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Abstract  Heteroscedasticity arises when the error term of a regression equation does not have a constant variance. 

Financial markets are known to be very uncertain a phenomenon called volatility which  is a key variab le used in many 

financial applications such as investment, portfo lio  construction, option pricing and hedging as well as market  risk 

management. This study models the heteroscedasticity of volatility of stock returns in Nairobi Securities Exchange, NSE of 

Safaricom and Kenya Commercial Bank, KCB using daily return  series from 9
th

 June 2008, to 31st December, 2010, using 

ARIMA-ARCH/GARCH models. The procedure for building the model involved model identificat ion, order determination, 

estimation of parameters and diagnostic check.Shapiro–Wilk testrejected the null hypothesis of normality for both series at  

5% level of significance while  Ph ilip Perron (PP) and Augmented Dickey Fuller (ADF) reveal that price series were not 

stationary while returns series were stationary. All the return series exh ibit, leptokurtosis, volatility clustering and negative 

skewness. The estimation results reveal that ARIMA (1, 0, 0) -GARCH (1, 1) and ARIMA (0, 0, 2)-GARCH (1, 1) best fits 

Safaricom and KCB respectively. Investors who wish to avoid large, errat ic swings in portfolio returns may wish to structure 

their investments to produce a leptokurtic distribution. Further, researches shou ld focus on the calculation of value-at-risk 

(VaR) in the markets. 
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1. Introduction 

In recent years, modeling and analyzing stock return 

volatility is one of the most important aspects of financial 

market developments, providing an important input for 

portfolio management, option pricing and market regulation 

[1]. An investor‟s choice of a portfolio is intended to 

maximize the expected return subject to a risk constraint, or 

to minimize his risk subject to a return constraint. An 

efficient model for forecasting of an asset‟s price volatility 

provides a starting point for the assessment of investment 

risk. To price an option, one needs to know the volatility of 

the underlying asset. This can only be achieved through 

modeling the volatility. Volatility also has a great effect on 

the macro-economy. High volatility beyond a certain 

threshold will increase the risk of investor loses and raise 

concerns about the stability of the market and the wider 

economy[2]. 

In Kenya and other countries, investing in  stocks has 

attracted many indiv iduals. This can be ev idenced by the 

number o f peop le who  showed interest  in  buy ing  the 

Safaricom IPO‟s during its inception in 2008. Returns from 

these stocks  tend to  fluctuate over t ime. They are thus   
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volatile and exh ib it volatility clustering. Due to the 

exponential growth in  those investing in stocks, modeling 

and analyzing volatility of stock market  returns has become 

an important research area in financial markets and has 

received much attention from market practitioners, analysts 

and organizations with the aim of coming up with robust 

models that can predict future prices. This extensive research 

reflects the importance of volatility  in  investment, security 

valuation, risk management and monetary policy making[1] 

Both academicians and practitioners recognize that 

volatility is not directly observable and that financial returns 

show certain characteristics that are specific to financial time 

series such as volatility clustering and leverage effect[3]. 

Financial econometricians have developed many time-vary i

ng volatility models among them, the Autoregressive 

Conditional Heteroscedastic(ARCH) model proposed by 

Engle[4] and its extension, the Generalized  Autoregressive 

Conditional Heteroscedastic(GARCH) developed by 

Bollerslev[3], and Taylor[5] which have been applied widely. 

This research seeks to investigate the dynamics  of stock 

return volatility in NSE. This is due to the growth in those 

investing in stocks in Kenya and it has become one way of 

building wealth. Investors normally anticipate for high 

returns but are also aware of the risk involved due to 

fluctuation in prices. 

2. Literature Review 
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Financial time series modeling has been a subject of 

considerable research both in theoretical and empirical 

statistics and econometrics. Various linear and non-linear 

methods by which such forecasts can be achieved have been 

developed in the literature and extensively applied in 

practice to describe stock return volatility. Such techniques 

range from linear to non-linear models. Poterba[6] take into 

account the linear model and specify a stationary AR (1) 

process for volatility of the S&P 500 index. Another study by 

Frenchet al[7] uses a non-linear stationary ARIMA (0, 1, 3) 

model to describe the volatility of the S&P 500 index.  

The extensive use of such models is not surprising since 

they provide good first order approximat ion to many 

processes. Linear t ime series models however are not robust 

to describe certain features of a volatility series. For instance 

there are well-defined empirical ev idences that stock returns 

have a tendency to exhibit  clusters of outliers, imply ing that 

large variances tend to be followed by another large variance. 

They are unable to exp lain a number of important features 

common to much financial data, including leptokurtosis, 

volatility clustering, long memory, volat ility smile and 

leverage effects. That is, because the assumption of 

homoscedasticity (or constant variance) is not appropriate 

when using financial data, and in such instances it is 

preferable to examine patterns that allow the variance to 

depend upon its history. Thus such limitations of linear 

models have motivated many researchers to consider 

non-linear alternatives. The Autoregressive Conditional 

Heteroscedastic (ARCH) model of Engle [3], the generalized 

ARCH (GARCH) model of Bollerslev[3] and exponential 

GARCH (EGARCH) model of Nelson[8] are the common 

non-linear models used in finance literature. These ARCH 

class models have been found to be useful in capturing 

certain non-linear features of financial t ime series such as 

heavy tailed distributions and clusters of outliers.  

