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Abstract  In this paper, preliminary test single stage shrinkage (PTSSS) techniques was used for estimation the scale 
parameter θ of Gamma distribution when the shape parameter α was known as well as a prior knowledge about θ was 

available in the form of initial estimate θ0 of θ. It is proposed to estimate θ by a testimator θ  that is based upon the result of 
a test of the hypothesis H0: θ = θ0 against the hypothesis HA: θ ≠ θ0 with level of significance ∆ . If H0 is accepted we used 

ˆˆ )1 0 0θ = ψ (θ)(θ − θ + θ , where the weighting factor ˆ
1ψ (θ)  is a function of the test statistic for testing H0 or may be 

constant such that ˆ0 1≤ ψ (θ) ≤ 1 . However if H0 is rejected we used ˆˆ )2 0 0θ = ψ (θ)(θ − θ + θ , where ˆ0 2≤ ψ (θ) ≤ 1 

and θ̂  is the classical estimator of θ (MLE or MVUE). Choosing the weighting factor i
ˆψ (θ) , (i =1,2) appropriately, an 

expression for the Mean Squared Error (MSE) and Bias Ratio [B(.)] of θ  were derived and comparisons were made with 

classical estimator ( θ̂ ) in the sense of efficiency and with some related earlier studies. 

Keywords  Gamma Distribution, Maximum Likelihood Estimator, Preliminary Test Single Stage Shrinkage Estimator, 
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1. Introduction 
The two-parameter gamma distribution has been used 

quite extensively in reliability and survival analysis, 
particularly when the data are not censored. The 
two-parameter Gamma distribution has one shape and one 
scale parameter. The random variable X follows a Gamma 
distribution with the shape and scale parameters as α > 0 and 
θ > 0, respectively, if it has the following probability density 
function (PDF): 

x
1x e for x 0; 0, 0f (x; , ) ( )

0 otherwise

−
α− θ

α


 > α > θ >α θ = Γ α θ



(1.1) 

and it will be denoted by Gamma (α,θ). Here Γ(α) is the 
Gamma function and it is expressed as 

1 x

0

( ) x e dx
∞

α− −Γ α = ∫                  (1.2) 
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It is well known that the (PDF) of Gamma (α,θ) can take 
different shapes but it is always unimodal. 

The Hazard function of Gamma (α,θ) can be increasing, 
decreasing or constant depending on α > 1, α <1 or α = 1, 
respectively. The moments of X can be obtained in explicit 
form; for example 

E(X) = αθ and Var(X) = αθ2            (1.3) 
The Gamma, or Pearson [16] Type III, distribution has 

been used to model a wide range of data types in many 
disciplines, especially in the context of reliability modeling, 
life testing and fatigue testing. For example, Birnbaum and 
Saunders [7] introduced the gamma distribution for 
modeling the life-length of certain materials, and the use of 
this distribution for various reliability problems is noted by 
both Herd [11] and Drenick [9]. Gupta and Groll [10] discuss 
acceptance sampling based on this distribution, and they 
derive the operating characteristic function, producer’s risk, 
failure rates and minimum sample sizes for this problem.   

Empirical applications of the Gamma distribution arise in 
a diverse range of fields. For example, Wein and Baveja [20] 
applied this distribution in analyses of human fingerprint 
data. Segal et al. [17] used it for matching scores in the 
context of DNA fingerprint genotyping of tuberculosis, and 
Keaton [13] adopted it for an inventory control problem. 

The Gamma distribution has also been applied in a 
number of studies in the fields of signal processing (e.g., 
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Martin [15], Jensen et al. [12], and Kim and Stern [14]), 
hydrology (e.g., Askoy [6], and Bhunya et al. [8]) and 
meteorology (e.g., Simpson [18]). 

