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Abstract  Regression analysis has become one of most widely used statistical tools for analyzing multifactor data. It is 
appealing because it provides a conceptually simple method for investigating functional relationship among variables. A 
relationship is expressed in the form of an equation or a model connecting the response or dependent variable and one or more 
explanatory or predictor variables. The major problem that statisticians have been confronted with, while dealing with 
regression analysis, is presence of outliers in data. An outlier is an observation that lies outside the overall pattern of a 
distribution. In other words it is a point which falls more than 1.5 times the interquartile range above the third quartile or 
below the first quartile. Several statistics are available to detect whether or not outlier(s) are present in data. Therefore, in this 
study, a simulation study was conducted to investigate the performance of Deffits, Cooks distance and Mahalanobis distance 
at different proportion of outliers (10%, 20% and 30% )and for various sample sizes (10, 30 and 100) in first, second or both 
independent variables. The data were generated using R software from normal distribution while the outliers were from 
uniform distribution. Findings: For small and medium sample sizes and at 10% level of outliers, Mahalanobis distance 
should be employed for her accuracy of detection of outliers. For small, medium and large sample size with higher percentage 
of outliers, Deffits should be employed. For small, medium and large sample sizes, Deffits should be used in detecting outlier 
signal irrespective of the percentage levels of outliers in the data set. For small sample and low percent of outliers 
Mahalanobis distance should be employed for easy computation. 
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1. Introduction 
Regression analysis is a conceptually simple method for 

investigating functional relationships among variables. For 
example; The University management may wish to relate the 
performance of students with number of hours spent by the 
students on internets. We may wish to examine whether 
cigarette consumption is related to various socioeconomic 
and demographic variables such as age, education, income, 
and price of cigarettes.  

The relationship is expressed in the form of an equation or 
a model connecting the response or dependent variable and 
one or more explanatory or predictor variables. In the 
cigarette consumption for example, the response variable is 
cigarette consumption (measured by the number of packs of 
cigarette sold in a given state on a per capita basis during a 
given year) and the explanatory or predictor variables are the 
various socioeconomic and demographic variables. In the 
real estate appraisal example, the response variable is the   
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price of a home and the explanatory or predictor variables are 
the characteristics of the building and taxes paid on the 
building. 

Regression models are commonly used to study the 
functional relationship between a dependent variable(Y) and 
independent variable(s) (X’s). Usually, ordinary least- 
squares (OLS) method is applied to the sample data to obtain 
the fitted linear model or linear regression equation of the 
dependent variable y on the regressors 𝑋𝑋1,𝑋𝑋2 , … ,𝑋𝑋 𝑃𝑃  ,  
 𝑝𝑝 ≥ 1. 

However, sometimes the samples might contain outliers in 
the X’s values, the Y’s values, or in both X’s and Y’s values. 
In that case, some methods of estimation in regression model 
may not be précised. 

In statistics, an outlier is an observation that is numerically 
distant from the rest of the data. [1] defined an outlier as one 
that appears to deviate markedly from other members of the 
sample in which it occurs. It is an observation that lies 
outside the overall pattern of a distributions ([2]) Similarly, 
Johnson ([3]) defines an outlier as an observation in a data 
set which appears to be inconsistent with the remainder of 
that set of data. In many data analysis tasks a large number of 
variables are being recorded or sampled. One of the first 
steps towards obtaining a coherent analysis is the detection 
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of outlying observations.  
Although outliers are often considered as an error or noise, 

they may carry important information. A convenient 
definition of an outlier is a point which falls more than 1.5 
times the interquartile range above the third quartile or below 
the first quartile. It can also occur when comparing the 
relationship between two set of data. According to Oxford 
Dictionary of Statistics (2008), outlier is an observation that 
is very different to other observations in a set of data. It is a 
data value which is unusual with respect to the group of data 
in which it is found. It may be a single isolated value far 
away from all others, or a value which does not follow the 
general pattern of the rest. Usually the presences of outliers 
indicate some sort of problem. This can be a case which does 
not fit the model under study or measurement error. Outliers 
are often easy to spot in histograms. 