A study by Akgiray[9] uses a GARCH(1,1) model to 

investigate the time series properties of the stock returns and 

reports GARCH to be the best of several models in 

describing and forecasting stock market volat ility. Anil & 

Higgins[10] investigated the volatility of the conventional 

ordinary least squares to estimate optimal hedge rat io 

estimates using future contracts. Similarly, Najand[11] 

examines the relative ability of linear and non-linear models 

to forecast daily S&P 500 futures index volatility. The study 

finds that non-linear GARCH models perform best. Benoit 

[12] ut ilized the infinite variance distributions, when 

considering the models for stock market price changes. 

Fama[13] when modeling stock market  prices attributed their 

discrepancies to the possibility of the process having stable 

innovations and thus fitted an adequate model on this basis.  

Markov-Switching models have also been used to capture 

the volatility dynamics of financial t ime series. This is 

because they give rise to a plausible interpretation of 

nonlinearities. Markov switching model of stock returns was 

originally  proposed by M, Startz, & Nelson[14]. Bhar[15], 

among others employ markov switching models for the 

modeling of stock returns.  

There is a significant amount of research on volatility of 

stock markets of developed countries. For instance, Gary[16] 

applied the GARCH model to the Shanghai Stock Exchange 

while Bert ram[17] modeled Australian Stock Exchange 

using ARCH models. Other studies on these stock markets 

include Baudouhat[18] who utilized the GARCH model in 

analyzing the Nordic financial market integration. Walter 

[19] applied the structural GARCH model to portfolio risk 

management for the South African  equity market  as well 

Hongyu[2] who forecasted the volatility of the Chinese stock 

market  using the GARCH-type models. Elie[20] compared 

the GARCH model and the EGARCH under three 

distribution assumptions: the Gaussian, the t-student and the 

general error distributions. He showed that the distribution of 

returns is far from being normally distributed with fat tails 

and volatility clustering being persistent. Al-Jafari[21] 

utilized a non-linear symmetric GARCH(1,1) model and two 

non-linear asymmetric models, TARCH(1,1) and EGARCH 

(1,1) to Muscat Securities Market and the empirical findings 

provide no presence of day-of –the –week effect 

The Sub-Saharan Africa has been under-researched as far 

as volatility modeling is concerned. Studies carried out in the 

African stock markets include, Frimpong Joseph Magnus 

[22] who applied GARCH models to the Ghana Stock 

Exchange. Brooks[23] examined the effect of political 

change in the South African Stock Market;Appiah-Kusi[24] 

investigated the volatility and volat ility spillovers in the 

emerging markets in Africa. More recently, Emenike[25] 

applied the EGARCH model to the Kenyan and Nigerian 

Stock Market returns. From the availab le literature, the NSE 

just like other Sub Saharan Africa Equity Markets has been 

under-researched as far as market volatility is concerned and 

therefore this study contributes to the small literature 

available on the Nairob i stock market.  

These developments in financial econometrics suggest the 

use of nonlinear time series structures to model the stock 

market  prices and the expected returns. The focus of 

financial time series modeling has been on the ARCH model 

and its various extensions. However, the ARCH has 

limitat ions in that it treats negative and positive returns in the 

same way. It is also very restrictive in parameters and often 

over predicts the volatility because it responds slowly to 

large shocks. GARCH models have proved adequate in 

modeling and forecasting volatility. GARCH for instance 

takes into account excess kurtosis i.e . fat tail behavior and 

volatility clustering which are two important characteristics 

if time series. It also provides accurate forecast of variances 

and covariance of asset return through its ability to model 

time varying conditional variances.  

However, GARCH is only part of a solution. Although 

GARCH models are usually applied in return series financial 

decisions are rarely based solely on expected returns and 

volatilities. GARCH models are parametric specifications 

that operate best under relatively stable market conditions. 

Also GARCH is explicit ly designed to model time -varying 

conditional variances. GARCH models often fail to capture 

highly irregular phenomenon. These include rebounds and 
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other highly anticipated events that can lead to significant 

structural change. Further, GARCH models fail to capture 

the fat tails observed in asset return series.  Some scholars 

favor Markov-Switching models claiming  that; Markov- 

Switching models are more accurate and provide better 

forecasts than a variety of linear and non-linear GARCH 

models for instance[14]. In this paper we use ARIMA- 

ARCH/GARCH models of stock returns to model the 

heteroscedastic nature of volatility of stock returns in the 

Nairobi stock market over the period June 6, 2008 to 

December 31, 2010. 

3. Materials and Methods 

3.1. Materials 

3.1.1. Data for the Study 

The data used in this study comprise Safaricom‟s and 

KCB‟s daily returns series over the period June 6, 2008 to 

December 31, 2010. The closing prices were  obtained 

fromNairobi Securit ies Exchange. Since the return of an 

asset is a complete and scale free summary of an investment 

with attractive statistical features, we used return series 

rather than the price series[26]. 