The aim of this paper is to estimate the scale parameter of 
Gamma distribution when the shape parameter is known 
using preliminary test single stage shrinkage estimation 
(PTSSS) techniques via study the performance of Bias, 
Mean Squared Error and Relative Efficiency expressions of 
the proposed estimator when we set up a selection of 
shrinkage weight factor ˆϕ(θ)  and suitable region R and 

create comparisons of the numerical results with θ̂  and 
with some existing studies. 

A numerical study is carried out to appraise these effects 
of proposed estimators. 

Shrinkage technique was introduced by Thompson [19] as 
follows 

ˆˆ )0 0θ = ϕ(θ)(θ − θ + θ                (1.4) 

where θ0 is a prior estimate(initial value) about (θ) from the 
past experiences and ˆ0 ≤ ϕ(θ) ≤ 1, represents a shrinkage 

weight factor specifying the degree of belief in θ̂  and 1-
ˆϕ(θ)  specifying the degree of belief in θ0 . We used the 

form (1.4) above to estimate the scale parameter θ of Gamma 

distribution in case ˆϕ(θ)  is chosen as follows:- 

ˆˆ( ) , if Rˆ
ˆˆ( ) , if R

1

2

 ψ θ θ∈ϕ(θ) = 
ψ θ θ∉

           (1.5) 

where R is the preliminary test region for acceptance of size 
∆ for testing the hypothesis H0: θ = θ0 against the hypothesis 

HA: θ ≠ θ0 using the test statistic 0
ˆ2nˆ α

0

θ
Τ(θ/θ) =

θ
 and 

θ̂  is the classical estimator of θ (MLE or MVUE), then the 
estimator which is defined in (1.4) will be written as below 

1 0

2 0

ˆˆ( ) , if R
ˆˆ( ) , if R

0

0

 ψ θ− θ + θ θ∈θ = 
ψ θ− θ + θ θ∉

      (1.6) 

where i
ˆ(ψ θ) , i = 1,2; i

ˆ0 ≤ ψ (θ) ≤ 1  represents as 

shrinkage weight factors which may be a functions of θ̂  or 
may be constants. The resulting estimator (1.6) is known as 
preliminary test single stage shrinkage estimator (PTSSSE). 

Several authors had studied the estimator defined in (1.6) 
for special distribution for different parameters and suitable 
regions (R) as well as for estimate the parameters of linear 
regression model. For example see [1], [2], [3], [4], [5] and 
[19]. 

 

2. Maximum Likelihood Estimator θ̂  
Let t1, t2,…, tn be a random sample of size n from the two 

parameter Gamma distribution with scale parameter θ  and 
shape parameter α . 

i.e. ; it ∼ G(α,θ) for i=1,2,3,...n. 
And assume that the shape parameters α  is known ( say 

α = 0α ) 

The maximum likelihood function L (ti; 0α , θ ) is  
defined as below : - 

L (ti, 0α , θ )=
n

i 0
i 1

f (t , , ) , i 1, 2,..., n
=

α θ =∏ . (1.7a) 

Where, f(.) is defined in equation(1.1). 
Therefore, The maximum likelihood function will be  

o

o

n n
1 i

i 0 inn
i 1i 1

t1L(t , , ) ( t )EXP( )
[ (n)]

α −
α

==

α θ = −
θΓ θ

∑∏ (1.7b) 

And the logarithm of L (ti, 0α , θ ) is:- 

i 0Log L(t , , )α θ  

= -n log Γ (n) - n 0α log θ +( 0α -1)
n

i
i 1

t
=
∑ - i 1

n

it
=

θ

∑
 (1.8) 

The partial derivative of i 0Log L(t , , )α θ  with respect 
to (w.r.t) θ  is as below:- 

i 0 0
2

n

i
i 1Log L(t , , ) n

t
=∂ α θ α

= − +
∂θ θ θ

∑
     (1.9) 

And equating the equation (1.9) to zero, we obtain the 
maximum likelihood estimator for θ  as below 

^

0

n

i
i 1

n

t
=θ =
α

∑
(and sometimes symbolized by 

^

mleθ ) (1.10) 

Noted that θ̂  ∼ Gamma (nα0,θ/nα0) . 