Detected outliers are candidates for aberrant data that may 
otherwise adversely lead to model misspecification, biased 
parameter estimation and incorrect results. It is therefore 
important to identify them prior to modeling and analysis 
([4], [5]). 

When the sample data contain outliers, alternative 
approach to the problem should be applied, to obtain a better 
fit of the models or more precise estimates of β. Several 
works has been carried out on outliers’ detection and how to 
tackle it if present in a data analysis. [5] conducted a 
comparison study with six multivariate outlier detection 
methods. The methods’ properties are investigated by means 
of a simulation study and the results indicate that no 
technique is superior to all others;  

Several factors can affect the efficiency of the analyzed 
methods. In particular, the methods depend on: whether or 
not the data set is multivariate normal; the dimension of the 
data set; the type of the outliers; the proportion of outliers in 
the dataset; and the outliers’ degree of contamination 
(outlyingness). Another class of outlier detection methods is 
founded on clustering techniques, where a cluster of small 
sizes can be considered as clustered outliers ([6]). There are 
two types of outliers depending on the variable in which it 
occurs, Outliers in the response variable represent model 
failure. Outliers with respect to the predictors are called 
leverage points; and affect the regression model.  

Indeed, there is need to check whether a data set contains 
outlier(s), hence different statistics are used to detect the 
presence of outliers in a sample data, three of which were 
investigated in this study, these are Cook’s Square Distance, 
Deffits Distance and Mahalanobis Distance. The proportion 
of outliers that can best be detected by the different methods 
and effect of sample size on the methods under consideration 
were investigated.  

The outcomes of this research will assist a researcher to 
understand and know the more efficient statistical tools for 
detecting outlier amongst deffits, cooks distance and 
Mahalanobis distance. 

To help researchers to known at what sample size(s) and at 
what level of presence of outlier do each statistical tool 
perform best. 

2. Methodology 
In the literature, there are many methods of detection of 

outliers in multiple linear regressions. They may be 
classified in to two groups, namely graphical and analytical 
methods. However, three different methods of detecting 
outliers were considered in this study, these are Cook’s 
Square Distance, Deffits Distance and Mahalanobis Distance.  
These methods are analytical methods which has their 
procedures as follows: 

Cook’s Square Distance 
Cook’s square distance of unit 𝑖𝑖 is a measure base on the 

square of the maximum distance between the OLS estimate 
on all n points 𝛽̂𝛽 and the estimate obtained when the 𝑖𝑖𝑖𝑖ℎ 
point is not included, say 𝛽̂𝛽𝑖𝑖 . Cook and Weisberg suggest 
examining cases with 𝐶𝐶𝐶𝐶𝑖𝑖2 > 0.5 and that case where 
𝐶𝐶𝐶𝐶𝑖𝑖2 > 1  should always be studied ([7]). This distance 
measure can be expressed in a general form 

𝐶𝐶𝐶𝐶𝑖𝑖2 =
(𝛽̂𝛽𝑖𝑖 − 𝛽𝛽)′(𝑋𝑋′𝑋𝑋)(𝛽̂𝛽𝑖𝑖 − 𝛽𝛽)

𝑃𝑃𝜎𝜎�
 

𝑖𝑖 = 1,2, … ,𝑛𝑛 . However, substitute 𝐶𝐶𝐶𝐶𝑖𝑖2  statistic may 
also be rewritten as  

𝐶𝐶𝐶𝐶𝑖𝑖2 = (𝑒𝑒𝑖𝑖
2 
𝑝𝑝

)( ℎ𝑖𝑖𝑖𝑖
(1− ℎ𝑖𝑖𝑖𝑖

) 

For this research work cooks square distance (𝐶𝐶𝐶𝐶𝑖𝑖2>1) is 
considered. Any ith observation with values exceeding one 
(1.0) is counted as an outlier. 