3.2. Methods  

3.2.1. Volat ility Definition and Measurement 
Volatility refers to the fluctuation observed in some 

phenomenon over time. In modeling and forecasting 

literature it refers to the conditional variance o f the 

underlying asset return. It is measured as the sample standard 

deviation;  
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Where   is the standard deviation, r i  is the return on 

day i and 
 

is the average return over the N-day period 

3.2.2. Basic Statistics of Returns 

3.2.2.1. Descriptive Statistics 

Analyzing financial prices d irectly  is d ifficu lt because 

consecutive prices are correlated, and the variances of prices 

frequently increase with t ime. Consequently we use price 

changes to analyze prices. There are two main types of price 

changes that are used: arithmetic and geometric returns.[27] 

Definition: Let tY  and 1tY
 
be today‟s and yesterday‟s 

prices of an asset or a portfolio, the arithmetic returns are 

defined by 
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Where 
tY  is the price of the asset at day t. Yearly  

arithmetic returns are defined by: 
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Where 
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Definition: Let 
tY  and 

1tY  be today‟s and yesterday‟s 

prices of an asset or portfolio, then the geometric returns are 

defined as 
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Note: The yearly geometric returns are given by 
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From (6), we have that X may be written as  
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i.e. the yearly geometric returns are equal to the sum of the 

daily geometric returns 

3.2.3. The Normality Test 

This tests the likelihood that the given data set {x1 … x n  } 

comes from a Gaussian distribution. A great number of tests 

have been devised for this problem. One of the tests used is 

the Shapiro–Wilk test. In  statistics, the Shapiro–Wilk test 

tests the null hypothesis that a sample {x 1 … x n  } came 

from a normally distributed population. It was published in 

1965 by Samuel Shapiro and Martin Wilk. The test statistic 

is: 
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Where 

i) )(ix  with parentheses enclosing the subscript index (i) 

is the i th  order statistic, i.e., the i th -smallest number in the 

sample; 
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Where 
T

nmmm ),...,( 1
 
are the expected values of 

the order statistics of independent and identically-d istributed 

random variables sampled from the standard normal 

distribution, and V is the covariance matrix of those order 

statistics. 

3.2.4. Volat ility Clustering 

This is determined by computing the ACF. Given that 

 tX
 
is a stationary time series, with constant expectation 

and time independent covariance. The ACF for the series is 

defined as 
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for 0k  and kk    
The value k  denotes the lag. 

Plots of ACF as a function of k shall be done, and 

determine if the autocorrelation decreases as the lag gets 

larger or of if there is any particular lag  for which the 

autocorrelation is large  

3.2.5. Testing for ARCH Effects   

Before fitting the autoregress ive models to each of the 

daily returns series, the presence of ARCH effects in the 

residuals is first tested. If there does not exist a significant 

ARCH effect in the residuals then the ARCH model is 

mis-specified. Testing the hypothesis of no significant 

ARCH effects is based on the Lagragian Mult iplier (LM) 

approach, where the test statistic is given by 

LM=nR 2                 (11) 

Where n =sample size , R
2

=the coefficient of 

determination for the regression in the ARCH model using 

the residuals. The null hypothesis is that there is no ARCH 

effect up to order 𝑞  in the residuals. The test statistic is 

calculated as the number of observations mult iplied by 𝑅2  

from the regression. The LM test statistic asymptotically 

follows a 𝜒𝑞
2 distribution. The null hypothesis is rejected if 

the test statistic is larger than critical value of  𝜒𝑞
2. 

3.2.6. Testing for Stationarity and Autocorrelation  

Test for stationarity is conducted with the Augmented 

Dickey Fuller (ADF) and Ph ilip Perron (PP) test. The null 

hypothesis is that the return series have unit roots or in other 

words, the series is non-stationary. The null hypothesis is 

rejected if the test statistic is larger in the absolute term than 

the critical value[28] 

Having confirmed that all return series are stationary, we 

shall continue to examine the autocorrelat ion and the partial 

autocorrelation in  the series to identify their proper structures. 

This is done through the Ljung-Box Q-statistic test by (Box 

& George[29] which is defined as: 

𝑄 = 𝑇 𝑇 + 2  
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Where 𝜌𝑘  is the sample autocorrelat ion coefficient; T is 

the sample size and m is the maximum lag length 

The null hypothesis that all 𝜌𝑘  are zerois rejected if the 

value of the computed Q is larger than the critical Q-statistic 

from the chi-square distribution at the g iven level of 

significance. According to Harvey & Jaeger[30], choosing 

the number of lags for the test is a practical issueas a small 

number of lags might fail to detect the autocorrelations at 

high-order lags, whereas, a large number of lags might result 

in diluting the significant correlat ion at one lag by 

insignificant correlations at other lags.  

