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Abstract This paper is devoted to the study of certain generalized maximal function (®-maximal function) measuring
smoothness. In this work we essentially use the relation between maximal function measuring smoothness and oscillation of

functions.
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1. Introduction
Let R™ be n-dimensional Euclidean space,

n+1
PO)=c,-(1+1xID72, x€R,

P@=r7"P(}), >0, fELuR,

® * () = f P (x — Df (D).

Rn
Note that the quantity
[ he-01r@ - @ peolac
RTI.
is called harmonic oscillation (see, for instance, [1], [2]). In

work [2] it has proven that

f PG DIF(O) — (B = HH)de =

RTl

= f PG = OF (D) = focer]dt,

gn
where
_ 1
fB(x,r)_m ff(t)dt.
B(x,r)
[B(x,7)| denotes the volume of ball B(x,r) =

{y € R™: |x —y| <r}, and constants in the relation " =
depend only on dimension n. (For positive functions F and
G we will use the notation F(u) = G(u), u € U, if there
exist positive constants ¢; and ¢, such that

VuelU: cF(w) <Gw) <cF(u).)
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Let
X
fl{(x)dx =0, K. (x)= r‘"K(—), r>0,
r
Rn
Dy(x) = x € R™,

1
B o0t

where X (x) is a characteristic function of the set E c R™.
It is easy to see that

f Dy(x)dx = 1.
i
In the papers of some other authors (see e.g. [3], [4]) the
quantity

1K * fllLe gy
is chosen as a characteristic to determine homogeneous

classes of Besov. We can write the quantity K, * f(x) in the
following form

(K, = f)(x0) = (K + @9 — Dp), * f)(x)
= ((K + CDO)T * f)(X) - (CDO,T * f)(X)

= (@, * )0 - j o, (x — Df (©)dt

R"

1
= (@, * () B, f )f(t)dt

= (q)r * f)(X) - fB(x,r)

= (@, * )(x) — | @, (x — t)fzpemdt
RTL

:f ®, (x — O[f () = faem]dt,
RTL

where ®(x) = K(x) + P (x), o, (x) = (Do) (x) =

-0,
It is obvious that

RJ,: O(x)dx = 1.
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Thus,

K+ @) = [

R™

@, (x = O[f () — faem]dt.
Hence we have
(K, + )| < f|q>r & = OI|f©) — foer|dt =

R?l

- f 191, G = £) « [F(©) = four|dt.
Rn

In the present paper, for the principal characteristic we
take the quantity

Q®(f,B(x,1)) = fcbr(x —6)-|f© - fzanldt,
Rn
where @ € L}(R"), ®(x) >0 (x €R"), f € L, (R").
Q° (f ,B(x, r)) is said to be ®-oscillation of the function f
in the ball B(x,r) [2].

It is known that maximal functions measuring smoothness
play an important role in the study of properties of integral
operators and other objects of Harmonic Analysis. The main
topic of this paper is the study of certain generalized
maximal function ( &® -maximal function) measuring
smoothness.

The paper is organized as follows. Section 2 has auxiliary
character and presents the basic definitions, some notation
and well-known facts. In section 3 the relations between
maximal function and metric characteristic are investigated
and some useful inequalities were obtained. In section 4
estimations between & -maximal function and maximal

function was obtained. The main results are given in
Propositions 3.1, 3.3, 4.1, 4.3 and 4.4.

2. Some Definition and Auxiliary Facts

Let the function @(x,7) be defined on the set R™ X
(0, 4+00), takes only positive values, and monotone increases
with respect to the argument r on the interval (0, +00). We
denote the class of all functions @(x,r) with the above
mentioned properties by W.

Let ®€L'(R"), ®(x)=0 (X€ER™), eV ,
f €L, (R"). Let’s introduce the following ®-maximal
function

f“’(X)—sup

‘P(x r) fcb & = Ol (O = facendt.

We also introduce the followmg metric d-characteristic
mg (x;8) = sup f @, (x — | () = foeen|dt,
0<r<é #n

x€R™, 6>0.
Consider the known special cases of the introduced maximal
function f(p#'q’ (x).
1) If &(x)=dy(x), @(x,r) =1, then f(p#’q) (x) =
f#(x), where f#(x) is the maximal function which is

introduced in the paper [5].

2) If ®(x)=dy(x), ex,r)=r* (a>0), then
fw#'q) (x) = £#(x). The maximal function f£(x) was
mentioned in the papers [6], [7]. In paper [8] the
function f*(x) was investigated.