Deffits Distance 
Deffits is a diagnostic tool meant to show how influential a 

point is in a statistical regression. Its measures how much the 
predicted for 𝑖𝑖  wound change if the ith case is being 
excluded from the analysis. For each observation 𝑖𝑖  
computed (𝑦𝑦�𝑖𝑖  −  𝑦𝑦𝑖𝑖(𝑖𝑖)) or (ℎ𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖  ) / (1 −  ℎ𝑖𝑖𝑖𝑖) which tells 
how much the predicted value 𝑦𝑦�𝑖𝑖  , at the design point 𝑥𝑥𝑖𝑖   
would be affected if the ith case were deleted. The 
standardized version of Deffits is 

Deffit =
(hii 

1
2 ei) 

(σi(1 − hii ))
  

σi is the standard error estimated  with out the point i 
hii  is 𝑡𝑡ℎ𝑒𝑒 leverag for the point  
i =1,2,…,n . ([8]) suggested that any observation for which 

/𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷/  >  2 �𝑝𝑝 / 𝑛𝑛 warrants attention for outliers. 
𝑝𝑝 =Number of independent variable n= sample size of the 

data 
𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛 = 10 ,𝑝𝑝 = 2.  /𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷/> 0.8944  
𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛 = 30 ,𝑝𝑝 = 2.    /𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷/> 0.5164  
𝑓𝑓𝑓𝑓𝑓𝑓 𝑛𝑛 = 100 ,𝑝𝑝 = 2.   /𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷/ > 0.2828 

Mahalanobis Distance 
This measure the leverage by means of 𝑀𝑀𝑀𝑀𝑖𝑖   

(Mahalanobis distance), where  
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  𝑀𝑀𝑀𝑀2 = (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)𝑠𝑠−1(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)/′ = (𝑛𝑛 − 1)[ℎ𝑖𝑖𝑖𝑖 −
1
𝑛𝑛

] 

𝑖𝑖 = 1,2,3 … . .𝑛𝑛  Where  

x� = ∑ xi n�  and σ2 =
1

n − 1
�(𝑥𝑥𝑖𝑖 − 𝑥̅𝑥)′ (𝑥𝑥𝑖𝑖 − 𝑥̅𝑥) 

To determine a mahalanobis distance that is too large we 
compare the distance with 99th percentile of Chi-square 
distribution with p-1 degrees of freedom 

If 𝑀𝑀𝑀𝑀2 > 𝑋𝑋𝑃𝑃−1,0.99
2  where   𝑋𝑋𝑃𝑃−1,0.99

2  is 99𝑡𝑡ℎ  percentile 
of a chi-square distribution with p −1 degrees of freedom 
then there is an outlier. 

In this work data were simulated and analys for multiple 
linear model with two independent variables using R 
statistics. 

3. Method of Simulation and Analysis 
All data used for this study were simulated, because it 

might be difficult to get secondary data that contain required 
number of outliers. Simulation technique is a dependable 
tool in situations where statistical or mathematical analysis is 
either too complex or too costly. According to ([9]), 
simulation is the process of designing a model of real system 
by conducting experiments with this model for purpose of 
understanding the behavior of the operation of the system.  

In this work, a set of replication of data sets are generated 
from the multiple linear regression models with two 
independent variables stated as follows  
𝑦𝑦𝑖𝑖  =  𝛽𝛽0  + 𝛽𝛽1𝑥𝑥1  + 𝛽𝛽2𝑥𝑥2 + 𝑒𝑒𝑖𝑖  , 𝑖𝑖 = 1,2, … ,𝑛𝑛  

where all regression coefficients 𝛽𝛽𝑖𝑖  were fixed to be 
𝛽𝛽𝑖𝑖 = 1, 𝑖𝑖 = 0,1,2  and the errors are assumed to be 
independent. The independent variables were independently 
simulated from standard normal 𝑁𝑁(0,1)  the outlier were 
injected to the sample from uniform distributed 𝑈𝑈(5,10) the 
data sets are generated under the two regressor (p=2) and the 
sample sizes considered are small, moderate and large 
samples with n=10, 30, and 100 respectively. The outlier are 
introduced to the simulated data at three different levels of  
10%, 20% and 30% for each set of simulated data. 