3.2.7. Volat ility Modeling Techniques 

3.2.7.1. ARCH Model 

The ARCH model was introduced by Engle[4] in  his study 

“Autoregressive Conditional Heteroscedasticity with 

estimates of the Variance of United Kingdom Inflat ion”, as 

the first formal model which  seemed to capture the 

phenomena of changing variance in t ime series data. It is 

most widely used discrete time model for analysis of 

financial data. The fo rmulat ion of his model is given below: 
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2  is the variance at time t, t

2  is square 

residuals at rime t, and q  is the number of lags. The effect  of  a 

return shock i period ago (i≤ q) on current volatility is 

governed by the parameter α. In  an ARCH model, o ld news 

arrived at the market more than q period ago has no effect at 

all on current volatility. For ARCH (1, 1) the model is 
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3.2.7.2. GARCH Model 

Bollerslev[3] extended the basic ARCH model by 

introducing the GARCH model which has proven to be quite 
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useful in empirical work. He suggested that the conditional 

variance function be specified as follows: Y
T

 =X
T
  +

t  is the mean equation. Where Y
t  

is the stock return, X
t  

is the exogenous variables or belonging to the set of 

informat ion Y
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, β is a fixed  parameter vector and 

conditional variance is,  
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Where 0,...,,,0 210  q  and 

0,...,, 21 p  

The GARCH (p, q) above defined as stationary when (α 1

+ α 2  +……. + α 0 ) + (β1+ β1+... + 1) p . In this study 

we are going to use GARCH (1, 1). The model for GARCH 

(1, 1) is given by 1
2
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2
  ttt   where, 

α 0 >0, α 1 ≥0 and β 1 ≥0. 

3.2.8. Build ing a Volatility Model 

3.2.8.1. Model Identification 

Under the identification stage the following wasdone:  

i. Converting of daily closing price series to return series. 

Let  Y t  
denote the daily  closing price of a stock at  the end of 

the day t, the daily stock return series is  generated by  
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ii. Stationarity of the return  series was checked  using unit 

root test. Lagrange Multip lier (LM) and Ljung-Box 

statistics is used to test for ARCH effects on thesquared 

residuals of the regressed AR (p) process, since GARCH (p, 

q) model implies ARCH (r = q + p) model. Under the null 

hypothesis that there is no ARCH effects (α
1

= · · · α p ), 

the LM test statistic equal to TR
2

 has asymptotic chi 

-squared distribution with p degree of freedom.  

iii. An ARIMA(p,d,q) model was  fitted to the data to 

remove serial dependence 

iv. ACF, PACF and AICc was used to determine the 

order of the models 

3.2.8.2. Parameter Estimation  

The estimation of the model‟s parameters was 

implemented by Maximum Likelihood Method under the 

normal distribution. Th is involves choosing values for the 

parameters that maximizes the chance (or likelihood) of the 

data occurring. Given a sample {x 1 , x 2 … x n } of n, IID 

observations, which comes from a distribution f(x) with 

unknown parameter , then; the joint density function is 

f{x 1 , x 2 ,…, x n / }=f(x 1 / )xf(x 2 / )x…x f(x n / )(16) 

By considering the observed values x
1

, x
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… x
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to be 

fixed parameters of this function, whereas  will be the 

function's variable and allowed to vary freely. And this 

function is called likelihood 
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In practice, it  is often more convenient to work with the 

logarithm of the likely-hood function and called the 

log-likelihood: 
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Assume observations x
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follow normal 

distribution with un-known parameters  = {
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In this case we have 
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Equating this to zero and solving for   and   gives 
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Parameter Es timation for GARCH (p, q) model  

Let us now look at the application of Maximum 

Likelihood Estimation, MLE to estimate the parameters of 

GARCH (p, q). To estimate parameters of GARCH (p, q) 

given k, p and q we have 
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Where v
t

 is the white noise term, 
t  is normally  

distributed with mean zero and variance h
t  

),...,/( 01  ttp
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2
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The log-likelihood function of the parameter vector  = 

(
T

pq ),...,,,...,, 110   

becomes 

L( )=

2

1 1

1 1
( ) ln 2 ln )
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l h
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Thus the gradient is  
2

2
1

1 1
( ) ( )

2

n
t t

t tt q

h
L

h h




 


  


     (35) 

And the Fisher Information matrix is  
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3.2.8.3. Diagnostic Checking  

Goodness-of-fit needs to be performed after fitting the 

appropriate model Tackle[31]. This is based on the 

standardized residuals. The fo llowing was performed: 

i. The standardized residuals of the fitted model are 

analyzed to ascertain their randomness. The standardized 

residuals  

t

t

t



 


                 (38) 

are IID random variables following either a standard normal 

or student-t distribution. If the model fits well then neither 



t  
nor 

2

t  
should exh ibit serial correlat ion. 

ii. The normal plots, ACF p lot and time series plot was 

done. The normal probability plot should be a straight line 

while the time p lot should exh ibit random variation. For 

ACF‟s all the correlation should be within the test bounds 

which indicates stationarity in the data. 

iii. Ljung-Box test is employed to check for adequacy of 

the fitted model. The Ljung-Box test was named after Greta 

M Ljung and George E. P. It is a type of statistical test 

which test whether any of a group of autocorrelat ions of a 

time series is different from zero. It performs a lack-of-fit 

hypothesis test for model specification, which is based on 

the Q-statistic  

Q=n(n+2)

2

1

( )n

j

p j

n j 
            (39) 

where n= sample size, h= number o f auto-correlat ion lags 

included in  the statistic, and p )(2 j  is the squares sample 

autocorrelation at lag j. Under the null hypothesis of no 

serial correlation, the Q-statistic is asymptotically 

Chi-Square distributed. If the value of the test statistic is 

greater than the critical value from the Q-statistics, then the 

null hypothesis can be rejected. Alternatively, if p-value is 

smaller than the conventional s ignificance level, the null 

hypothesis that there are no autocorrelation will be rejected.  

