not give satisfactory fit due to the reason 
that it is under- dispersed ( 2µ σ> ). 

The theoretical and empirical justification for the selection 
of the SBPLD to describe THE activity is that SBPLD is 
over-dispersed ( 2µ σ< ), equi-dispersed ( 2µ σ= ), and 

under-dispersed ( 2µ σ> ) for ( ) 1.671162θ θ ∗< = > =  
respectively. 

The data for thunderstorms activity at Cape Kennedy, 
Florida and immediate surroundings for the period January 
1957 to December 1967, reported by Carter (2001), has been 
used for showing the applications of SBPLD and SBPD to 
model thunderstorms. 

The expected frequencies according to the SBPD have 
also been given in these tables for ready comparison with 
those obtained by the SBPLD. The estimate of the parameter 
has been obtained by the maximum likelihood estimation. 

It can be seen that the SBPLD gives much closer fits than 
the SBPD and thus provides a better alternative to the SBPD 
and it can be recommended for modeling thunderstorm 
events. 

Table 5.1.  Frequencies of thunderstorm events containing X thunderstorms at Cape Kennedy for May 

 

X  
Observed frequency 

Expected frequency 

SBPD SBPLD 

1 87 83.2 85.6 

2 
3 
4 

25 
5 
3 

30.5 

5.6
0.7





 

26.6 

6.2
1.6





 

Total 120 120.0 120.0 

Estimate of parameter  θ̂ = 0.366667 θ̂ = 6.129082 

2χ   1.624 0.123 

d.f.  1 1 

p-value  0.2025 0.7258 

Table 5.2.  Frequencies of thunderstorm events containing X thunderstorms at Cape Kennedy for June 

 

X  
Observed frequency 

Expected frequency 

SBPD SBPLD 

1 182 178.2 182.5 

2 
3 
4 

55 
6 
5 

58.9 

9.7
1.2





 

52.0 

11.0
2.5





 

Total 248 248.0 248.0 

Estimate of parameter  θ̂ = 0.330645 θ̂ = 6.741400 

2χ   0.407 0.637 

d.f.  1 1 

p-value  0.5235 0.4248 
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Table 5.3.  Frequencies of thunderstorm events containing X thunderstorms at Cape Kennedy for August 

 
X  

Observed frequency 
Expected frequency 

SBPD SBPLD 

1 201 194.2 199.5 

2 
3 
4 
5 

60 
10 
3 
2 

68.3 

12.0
1.4
0.1






 

59.9 

13.3
2.6
0.7






 

Total 276 276.0 276.0 

Estimate of parameter  θ̂ = 0.351449 θ̂ = 6.374771 

2χ   1.414 0.165 

d.f.  1 1 

p-value  0.2344 0.6846 

Table 5.4.  Frequencies of thunderstorm events containing X thunderstorms at Cape Kennedy for September 

 

X  
Observed frequency 

Expected frequency 

SBPD SBPLD 

1 122 114.0 117.9 

2 
3 
4 
5 

35 
5 
4 
2 

44.1 

8.5
1.1
0.3






 

38.4 

9.3
2.0
0.4






 

Total 168 168.0 168.0 

Estimate of parameter  θ̂ = 0.386905 θ̂ = 5.839181 

2χ   2.561 0.485 

d.f.  1 1 

p-value  0.1095 0.4862 

Table 5.5.  Frequencies of thunderstorm events containing X thunderstorms at Cape Kennedy for Fall 

 

X  
Observed frequency 

Expected frequency 

SBPD SBPLD 

1 170 161.7 166.2 

2 
3 
4 
5 

47 
7 
4 
2 

56.9 

10.0
1.2
0.2






 

49.9 

11.1
2.2
0.6






 

Total 230 230.0 230.0 

Estimate of parameter  θ̂ = 0.352174 θ̂ = 6.365473 

2χ   2.372 0.313 

d.f.  1 1 

p-value  0.1235 0.5758 
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Table 5.6.  Frequencies of thunderstorm events containing X thunderstorms at Cape Kennedy for Spring 

 

X  
Observed frequency 

Expected frequency 

SBPD SBPLD 

1 174 168.6 173.1 

2 
3 
4 

50 
10 
4 

58.1 

10.0
1.3





 

51.1 

11.2
2.6





 

Total 238 238.0 238.0 

Estimate of parameter  θ̂ = 0.344538 θ̂ = 6.489747 

2χ   1.947 0.03 

d.f.  1 1 

p-value  0.1629 0.8625 

 
6. Conclusions 

In this paper, a general expression for the r th factorial 
moment of SBPLD has been obtained and hence first four 
moments about origin has been given. The expressions for 
moment generating function and the first inverse moment 
has also been derived. To test the applicability and 
superiority of SBPLD over SBPD for modeling 
thunderstorms, SBPLD has been fitted to a number of data 
sets related to thunderstorms and it has been found that it 
provides a much closer fit than SBPD and hence it is 
recommended to be an important tool for modeling 
thunderstorms. 
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