3) If ®(x) = dy(x), @(x,1) = @(r), then the maximal
function f(p#'q) (x) =: £} (x) may be found in the papers
[9], [10], [11], [12], [13] and others.

Now let’s consider special cases of metric ®-characteristic
mg (x; 8).

) If &(x) = Py(x),
section 3), where

then mf (x;6) = my(x;8) (see

mg(x;8) = sup

0<r<é

1
BGel f lf(©) = faem|dt.
B(x,r)

Note that the function m,(x; ) was first introduced in
the paper [14] (see also, [15], [16]).

2) Let ®(x) = P(x), where P(x) is the Poisson kernel, i.e.
n+1

P() = c, - (1+[x|)" 7, where ¢, =T (";1) T
Global variant of the characteristic my ®(x;6) (more
precisely, the equivalent characteristic to it which is called a
modulus of harmonic oscillation) for periodic functions of
one variable may be found in the paper [1].

It is known that Hardy-Littlewood’s maximal function is
determined by the equality

Mf(x) = sup X € R™.

If (©lde,
e f f

For case of CbEU(R"), ®(x)=0 (x€RM) ,
f € L, (R™) the following maximal function is also
considered [17]

MofC) =sup [ @,Ge-OIf@lde,  xeR"
r>0
R'I’L
It is easy to see that if ®(x) = dy(x), x € R™, then
My f(x) = Mf(x).
From the definition of a maximal function f#(x) it
follows that

VX ER™  f*(x) < sup——— f £ (©)]dt =
>0 |B(
= 2Mf(x).
Thus,
f#(x) <2Mf(x), x€R™ 2.1
It is known that (see e.g. [18]) if 1 < p < oo, then
36, >0 VFELPRYD:  IMflly <G lIfll-
Hence, from (2.1) we get
34, >0  VfelLP(R"): I lle < Ap - If Nl

The last relation means that the operator f — f*# is the
operator of the type (p,p) for 1 < p < oo,

It is also known [18] thatif f € L'(R™), then there exists a
number A > 0 such that for any 1>0



54 Rahim M. Rzaev et al.:

A
m{x € R": Mf(x) > 1} < 1 £ 12 oy,

where mE denotes the Lebesgue measure of the set
E c R™. Hence, from (2.1) we get

m{x € R": f¥(x)>2} < m{xeR": Mf(x)>%}$

2A
< 7 ”f”Ll(R")-

Thus, if f € L*(R™), then there exist the number A; > 0
such that for any A>0

A
m{x € R™ f*@) > <5+ Iflluseny

The last relation means that the operator f +— f# is the
operator of weak type (1,1).

In the case ¢(x,7) = 1, we denote the function f,"® (x)
by f#®(x). Then for the function f#®(x) we have

AP = sup J-(br(x = Olf(©) = facendt <
Rn

SW%I¢Aw%WﬁWﬂthﬂf%@—ﬂﬂ}
R™ R™

r>0
< sup J-¢T(x—t)|f(t)|dt+
r>0
Rn

1
+C-sup—)| flf(t)ldtz
B(x,r)

>0 |[B(x,T
= Myf(x) +C-Mf(x), xE€R"
where C = fR" D, (x —t)dt = fR" ®(t)dt. Thus,
A (x) < Mpf(x) + C-Mf(x), x €R™ 2.2)

From the inequality (2.2), the Hardy-Littlewood maximal
theorem and theorem 2 of chapter 3 [18] we get the following
facts.

If P (x) = suppy s [ PO,
l1<p<sw

34, >0 vVf e LP(R™):

and for p = 1 we have

Y € L*(R™), then for

IF*ll < Ay - 1Ifllp,

A
m{x e R™: f*P(x) >} < 71 1.,

feL(RY), 1>0,
where the positive constant A; is independent on f and A.
Thus, at the indicated conditions on the function @, the
operator f +— f#® is the operator of type (p,p) for
1 < p < o, and is also weak type (1,1) operator.

3. Relations between Maximal Function
and Metric Characteristic. Some
Inequalities

In this section we’ll assume that ® €
€ L'(R"), ®(x)=0 (x€R"), p€eV.

®-maximal Functions Measuring Smoothness

Proposition 3.1. If f € L,,.(R"), then the following
equality is satisfied

m (xr)

, xER". (3.1

Proof: From the definition of the function fj'(p (x) we get

#,0 _
f(p (X) = SUPr>o o)

1
#,0
“(x) =su D, (x —O)|f(t) = feaem|dt <
i ()f£¢“”l G = OO = focun|
< mp G € R" 32
- Supr>0 <p(x,r) ) X - ( . )

On the other hand, for any r > 0 and x € R™ we have
02— [@,6= Ol © — fogen e
® = (p(X, T') J r B(x,r) .