3.2.9. Volat ility Forecasting 

The challenge in Econometrics is to specify how the 

informat ion will be used to forecast the mean and variance of 

the return, conditional on the past information. Various 

methods have been considered for the mean return to 

forecast future returns. The most widely used specification is 

the GARCH (1, 1) model introduced by Bollerslev[3] as a 

generalization of Engle[4].  

Consider the following GARCH (1, 1) model: 

y tt u   , u t  N(0,
2

t ),          (40) 

  (41) 

What is needed to generate are forecasts of T+1
2
T, 

T+2
2
T...T+s

2
 T where T denotes all information 

available up to and including observation T. Adding one to 

each of the time subscripts of the above conditional variance 

equation, and then two, and then three would yield the 

following equations 

 T+1
2
 = 0 + 1+T

2
           (42) 

T+2
2
 = 0 + 1+T+1

2
        (43) 

 T+3
2
 = 0 + 1+T+2

2
        (44) 

Let 
2

,1

f

T  be the one step ahead forecast for 2
 made at 

time T. Th is is easy to calculate since, at time T, the values of 

all the terms on the right hand side are known. 

2

1,
f

T , 

will be obtained by taking the conditional expectation of (40). 

Given
2

1,T

f , 
2

2,
f

T  the 2-step ahead forecast for 2
 

made at t ime T is obtained by taking the conditional 

2

1

2

110

2

  ttt u 
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expectation of (41) 

2,

2

T

f = 0 +  1 E ( 1
2

Tu T) + 
1,

2f

T    (45) 

Where E( 1
2

Tu T) is the expectation, made at time T, 

of 1
2

Tu  , which is the squared disturbance term. We can 

write 

E ( 1
2

Tu t) = T+1
2
           (46) 

But T+1
2
 is not known at time T, so it is replaced with the 

forecast for it, 
2

1,
f

T , so that the 2-step ahead forecast is 

given by 

  
2

2,
f

T = 0 + 1 
2

1,
f

T + 
2

1,
f

T     (47) 

  
2

2,
f

T = 0 + (1+)
2

,1

f

T        (48) 

By similar arguments, the 3-step a-head forecast will be 

given by 

 
2
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f

T  = ET (0 + 1 + T+2
2
)                  (49) 

= 0 + (1+)
2
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f

T                   (50) 

= 0 + (1+)[0 + (1+)
2

1,
f

T ]   (51) 

= 0 + 0(1+) + (1+)
2

2

1,
f

T    (52) 

Any s-step a-head forecast (s 2) would be produced by   

(53) 

4. Results and Discussion 

4.1. Data Exploration 

The data employed in this study comprise Safaricom‟s and 

KCB‟s closing price over the period June 6, 2008 to 

December 12, 2010 which constitutes a sample of 653 

observations. The closing prices were obtained fromNairobi 

Securities Exchange. Let Y t  
denote the daily closing price 

of a stock at the end of the day t, the daily stock return series 

was be generated by 

r t = ln
1t

t

Y

Y
                  (54) 

From Figure 1 above the closing prices are very irregular 

with varied degree of fluctuations. The time plots clearly 

show that the mean and variance are not constant, showing 

non-stationarity of the data. It also shows a drop in prices 

from a high value in 2008 to a low value in 2010. Series such 

as thesecannot be used for further statistical in ferences 

because of their implications Gujarat i[32], thus theneed to 

transform them to returns. The plots of daily  returns of 

Safaricom and KCB are p resented in Figure 2 below. The 

plots for returns are stationary and exhibit  no trendand the 

amplitude vary  with time a phenomenon called ARCH 

effects. Volat ility clustering is also evident.  

 

 

Figure 1.  Time series plot of KCB and Safaricom closing price 
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Figure 2.  Plots of Safaricom‟s and KCB‟s returns r
t  

4.1.1. Descriptive Statistics for the Prices and Returns 

Table 1 below shows summary statistics for the two 

companies‟ return series. The results indicate high volatility 

and the risky nature of the market since the standard 

deviation of the market returns is h igh in  comparison with 

the mean. A lso the standard deviations are very  close for 

both Safaricom and KCB with Safaricom being slightly 

volatile. Both price series have positive skewness implying 

that the distribution has a long right tail. On the other hand, 

the return series for Safaricom have negative skewness 

imply ing that the distribution has a long left tail and positive 

for KCB implying that the distribution has long right tail. 

The values for kurtosis are high (above three) for both return 

series imply ing they are leptokurtic. The Shapiro-Wilk test 

rejects normality at the 5% level for all series. So, the 

samples have all financial characteristics: volatility 

clustering and leptokurtosis.  