 

The following procedures were taken for the simulation 
and analysis: 

1.  X1 and X2 were simulated from N(0,1) using R 
Statistical software 

2.  Ten (10%), twenty (20%) and thirty (30%) percent of 
outliers were introduced respectively from U(5,10) 
into each sample of data generated for X1 and X2 from 
normal distribution in 1.The simulations were 
repeated 1000 times. 

3.  The data simulated were analysed and the following 
were examined 

-  The number of times the outliers were detected. 
- The number of times each test statistics correctly 

identifies actual percentage number of Outliers 
introduced. 

-  The probability of times outliers were over identified. 
- The probability of times outliers were under 

identified. 
4.  Each statistic is computed for each sample and 

replicates.  
5.  We make comparison of detection of outliers by 

counting the number of times that each statistic over, 
under, accurately and identifies outliers. 

6.  The variation in comparison of three outlier detection 
methods will provide an indication of the sensitivity of 
the methods. Thus, the best method(s) were 
recommended for various sample size. 

4. Simulation Results and Data Analysis  
The results of the three methods of detecting outliers were 

presented in table 1- 4. The procedures involved introduction 
of 10%, 20% and 30% outliers to each simulated sample 
sizes of 10, 30 and 100 and each simulation were repeated 
1000 times. Furthermore, the data simulated were analyzed 
by the three statistic (Deffits, Cooks distance and 
Mahalanobis distance). Table 1 presents the probability of 
correct identication of actual number (percentage) of outliers 
in the predictors. Table 2 shows the probability of signals of 
outliers while Table 3 presents the proportion of over 
detection of outliers. The proportion of under-detection of 
outliers is presented in Table 4. 

Table 1.  Probability of correctly identifying actual percentage number of Outliers 

Sample 
size 

% of 
outlier 

X1 X2 X1 and X2 

Deffits CD MD Deffits CD MD Deffits CD MD 

10 
10 
20 
30 

0.1620 
0.3760 
0.2830 

0.5650 
0.0530 
0.000 

0.7670 
0.0010 
0.0000 

0.1990 
0.4140 
0.2800 

0.5810 
0.0610 
0.0010 

0.8010 
0.0010 
0.0000 

0.1660 
0.3860 
0.2710 

0.6470 
0.1030 
0.0020 

0.9790 
0.0150 
0.0000 

30 
10 
20 
30 

0.3120 
0.0800 
0.0000 

0.0000 
0.0000 
0.0000 

0.3140 
0.0000 
0.0000 

0.2650 
0.0820 
0.0000 

0.0000 
0.0000 
0.0000 

0.3200 
0.0000 
0.0000 

0.2950 
0.0560 
0.0000 

0.0000 
0.0000 
0.0000 

0.5900 
0.0000 
0.0000 

100 
10 
20 
30 

0.1870 
0.0000 
0.0000 

0.0000 
0.0000 
0.0000 

0.0600 
0.0000 
0.0000 

0.1720 
0.0000 
0.0000 

0.0000 
0.0000 
0.0000 

0.0680 
0.0000 
0.0000 

0.1690 
0.0000 
0.0000 

0.0000 
0.0000 
0.0000 

0.2280 
0.0000 
0.0000 
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Table 2.  Probability of Correctly Signal Outliers 