It is easy of note that θ̂  is unbiased estimator. 

i.e.; E ( θ̂ ) = θ and MSE ( θ̂ ) = Var ( θ̂ ) = θ2/nα0.  

3. Preliminary Test Single Stage 
Shrinkage Estimator (PTSSSE) 

Using the form (1.6), we proposed the preliminary test 

single stage shrinkage estimators θ  for estimate the scale 
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parameter θ of Gamma distribution when a prior information 
θ0 available about θ with known shape parameter 0α  as 
below:- 

ˆ, if R
ˆˆk( ) , if R,

0

0 0

 θ θ∈θ = 
θ − θ + θ θ∉

    (1.11) 

i.e. 1
ˆ(ψ θ)  = 0 and 2

ˆ(ψ θ)  = k in equations (1.5). 
And the region R which is defined in (1.5) will be as 

below: 

0 0

2 2
1 /2,2 /2,2R , ]

n no on nα αα α
0 0

−∆ ∆
θ θ

= [ Χ Χ
2 2

  (1.12) 

For simplicity, assume that R = [a,b], a < b 
i.e.; 

 a = 
0 0

2 2
1 /2,2 /2,2,

n no on nbα αα α
0 0

−∆ ∆
θ θ

Χ = Χ
2 2

  (1.13) 

where 
2
1 / 2,2 onα−∆Χ  and 

2
/ 2,2 onα∆Χ  are respectively 

the lower and upper 100( ∆ /2) percentile point of Chi-square 
distribution with (2nαo) degree of freedom. 

The expressions for Bias of the estimator θ  is as 
follows:- 

R R

Bias( ,R) E(
ˆˆˆˆˆ[ f d [k( ) f d0 0 0

θ θ = θ) − θ

= θ − θ] (θ) θ + θ − θ + θ ] (θ) θ∫ ∫

 

 

where R  is the complement region of R in real space and ˆf (θ)  is a (PDF) of θ̂  which has the following forms 

o
o

oo
o o

n

n

ˆˆ exp[ nˆf
(n )( n

α

α
α α

α α

−1[θ] − θ / θ]
(θ)= ,  > ο 

Γ θ / )
 for 0 < θ̂  < ∞                       (1.14) 

we conclude, 

{ }1 0Bias ( ,R) ( 1)(1 k) k[ j ( , ) j (a*,b*)]a* b*λ λθ θ =θ − − − −                 (1.15) 

where, o

o o

n 1 y
b*

a*
j ( , *) y e dy , for = 0,1,2

(n ) (n )
a* b αθ

α α
+ − −=

Γ ∫







                 (1.16) 

λ = θ0 / θ , a* = λ 2
1 /2,2−Χ

onα α  ,b* = λ 
0

2
/2,2nα αΧ  and y= o

ˆn− θ / θα                  (1.17) 

The bias ratio B ( θ ) of the estimator θ  is defined below  

B ( θ ) = Bias( ,R)θ θ  / θ                                        (1.18) 

And, the expression for mean square error (MSE) of θ  is given as below:  

2 2 2 2 2 * *
2

o
* * 2 * * * * * *

1 0 1 0

1MSE ( ,R) { k [ ( 1) ] ( 1) 2k( 1) k [J (a , b )
n

2 J (a , b ) J (a , b )] 2K( 1)[J (a , b ) J (a , b )] }

λ λ λ
α

λ λ λ λ

2θ θ = θ + − + − − − −

− + − − −



     (1.19) 

As for the value of k is found by minimizing the mean squared error of θ  as follow 

2 * * * *
* 1 0

1 2 * * * * 2 * *
0 2 1 0

MSE( , ,R) 0
k

( 1) ( 1)[J (a , b ) J (a , b )]k
(n ) ( 1) [J (a , b ) 2 J (a , b ) J (a , b )]−