Table 1.  Descriptive statistics for prices and returns 

 

A. Prices 
KCB Closing price Safaricom Closing price 

Mean 

Median 

Minimum 

Maximum 

Standard deviation 

C.V. 

Skewness 

Ex. kurtosis 

Shapiro-Wilk 

Observations 

22.243 

21.750 

15.500 

33.000 

3.5203 

0.15826 

1.2007 

1.3145 

0.887923 

653 

4.6474 

4.6500 

2.7000 

8.1500 

1.1823 

0.25441 

0.35244 

-0.36618 

0.959455 

653 

B.  Returns KCB  returns Safaricom  returns 

Mean 

Median 

Minimum 

Maximum 

Standard deviation 

C.V. 

Skewness 

Ex. kurtosis 

Shapiro-Wilk 

Observations 

 

-0.00062188 

0.00000 

-0.093090 

0.093932 

0.021731 

34.945 

0.29534 

3.6479 

0.905841 

652 

 

 

-0.00079954 

0.00000 

-0.11935 

0.084557 

0.022302 

27.893 

-0.086079 

3.9471 

0.916475 

652 

4.1.2. Test for Normality and Unit Root 

Shapiro-Wilk test is used to test for normality in the series which are shown in the table below  

Table 2.  Shapiro-Wilk test for Normality for the two series 

 
Shapiro-Wilk test 

W p-value 

Safaricom 0.9595 1.927x10
12

 

KCB 0.8879 2.2x10
16

 

A stationary check for both closing prices and returns using Augmented Dickey Fuller (ADF) Philip Perron (PP) test 

shows that under the null hypothesis, unit root is not detected in both returns 
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Table 3.  ADF and PP test for prices and returns for Safaricom and KCB 

Safaricom Prices Returns 

ADF Test PP test ADF Test PP Test 

ADF Value -3.5 PP Value -3.27 ADF Value -9.13 PP Value -22.7 

P-value 0.04 P-value 0.075 P-value 0.01 P-value 0.01 

KCB 
ADF Value -2.71 PP Value -2.86 ADF Value -9.38 PP Value -22.38 

P-value 0.27 P-value 0.21 P-value 0.01 P-value 0.01 

 

 

Figure 3.  ACF of Asset Returns and Squared Asset Returns for Safaricom and KCB 

4.2. ARIMA (p, d, q) Modeling  

4.2.1. Model Identification 

Use ACF and PACF identify the ARIMA model for the mean equation 

The upper left graphs show ACF of Log Safaricom closing price, showing the ACF slowly decreases. It is probably that the 

model needs differencing. The lower left  is PACF of Log Safaricom closing price, in dicat ing significant value at lag 1 and 

then PACF cuts off. Therefore, the model for Log Safaricom closing price might be ARIMA (1, 0, 0). The upper right shows 

ACF of d ifferences of log Safaricom with no significant lags. The lower right is PACF of d ifferences of log Safaricom, 

reflecting no significant lags. The model for differenced log Safaricom series is thus a white noise, and the original model 

resembles random walk model ARIMA (0, 1, 0)  
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Figure 4.  ACF and PACF Safaricom closing and log differenced closing price 
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Figure 5.  ACF and PACF KCB closing and log differenced closing price 

Figure 5 shows the ACF and PACF of closing price and 

log difference of closing price. The graphs show the same 

trend as for Safaricom discussed above. Further, AICc 

provides another way to check and identify the model. This 

can be calculated by the formula: 

AICc = N*log (SS/N) + 2(p + q + 1)*N/ (N – p – q – 2), if 

no constant term in model 

AICc = N*log (SS/N) + 2(p + q + 2)*N/ (N – p – q – 3), if 

constant term in model 

N: the number o f items after differencing (N = n – d) 

SS: sum of squares of differences  

p& q : the order of autoregressive and moving average 

model, respectively. According to this method, the model 

with lowest AICc will be selected. Fitting the various orders 

of ARIMA in R g ives the values in Table 3 below.  

Table 4.  AICc values for the candidate ARIMA (p, d, q) models 

Model Safaricom KCB 

 AICc AICc 

ARIMA(1,0,0) -3113.21 -3113.206 

ARIMA(0,0,1) -3047.012 -3112.235 

ARIMA(1,0,1) -3049.893 -3112.479 

ARIMA(1,1,0) -2952.173 -3048.920 

ARIMA(0,1,1) -3117.038 -3112.480 

ARIMA(0,1,2) -3103.62 3103.62 

ARIMA(0,0,2) -3059.893 -3157.22 

   

Based on the AICc, values presented in Table 4, the 

ARIMA (1,0,0) model is identified to  be the one that best 

fits the daily returns for Safaricom and ARIMA(0,0,2) for 

KCB from June 2008 to Dec 2010. 