Hence it follows that

f@@—wvm—@@dmsmLmﬂ@@x

R'I’L
therefore
mf (x; 1) < @(x,7) -f(p#‘q’ x), r>0, x€ER".
So,
@
4o mg' (x; 1)
) = ——, r>0, x € R™.
Jo @(x,1)
From the last inequality we get
[0
#,0 mg (x;1) n
> —_
fo' (x) = sup,5g oGy XERN(G3I

Equality (3.1) is obtained from inequalities (3.2) and (3.3).
Lemma 3.1. Let f € L, (R"), and

essinf{f®(x): x € B(0,1)} =¢, > 0. (34
Then for any constant C the following inequality is true
[ @6 = 0l © = fogenfa <

Rn
< ¢ [ @, (x = OIf(t) —Cldt,r > 0,x €R", (3.5)

where the positive constant ¢; depends only on the cy,
dimension n and on the quantity ||®|[,1(gny.
Proof. Let C be any constant. Then we have

[ @06 = 017 © = o e <

Rn

sf@@—ﬂvm—am
Rn

+ j D, (x — t)|fB(x,r) - C|dt
RTL

< [@,6-0lr@ - clae
Rn

1
+ ( J- D, (x — t)dt) . mB(J‘;)lf(t) —Cldt

Rn
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1
=||® ny t T t) —Cldt
19l o | O ¢
B(x,r)

+ fd)r(x—t)lf(t)—Cldt.
RTL
Thus, forall x € R™ and r > 0

f @, (x = O|f () = faem|dt
Rn

< jd)r(x— DIf ) —Cldt +
Rn

1
[Pl L1 gy 'me(x'r)lf(t) —Cl|dt. (3.6)
On the other hand, by means of condition (3.4) we get

[ o= 01r@ - clae >

Rn
zrin fqn(x—_t)v(t)—adtz
B(x,r)
=>cCo- IB((O Dl flf(t)—CIdt x €R", r>0.
Hence
wu)|fV@ clae=

o, (x - OIf () -

Using this inequality, from (3.6) we get

fcbr(x - t)lf(t) - fB(x,r)|dt <
SQ+

RTI.
Proposition 3.2. Let f €L, (R"), x€R" and

1P 2 gy
co + 1B(0,1)]

condition (3.4) be satisfied. Then the following inequality is

true

Cldt. (3.7)

- C()'IB(O,1)| IR"

)-f@u—mﬂa—aw
R"

- P
@D ™ T

Proof. If we take C = fp(y,), then the validity of

inequality (3.8) is obtained from relation (3.7).

Remark 3.1. Note that for the function ®(x), x € R",
satisfying condition (3.4) we can take, for instance, the
following functions

me(x;7r) < r>0, (3.8)

1) &y(x) = |B(01)1| B(()l)(x)
(@) - .
2) V00 = (@3>0
3) P(x) =c, - (1 + |x|? ) , where ¢, =

-r (n+1) ";1.
Verify, that if ®(x) = ®(x), then
mf (x; 1)

= mg(x; 7). (3.9

Indeed, if ®(x) = ———Xp(g1)(x), then

|B<o N
—t
-)

1 x—t
= I B(0, )] (BOD <T)

1
1 - .
=BG Yeen® =1 1BG D if t€BxT),

0 if t&B(x,r).
Therefore for this function ®(x) we have

f¢r(x - t)'f(t) - fB(x,r)'dt

Rn

1
=Bl f lf(©) = faem|dt.
B(x,r)

D (x—1t)= r‘"(D(

Hence, equality (3.9) is obtained. We note that the
quantity

1
B f |f(©) = faem|dt
B(x,r)

is said to be mean oscillation of the function f in the ball
B(x,71).

Remark 3.2. In the case of ®(x) = P(x), x € R", the
quantity
[ @re=0lr® - @, + HEIde =
Rn

= [RG-0lF® - @ N@Ide
RTL
is called a harmonic oscillation of the function f (see [1]).
In the paper [2] it has been proven that

[ P e=0lr@ - @« pEolde =

Rn

= jpr(x - t)|f(t) - fB(x,r)ldt;

R’I’L

where the constants in the relation " =" depend only on the
dimension n. Hence it is obtained that
m}’(x; r) = he(x;7), x€R", >0,
where
b = s [ RG=0If© - @ s pEolac
0<r<r
Rn
(see [2]).