∂ θ θ
=

∂
λ − + λ − − λ

=
α + λ − − − λ + λ



          (1.20) 
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To be sure that the value of k* ∈ [0, 1] as a shrinkage 
weight factor we put k as follows:- 

*

* *

*

0 if k 0

k k if 0 k 1

1 if k 1

 ≤
= < <
 ≥

        (1.21) 

The Relative Efficiency of estimator θ  w.r.t. the 

classical estimator ( θ̂ ) is defined as below:- 

0
ˆ nMSE(R.Eff ( , R)

MSE( ) MSE( )
α2θ /θ)

θ θ = =
θ θ



 

  (1.22) 

See for example [1], [2], [3] and [19] . 

4. Conclusions and Numerical Results 
The computations of Relative Efficiency [R.Eff(⋅)] and 

Bias Ratio [B(⋅)] for the equations (1.18) and (1.19) were 

used for the estimators θ . These computations (using Mat. 
LAB programs) were performed for ∆  = 0.01, 0.05, 0.1, λ 
= 0.25(0.25)2 and n = 4,6,8. 

These computations are given in three annexed tables. The 
observation mentioned in the tables lead to the following 
results: 

1. R.Eff ( θ ) were adversely proportional with small 
value of α0 and n specially when θ0 close to θ. 

2. R.Eff ( θ ) are maximum when θ = θ0(λ = 1) for all 
∆ , α0 and n. This feature shown the important usefulness 
of prior knowledge which given higher effects of 

proposed estimator as well as the important role of 
shrinkage technique and its philosophy. 

3. Bias Ratio [B ( θ )] 
ias )]Β (θ

[Β(θ) =
θ



  were 

reasonably small when θ ≈  θ0, otherwise start to be 
maximum for all ∆  and n. This property shown that the 

proposed estimator θ  is very closely to unbiased ness 
especially when θ =  θ0. 

4. Bias Ratio [B ( θ )] were at most decreasing function 
with ∆  for all n and λ 

5. Effective Interval [the values of λ that makes R. Eff. 

greater than one] for θ  was [0.25, 2] for all α0, n and ∆ . 
Here the pretest criterion is very important for guarantee 
that prior information is very closely to the actual value 
and prevent it faraway from it, which get optimal effect of 
the considered estimator to obtain high efficiency. 

6. The suggested estimator θ  is more efficient than 

the classical estimator θ̂  specially when θ0 is very close 

to θ which is given the effective of θ  when given an 
important weight of prior knowledge. And the 
augmentation of efficiency may be reach to tens times. 

Also θ  more efficient than the estimator introduced by 
[19] in the sense of Mean Squared Error and Relative 
Efficiency. 

7. When the shape parameter of Gamma distribution 
equal to one [α0 = 1], the distribution become an 

Exponential distribution, thus the suggested estimator θ  
in this case is more efficient than the estimator introduced 
by [3].  

Table (1).  Shown Bias Ratio [B (⋅)] and Relative Efficiency [R. Eff. (⋅)] of θ  when α0 = 1 