Sample 
size 

% of 
outlier 

X1 X2 X1 and X2 

Deffits CD MD Deffits CD MD Deffits CD MD 

10 
10 
20 
30 

0.9670 
0.9630 
0.9750 

0.6960 
0.3960 
0.2600 

0.8140 
0.0300 
0.0140 

0.9780 
0.9830 
9.8100 

0.6940 
0.4360 
0.2600 

0.7940 
0.0240 
0.0120 

0.9850 
0.9690 
0.9770 

0.7360 
0.3360 
0.3040 

0.9900 
0.0470 
0.0280 

30 
10 
20 
30 

0.9920 
0.9990 
0.9990 

0.0460 
0.0080 
0.0060 

1.0000 
0.7220 
0.4520 

0.9950 
0.9990 
0.9970 

0.0600 
0.0100 
0.0040 

1.0000 
0.6850 
0.4130 

0.9970 
0.6330 
0.8600 

0.0890 
0.0180 
0.0120 

1.0000 
0.8280 
0.6180 

100 
10 
20 
30 

1.0000 
1.0000 
1.0000 

0.0000 
0.0000 
0.0000 

1.0000 
0.9970 
0.9310 

1.0000 
1.0000 
1.0000 

0.0010 
0.0000 
0.0000 

1.0000 
0.9950 
0.9310 

1.0000 
1.0000 
1.0000 

0.0010 
0.0000 
0.0000 

1.0000 
0.9990 
0.9850 

Table 3.  Probability of Over Identification of Outliers 

Sample 
size 

% of 
outlier 

X1 X2 X1 and X2 

Deffits CD MD Deffits CD MD Deffits CD MD 

10 
10 
20 
30 

0.8050 
0.3650 
0.0570 

0.0630 
0.0020 
0.0000 

0.0060 
0.0000 
0.0000 

0.7790 
0.3690 
0.0640 

0.0780 
0.0000 
0.0000 

0.0090 
0.0000 
0.0000 

0.8190 
0.3800 
0.0630 

0.0890 
0.0080 
0.0000 

0.0110 
0.0000 
0.0000 

30 
10 
20 
30 

0.5040 
0.0240 
0.0000 

0.0000 
0.0000 
0.0000 

0.0045 
0.0000 
0.0000 

0.5330 
0.0150 
0.0000 

0.0000 
0.0000 
0.0000 

0.0480 
0.0000 
0.0000 

0.4880 
0.0150 
0.0000 

0.0000 
0.0000 
0.0000 

0.0790 
0.0000 
0.0000 

100 
10 
20 
30 

0.3810 
0.0000 
0.0000 

0.0000 
0.0000 
0.0000 

0.0220 
0.0000 
0.000 

0.3780 
0.0000 
0.0000 

0.0000 
0.0000 
0.0000 

0.0020 
0.0000 
0.0000 

0.2880 
0.0000 
0.0000 

0.0000 
0.0000 
0.0000 

0.0990 
0.0000 
0.0000 

Table 4.  Probability of Under Identification of Outliers 

Sample 
size 

% of 
outlier 

X1 X2 X1 and X2 

Deffits CD MD Deffits CD MD Deffits CD MD 

10 

10 
20 

30 

0.0330 
0.2590 

0.6600 

0.3720 
0.9450 

1.0000 

0.2770 
0.9990 

1.0000 

0.0220 
0.2170 

0.6560 

0.3400 
0.9390 

0.9990 

0.1900 
0.9990 

1.0000 

0.0150 
0.2340 

0.6660 

0.2640 
0.8890 

0.9980 

0.0100 
0.9850 

1.0000 

30 

10 
20 

30 

0.1840 
0.8960 

1.0000 

1.0000 
1.0000 

1.0000 

0.6410 
1.0000 

1.0000 

0.2020 
0.9030 

1.0000 

1.0000 
1.0000 

1.0000 

0.6320 
1.0000 

1.0000 

0.2170 
0.9290 

1.0000 

1.0000 
1.0000 

1.0000 

0.3310 
1.0000 

1.0000 

100 

10 
20 

30 

0.4320 
1.0000 

1.0000 

1.0000 
1.0000 

1.0000 

0.9180 
1.0000 

1.0000 

0.4500 
1.0000 

1.0000 

1.0000 
1.0000 

1.0000 

0.9180 
1.0000 

1.0000 

0.5430 
1.0000 

1.0000 

1.0000 
1.0000 

1.0000 

0.6730 
1.0000 

1.0000 

 
5. Discussion and Conclusions 

Based on the results of the simulated data and analysis, the 
results show that the outlier detections follow similar trend 
irrespective of which of the predictor variables contained the 
outliers (first, second predictors or first and second 
predictors). Mahalanobis distance detects outliers more 
accurately in small sample size (n =10) and when the number 
(percentage) of outlier is small (l0%) while Deffits performs 
better as level of outliers increases still for small sample size. 
For medium sample size (n = 30) Mahalanobis distance 

maintains its accuracy at10% level of outliers and for large 
sample size Deffits performs best in accuracy. 