Let's show that the relation
[ o -0l - @, « Heola =
Rn
= fRn Cbr(x - t)|f(t) - fB(x,r)|dt

takes place for wider class of functions .
Proposition 3.3. Let ® € L(R"), ®(x) =0 (x € R™),

(3.10)
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D, (x) =r"D ()Ti), r>0, [,®()dx=1, and
condition (3.4) is satisfied. Then the relation (3.10) is true,
where the constants in the relation " =" depend only on the
constant ¢, and dimension n.

Proof. For convenience we will introduce the following

notations:

A= [0, 0lf@ - @, eIt

R™

Bi= [ @G- 0F )  fogende

RT[
Then we get
A< ffbr(x —O|f () = foen|dt +
RTL
+ [ @06 = Olfogen - (@« Nde =
Rn
=B +| [@,6- 07Ot~ fogen| <
RTL
<B+ fcpr(x — O|f(©) — fr|dt = 2B.
RT[
Thus
A<2B (3.11)
On the other hand,
B< frbr(x — DI — (@, * HH)lde +
Rn
+ f ®, (x — O)|(@, * GO = foer|dt =
Rn

= A+]@, * ) = faeer| =
—A+ .fcbr(x—t)f(t)dt— IB(

RTI.

] | reoa =
B(x,r)

1
Een Jr)(f“) o )] =
1
T, xfr)lf(t) @« Pt =

[t €B(r) o xT_te 3(0,1)]

ar— L
O IBODI
x [ Koo (55)17@ - @« D@t <
Rn

1 1 1
<A+— e —

X
=47 BOD]

®-maximal Functions Measuring Smoothness

< Jo (5

RM

=(1+C1_0.m).,4

Thus

)7 © = (@, = PElde =

B<(1+ (3.12)

1 1

@ |B(0.1)|) '
Inequalities (3.11) and (3.12) prove the required relation

(3.10).

4. Estimations of ®-Maximal Functions
by Maximal Functions

Proposition 4.1. If f €L, (R"), @ €Y and the
function @ satisfies condition (3.4), then the following
inequality is true

fle <c-fi®(), xeR", @

where ¢ = and cg is a constant from inequality

(3.4).
Proof. By means of Proposition 3.1 and inequality (3.8)
we get

1
co1BOO, DI

me(x; 1) 1 mg P (x; r)
X) = su <
I G = s = & B S et
1
— . " (x), x €R™.
BOD
1

Pr0p0s1t10n 4.2. [2]. Let ®,(x) = T a >0,

X € R™, f € Ly, (R™). Then the following inequality is true

© mf(x t)
ta+l

“(x r<c- r”‘f dt, r>0, 4.2)

where the constant ¢ > 0 is independent on f, x and r.
Lemma 4.1. If w(t) is a non-negative, monotone
increasing function on the interval (0, +), a > 0, and

fw()dt<+oo

t1+a
1

then the function

 w()

t1+a

ulr) =r* dt
T
also monotone increases on interval (0, +0).
Proof. Let 1,1, € (0, +00) and r; < 1y. Then we have

w(t) [ w(®)

u(ry) —u(r) =18 t“"‘ T dt - 1+a

- G5 =10) f e -

dt =

2
w(t)
06 f t1+a dt =

Lt




American Journal of Mathematics and Statistics 2015, 5(2): 52-59 57

T2

w(r) (s —rf") f t™17dt — w(r)rf f t~l1-adt =
2 1
= W) O — ) (—— o )_
2
1 2
ol ——.t7 =
(=)

1 ()al 1_
p w12 )1y R -

1 1
— a __ .0, +
p w(r) (s —rf") _Tza

Loy (1= 1) o
—aa)rz oy -

ie. pu(ry) = u(n).
Proposition 4.3. Let f € L;,. (R"), ¢ €Y, O, (x) =

=——— xER", a>0 and
1+|x|n+a
© ¢ (xt)
Ji e dt < +oo. (4.3)
Then the following inequality holds
#,P,
fp ) <c- f (), (4.4)

where P(x,7) =1 foo (pixfl) dt, and the positive constant

¢ does not depend on f and x.
Proof. By means of relations (3.1), (4.2) and (4.3), we
have

hu () ,?“(x;r)<
Jy ) =sup ey S

1 pa mg(x; t)

<c.
=0 vEn e+t
T
1 ocm x;t ,t
=cC- ra M . &‘Fl)dt S
i SVTern) p(x,t) t*
me(x;t) 1 fgﬂ(x t)
<c-su - su dt
e STe s R BT
mg(x; t) “
=c-sup———=c- [ (x).
ot @

Corollary 4.1. Let f €L, (R"), o€V, d,(x) =
x €ER™, a >0 and

1+|x|n+a’
o ¢ (x,t)
* fr q;ax+1 dt - 0((,0(.76',7')), r> O:x € Rn- (45)
Then the following inequality holds
£ <c ff(x), x€RY, (46

where the positive constant ¢ is independent on f and x.