4.2.2. Parameter Estimation  

The parameters of the fitted ARIMA models are shown in 

the table below 

Table 5.  Estimated parameters for ARIMA (1, 0, 0) and ARIMA (0, 0, 2)  

 Model 
1  

Intercept 
1 2  

Safaricom ARIMA(1,0,0) 
0.1188     

-0.0008 

------         

------ 

KCB ARIMA(0,0,2) 
-------        

-0.0008 

0.1140    

0.0672 

Thus the complete models become for the fitted ARIMA 

(1, 0, 0) and ARIMA (0, 0, 2) for Sfaricom and KCB 

respectively becomes; 

Safaricom: r t = r t = -0.0008+ 0.1188 1  + t  

KCB: r t =   + 0.1140r 1t  + 0.067r 2t + t  

4.2.3. Diagnostic Checking  

We plot he ACF and the PACF of residuals to check for 

model adequacy. 
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Figure 6.  ACF and PACF of Safaricom and KCB residuals 

The ACF and PACF shows no significant lag hence the models are appropriate  

4.3. ARCH/GARCH Modeling  

Although ACF & PACF of residuals have no significant lags, the time series plot of residuals shows some cluster of 

volatility (not reported here). ARIMA is a method to linearly model the data and the forecast width remains constant because 

the model does not reflect recent changes or incorporate new informat ion. However, we fit an ARIMA (p, d, q ) model to 

remove serial dependence in the series. Inspection of residual plot d isplays and squared residual plot shows cluster of 

volatility. The ACF & PACF of squared residuals confirms this and thus if the residuals  (noise term) are not independent and 

can be predicted. Hence, ARCH/GARCH should be used to model the volat ility of the series to reflect more recent changes 

and fluctuations in the series . Followings are the plots of squared residuals.  
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Figure 7.  ACF and PACF plots of residuals and squared residuals of Safaricom and KCB 

4.3.1. Testing for ARCH effects in Returns of t  
in the 

Fitted ARIMA (1,0,0) and ARIMA (0,0, 2) 

Before fitting the autoregressive models to each of the 

daily returns series, the presence of ARCH effects in the 

residuals is tested. If there does not exist a significant ARCH 

effect in the residuals then the ARCH model is mis -specified. 

Testing the hypothesis of no significant ARCH effects is 

based on the Lagragian Multiplier (LM) approach as stated 

earlier on the methodology. 

From Table 6, the p-values for both series are less than 
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0.05 hence we reject the null hypothesis of no significant 

arch effect  in  the daily returns of Safaricom and KCB and 

conclude there are significant arch effects for the June 6, 

2008 to December 31, 2010.  

Table 6.  Lagragian Multiplier test for Arch effects 

Returns Chi-square df p-value 

KCB 117.15  <0.001 

Safaricom 74.5019 4 <0.001 

4.3.2. Model Identification  

Since this study deals with daily  returns, it  is restricted to 

pure ARCH (p) models. For GARCH (p, q) models, those 

with p, q ≤ 2 are typically selected by AIC and BIC. Low 

order GARCH (p, q) models are generally preferred  to a high 

order ARCH(p) for reasons of parsimony and better 

numerical stability of estimat ion 

4.3.3. Order Determinat ion 

Determining the ARCH order p and the GARCH order q 

for a particular series is an important practical p roblem. The 

AIC, BIC and Log likelihood ration tests are used in 

selecting the appropriate order of the GARCH from 

competing models. Table 7 below g ives the suggested order 

with  their respective fit statistics. The aim is to  have a 

parsimonious model that captures as much variation in the 

data as possible. Usually the simple GARCH model captures 

most of the variability in most stabilized series. Small lags 

for p and q are common in applications. Typically GARCH 

(1, 1); GARCH (2, 1) or GARCH (1, 2) models are adequate 

for modeling volatilities even over long sample periods[33]. 

This study has included GARCH (1, 0) GARCH (0, 2) and 

GARCH (2, 2) in order to check if they are appropriate for 

modeling time vary ing variance. We select the model with 

the lowest AIC and BIC` 

From Table 7 above the model given in bold is taken to be 

the most appropriate according to the criteria above.  The 

GARCH models for different values of p and q were fitted to 

the data, diagnosed and from the diagnosis and goodness of 

fit statistics, the GARCH (1, 1) was found to be the best 

choice. This is consistent with  most empirical studies 

involving the application of GARCH models in financial 

time series data. We thus fit a GARCH (1; 1) to the residuals 

of ARIMA (1, 0, 0) and ARIMA (0, 0, 2) of Safaricom and 

KCB respectively. 

 
Table 7.   AIC, BIC values of the candidate GARCH model 

Company 

 
Model AIC BIC 

Safaricom 

 

 

 

 

 

 

 

GARCH(0,1) 1.534990 1.534990 

GARCH(0,2) 1.534990 1.534990 

GARCH(1,1) 1.510699 1.521877 

GARCH(1,2) 1.553465 1.601506 

GARCH(2,1) 1.534990 1.583031 

GARCH(2,2) 1.533339 1.588244 

 

KCB 

 

 

 

 

 

 

 

 

GARCH(0,1) 

 

3.752802 

 

3.790843 

GARCH(0,2) 3.763026 3.791068 

GARCH(1,1) 3.716712 3.757891 

GARCH(1,2) 3.742802 3.790843 

GARCH(2,1) 3.743026 3.791068 

GARCH(2,2) 3.739183 3.794087 

 
 