Deffits signals more outliers (over detection) in small and 
large samples while Mahalanobis distance signals more 
outliers (over detection) in medium sample size (n = 30) at 
10% level of outliers. Deffits seems to be the most strict 
among the three procedures in the sense that it identified 
outliers more than number (percentage) of outliers injected, 
whereas, Cooks distance is more liberal amont the three 
procedures.    
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6. Recommendations 
From the result of this analysis, the following 

recommendations have been made: 
- For small and medium sample sizes and at small 

number of outliers, Mahalanobis distance should be 
employed for its accuracy of detecting outliers.  

- For small, medium and large sample size with higher 
percentage of outliers, Deffits should be employed.  

- For small, medium and large sample sizes, Deffits 
should be used in detecting outlier signal irrespective 
of the percentage levels of outliers in the data set.  

- For small sample and low percent of outliers 
Mahalanobis distance should be employed for easy 
computation. 

The key point to stress here is that the above procedures 
can only serve to identify points that are suspicious from a 
statistical perspective. It does not mean that these points 
should automatically be eliminated. The removal of data 
points can be dangerous. While this will always improve the 
“fit” of your regression, it may end up destroying some of the 
most important information in your data. Hence the first 
question that should be asked is whether there exists some 
substantive information about these points that suggests that 
they should be removed. Do they involve special properties 
or circumstances not relevant for the situation under 
investigation? If no then there are no clear grounds for 
eliminating outliers. An alternative approach is to perform 
the regression both with and without these outliers, and 
examine their specific influence on the results. If this 
influence is minor, then it may not matter whether or not they 
are omitted. On the other hand, if their influence is 
substantial, then it is probably best to present the results of 
both analyses,  

Appendix  
The codes for simulation as well as analysis are given 

below. 
Sample size of 10 with 10% outlier on X1 computing for 

cooks distance. 
m1 <- matrix(nrow=1,ncol=1000) 
for (i in 1:1000) { 
x1<-c(rnorm(9,0,1),runif(1,5,10)) 
x2<-c(rnorm(10,0,1) 
e<-rnorm(10,0,1) 
y<-x1+x2+1+e 
lm1 <- lm(y~x1+x2) 
cook<-as.vector(cooks.distance(lm1)) 
g<-which(cook>1) 
count <- length(g) 
m1[,i] <- count 
Sample size of 10 with 10% outlier on X1 computing for 

deffits. 

m2 <- matrix(nrow=1,ncol=1000) 
for (i in 1:1000) { 
x1 <- c(rnorm(9,0,1),runif(1,5,10)) 
x2 <- c(rnorm(10,0,1) 
e <- rnorm(10,0,1) 
y <- x1+x2+1+e 
lm1 <- lm(y~x1+x2) 
diffts <- as.vector(dffits(lm1)) 
g <- which(abs(diffts) > 0.8944) 
count <- length(g) 
m2[,i] <- count 
} 
Sample size of 10 with 10% outlier on X1 computing for 

mahalanobis distance. 
m3 <- matrix(nrow=1,ncol=1000) 
for (i in 1:1000) { 
x1 <- c(rnorm(9,0,1),runif(1,5,10)) 
x2 <- c(rnorm(10,0,1) 
e<-rnorm(10) 
y<-x1+x2+1+e 
x <- cbind(x1,x2) 
d <- mahalanobis(x, colMeans(x), cov(x)) 
g <- which(d > qchisq(0.99,1)) 
count <- length(g) 
m3[,i] <- count 
} 
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