Proof. If condition (4.5) is satisfied, then by virtue of
proposition 4.3 the inequality (4.4) holds. Furthermore,
from a condition (4.5) follows that

JA>0 Vx€eR", vr>0: yYl,r)<A olxr).

Taking this into account, we have

f#%( ) m;p"‘(x;r) <4 m;p"‘(x;r)
x) =sup———— < A-sup—~——
Tup () iet Yl

=A-f% ()< A-c-f}(x), xER
where ¢ > 0 is a constant from inequality (4.4).
Proposition 4.4. Let ¢ € ¥, ¢(x,t) = @(t), P, (x) =

n
W,xER,a>0,and

f°° @)

1 ta+l

dt = +oo. 4.7)

Then there exists a function f € L;,.(R™) such that
f(0) < +oo, fj‘%(O) =40 for any function Y €
Y, Y(x,t) = y(t).

Proof. Consider the function

oo = j 0¥

|x1

X € R™,
In the paper [14] it is shown that

feor =—f(p(x)xn 1dx+j90( )

r

2
0r)<-—- s > 0.
mp(0r) < =), T

From the last inequality it follows that
my(0;7) 0;1)

2
O == oey <a <

Further, for 0 < r <1 we have

Q®«(f,B(0,1)) = — j

+ 00,

|f(t) IB(0, r)ldt

1

1
== | — = f© — foonldt
g 1+

g

1
=7 f WV ®) — foonldt
Rn

I\

1 L| ® - |at
27” [t|n+e f fB(O.r)

|t]=>1

1 r
1 1 o(x) 1
= —7r@ R _ n—1
zr f e lf p dx rnf(p(x)x dx
t| 0

[t]=1
. f@d

r

dt

el

() dx——f(p(x)x" Ldx|dt

f |t|n+a
Iti>1
1 It () r
[4%4 _
e (f —dx +—f(p(x)x" 1dx)dt
0

r

[t]=1



58 Rahim M. Rzaev et al.:

o T1+adT dx
fo()
x
_|Sn—1| _____ r“f—dx
x
r
x
o N PR r"‘f 21(“3 dx = +oo,
1

where |S™1| denotes the area of the surface of a unit sphere
St c R™ Thus, for 0<r<1 the equality
O« (f,B (o, r)) = +oo is true. Therefore, for any function
Yx, ) =y) eV

Dg Dg
4o my 0;7) my 0;7)
Te(0)=sup————= sup ——=

fy O =y 2 M T

Corollary 4.2. Let f € L), (R"), ¢ €Y, P, (x) =

400,

T Texre
Then there exist the numbers ¢; > 0, ¢; > 0 such that

o OO ST < fE), xER,

where the constants ¢; and ¢, are independenton f and x.

Now consider the case of the function ®(x) = P(x),
where P(x) is a Poisson kernel. It is easy to see that there
exist the numbers ¢; > 0, ¢; > 0 such that for all x € R"
the relation.

1
T 1+ x|+
holds. That is P(x) = ®;(x), x € R*, where ®;(x) =
T Hence it follows that if f € L;,. (R™) and ¢ € ¥,

then the following relations are true
#,P _ oHo
@ (X) - f 1) ! (X),

m}f(x; r) = m;pl(x; ),

SPx)<c¢-

x € R™,

x €R", r>0.

By means of these considerations, from corollary 4.2 we
get

Corollary 4.3. Let f € L, (R™), P = P(x) be a Poisson
kernel, ¢ € ¥ and

Xx € R", @ > 0, and condition (4.5) satisfied.

®-maximal Functions Measuring Smoothness

[oe]

rf 90 0) dt = 0(p(x,1)),

% r>0, x€R"

r

Then the following relation is true

(p#‘P (x) = fi(x), x€R™

5. Conclusions

Maximal functions play an important role in the study of
differentiation of functions, almost everywhere convergence
of singular integrals, mapping properties of singular integral
operators and potential type integral operators.

Maximal functions measuring smoothness are useful in
the study of smoothness of functions and the mapping
properties of various operators of Harmonic Analysis on
smoothness spaces.

The main theme of this paper is to study certain maximal
functions and ®-maximal functions measuring smoothness.
Relations between maximal and @-maximal functions
measuring smoothness are studied. These relations allow to
unite and compare the results received in terms of various
characteristics.
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