∆     λ 
n 

Bias 
R.Eff. 0.25 0.50 0.75 1 1.25 1.50 1.75 2 

0.01 

4 B(⋅) 
R.Eff.(⋅) 

0.75 
1.7778 

0.5 
4 

0.25 
16 

2.868 E – 010 
5.7485 E + 015 

0.25 
16 

0.5 
4 

0.75 
1.7778 

1 
1 

6 B(⋅) 
R.Eff.(⋅) 

0.74996 
1.778 

0.5 
4 

0.25 
16 

5.4372 E – 010 
3.0405 E + 009 

0.24999 
16.002 

0.49997 
4.0005 

0.74995 
1.778 

0.99993 
1.0001 

8 B(⋅) 
R.Eff.(⋅) 

0.74946 
1.7803 

0.49999 
4.0002 

0.25002 
15.998 

4.0446 E – 010 
1.7522 E + 007 

0.24975 
16.032 

0.4995 
4.008 

0.74918 
1.7816 

0.99884 
1.0023 

0.05 

4 B(⋅) 
R.Eff.(⋅) 

0.74985 
1.7785 

0.49999 
4.0002 

0.25001 
15.999 

3.4098 E – 010 
1.464 E + 008 

0.24993 
16.009 

0.4988 
4.002 

0.74981 
1.7787 

0.99973 
1.0005 

6 B(⋅) 
R.Eff.(⋅) 

0.74743 
1.79 

0.49981 
4.003 

0.25018 
15.977 

0.000618 
6.7747 E + 005 

0.24863 
16.177 

0.49761 
4.0385 

0.74642 
1.7948 

0.99516 
1.0097 

8 B(⋅) 
R.Eff.(⋅) 

0.74141 
1.819 

0.49947 
4.0083 

0.25052 
15.934 

0.0019752 
84859 

0.24548 
16.59 

0.49217 
4.1278 

0.73849 
1.8335 

0.98467 
1.0313 

0.1 

4 B(⋅) 
R.Eff.(⋅) 

0.74816 
1.7865 

0.49973 
4.0042 

0.25017 
15.978 

0.000514 
1.0079 E + 006 

0.24898 
16.131 

0.49833 
4.0268 

0.74757 
1.7893 

0.99675 
1.0065 

6 B(⋅) 
R.Eff.(⋅) 

0.73951 
1.8282 

0.49876 
4.0194 

0.25083 
15.893 

0.0027431 
47188 

0.2443 
16.748 

0.49055 
4.1549 

0.73636 
1.8441 

0.98195 
1.037 

8 B(⋅) 
R.Eff.(⋅) 

0.72733 
1.8891 

0.49765 
4.0358 

0.25138 
15.821 

0.0051264 
1.4534 

0.2387 
17.523 

0.48087 
4.3222 

0.7222 
1.9167 

0.96319 
1.0777 
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Table (2).  Shown Bias Ratio [B (⋅)] and Relative Efficiency [R. Eff. (⋅)] of θ  when α0 = 2 

∆     λ 
n 

Bias 
R.Eff. 0.25 0.50 0.75 1 1.25 1.50 1.75 2 

0.01 

4 B(⋅) 
R.Eff.(⋅) 

0.74995 
1.778 

0.5 
4.0001 

0.25004 
15.994 

9.0614 E – 005 
7.2228 E + 006 

0.24986 
16.018 

0.49981 
4.003 

0.74977 
1.7789 

0.99972 
1.0006 

6 B(⋅) 
R.Eff.(⋅) 

0.74875 
1.7837 

0.49947 
4.0084 

0.25019 
15.975 

0.000917 
2.8478 E + 005 

0.24836 
16.21 

0.49704 
4.0378 

0.7469 
1.7924 

0.99619 
1.0076 

8 B(⋅) 
R.Eff.(⋅) 

0.74426 
1.8052 

0.49695 
4.049 

0.24965 
16.044 

0.0023461 
62160 

0.24496 
16.658 

0.49226 
4.1254 

0.73956 
1.8278 

0.98687 
1.0266 

0.05 

4 B(⋅) 
R.Eff.(⋅) 

0.7475 
1.7896 

0.499 
4.016 

0.2505 
15.937 

0.0019817 
84749 

0.24653 
16.448 

0.49504 
4.0799 

0.74355 
1.8085 

0.99206 
1.016 

6 B(⋅) 
R.Eff.(⋅) 

0.73644 
1.8433 

0.4925 
4.1211 

0.24863 
16.171 

0.004725 
16658 

0.23918 
17.448 

0.4831 
4.2809 

0.72699 
1.8907 

0.9709 
1.0601 

8 B(⋅) 
R.Eff.(⋅) 

0.71884 
1.9336 

0.48115 
4.3156 

0.24345 
16.8447 

0.00575 
7583.1 

0.23195 
18.517 

0.46965 
4.525 

0.70734 
1.9957 

0.94504 
1.1182 

0.1 

4 B(⋅) 
R.Eff.(⋅) 

0.7402 
1.8248 

0.49518 
4.0775 

0.25017 
15.973 

0.0051498 
14213 

0.23987 
17.348 

0.48488 
4.2494 

0.7299 
1.8758 

0.9749 
1.0515 

6 B(⋅) 
R.Eff.(⋅) 

0.71797 
1.938 

0.48107 
4.3162 

0.24418 
16.735 

0.0072827 
5151.9 

0.2296 
18.868 

0.4665 
4.5836 

0.7034 
2.0173 

0.9403 
1.1292 

8 B(⋅) 
R.Eff.(⋅) 

0.69271 
2.0803 

0.4639 
4.6358 

0.23511 
17.991 

0.006307 
3167.2 

0.2225 
20.037 

0.4513 
4.8933 

0.6801 
2.1567 

0.9089 
1.2079 

Table (3).  Shown Bias Ratio [B (⋅)] and Relative Efficiency [R. Eff. (⋅)] of θ  when α0 = 3 

∆     λ 
n 

Bias 
R.Eff. 0.25 0.50 0.75 1 1.25 1.50 1.75 2 

0.01 

4 B(⋅) 
R.Eff.(⋅) 

0.74875 
1.7837 

0.49947 
4.0084 

0.25019 
15.975 

0.0001714 
2.8478 E + 005 

0.24836 
16.21 

0.49764 
4.0378 

0.74691 
1.7924 

0.99619 
1.0076 

6 B(⋅) 
R.Eff.(⋅) 

0.74051 
1.8233 

0.49468 
4.086 

0.24884 
16.147 

0.0030057 
39830 

0.24283 
16.943 

0.8866 
4.1855 

0.7345 
1.8528 

0.98033 
1.0401 

8 B(⋅) 
R.Eff.(⋅) 

0.72729 
1.8897 

0.48602 
4.2316 

0.24475 
16.684 

0.0034775 
23596 

0.23779 
17.658 

0.47906 
4.3535 

0.72033 
1.9258 

0.9616 
1.0807 

0.05 

4 B(⋅) 
R.Eff.(⋅) 

0.73644 
1.8433 

0.49254 
4.1211 

0.24863 
16.171 

0.004725 
16658 

0.23918 
17.448 

0.48309 
4.2809 

0.72699 
1.8907 

0.9709 
1.0601 

6 B(⋅) 
R.Eff.(⋅) 

0.6876 
2.1091 

0.46124 
4.6857 

0.23484 
18.02 

0.004421 
2663.6 

0.21796 
20.809 

0.44435 
5.0368 

0.67075 
2.2133 

0.89715 
1.2378 

8 B(⋅) 
R.Eff.(⋅) 

0.68155 
2.1494 

0.45564 
4.806 

0.22973 
18.837 

0.0038161 
3467.3 

0.22209 
20.13 

0.44801 
4.9689 

0.6739 
2.1977 

0.89983 
1.2331 

0.1 

4 B(⋅) 
R.Eff.(⋅) 

0.71797 
1.938 

0.48107 
4.3162 

0.24418 
16.735 

0.0072827 
5151.9 

0.2296 
18.868 

0.4665 
4.5836 

0.7034 
2.0173 

0.9403 
1.1292 

6 B(⋅) 
R.Eff.(⋅) 

0.68106 
2.1514 

0.45587 
4.7977 

0.23067 
18.647 

0.0054748 
2460.6 

0.21972 
20.506 

0.4449 
5.0325 

0.67011 
2.2211 

0.89531 
1.2448 

8 B(⋅) 
R.Eff.(⋅) 

0.65249 
2.3418 

0.43593 
5.2336 

0.21936 
20.4 

0.002718 
151.8 

0.21378 
21.451 

0.43034 
5.3686 

0.6469 
2.382 

0.86348 
1.3382 
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