4.3.4. Estimat ion 

From R output 

Estimate          Std. Error    t  value           Pr(>|t|)     

a0                  4.101e-05            8.491e-06       4.829           1.37e-06 *** 

a1                    1.866e-01              2.617e-02       7.131           9.98e-13 *** 

b1                    7.209e-01              3.363e-02       21.438         < 2e-16 *** 

 

For Safaricom the fitted GARCH (1, 1) model is  

  r t = 5.76 + t t  
2

t =0.00004+0.186 Z 1
2
t  +0.7209 1

2
t  

From the fo llowing output for KCB 

Estimate          Std. Error    t value        Pr(>|t|)     

a0                   2.895e-05          5.833e-06       4.963        6.95e-07 *** 

a1                   1.912e-01          2.592e-02       7.376        1.63e-13 *** 

b1                   7.597e-01          2.561e-02       29.662       < 2e-16 *** 

 

The fitted GARCH (1, 1) model is  

r t = 20.18 + t t  

2

t =0.000028+0.19 Z 1
2
t +0.7597 1

2
t  
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To assess the accuracy of the estimates, the standard errors are used the smaller the better. Model fit  statistics used to assess 

how well the model fit the data are the AIC and BIC. From the standard errors the estimates are precise. Based on 95% 

confidence level, the coefficients of the fitted GARCH (1, 1) model are significantly different from zero.  

4.3.5. Diagnostic Checking  

Here the adequacy of the selected models is done. This is done by using standardized residuals which  are assumed to 

follow either normal or standardized t distribution. It must satisfy the requirement of a white noise. The p lots include 

normal plots, ACF p lot time series plot and h istogram. If the model fits the data well the histogram of the residuals should 

be symmetric. The normal probability plot should be a straight line while the time p lot should exhib it random variation. For  

ACF p lots all the correlation should be within the boundary line meaning the data is stationary.   

 

Figure 8.  ACF plots of residuals for Safaricom and KCB 

It is clear that for Safaricom all the correlations are within the test bounds imply ing the fitted model is adequate. As for 

KCB the first two auto-correlat ions are outside the test bounds which might imply the model is not adequate. However, this 

might be by chance and we proceed to use Q-Q p lot and  

 

Figure 9.  Q-Q plots and Normal probability plot of Safaricom and KCB residuals 
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From the Q-Q plots and normal probability plot the 

residuals seem to be roughly normally d istributed although 

some points remain off the line.  

4.4. Volatility Forecasting 

The final objective of this study was to forecast the 

volatility. Table 8 and 9 below shows the forecasts 

Although forecast performance was not one of the 

objectives of the study, comparing GARCH(1,1) and mixed 

models using Mean Squared Error it was found that mixed 

models outperform GARCH(1,1)(results not presented here) 

Table 8.  Forecast results for Safaricom and KCB 

Point Forecast Low High 

653 -0.0011994094 -0.04450269 0.04210387 

654 -0.0014993927 -0.04508323 0.04208444 

655 -0.0008070325 -0.04448788 0.04287381 

656 -0.0008070325 -0.04448788 0.04287381 

657 -0.0008070325 0.04287381 -0.04448788 

658 -0.0008070325 -0.04448788 0.04287381 

659 -0.0008070325 -0.04448788 0.04287381 

660 -0.0008070325 -0.04448788 0.04287381 

661 -0.0008070325 -0.04448788 0.04287381 

662 -0.0008070325 -0.04448788 0.04287381 

Table 9.  Forecast results for KCB 

Point Forecast Low High 

653 -0.000855497 -0.0427695 0.04105851 

654 -0.0007207025 -0.04296716 0.04152576 

655 -0.0006276681 -0.04321562 0.04196029 

656 -0.0006276681 -0.04321562 0.04196029 

657 -0.0006276681 -0.04321562 0.04196029 

658 -0.0006276681 -0.04321562 0.04196029 

659 -0.0006276681 -0.04321562 0.04196029 

660 -0.0006276681 -0.04321562 0.04196029 

661 -0.0006276681 -0.04321562 0.04196029 

662 -0.0006276681 -0.04321562 0.04196029 

5. Conclusions and Suggestions 

The objectives of the study of this research work have 

been largely achieved. The return series of Safaricom and 

KCB series have been modeled. They reveal some stylized 

facts such as negative skewness, leptokurtosis, and 

volatility clustering, nonlinear data generating process, 

serial dependence and leverage effects which are common 

observations in other stock markets. This is agreement with 

previous researches. The null hypothesis of significant 

correlations is rejected at 5% level of significance for the 

two series. The results of LM test finds presence of arch 

effects and that the standardized residuals are normally 

distributed. It has been shown that the price is not normally 

distributed,which suggests that there is evidence of fat tails 

or is leptokurtic which is a common feature of financial 

market  returns. Investors who wish to avoid large, errat ic 

swings in portfolio returns may  wish to structure their 

investments to produce a leptokurtic distribution. 

Other researchers can use heavy tailed distributions e.g 

General Error Distribution to capture the stylized facts of 

return series. Further, in emerging markets, diversification 

and return benefits provided have attracted significant 

investors‟ interest which have led to significant portfolio 

equity inflows into these financial systems, and as a result, 

motivated the study of various aspects of stock return 

behavior in these markets. For that reason, an imperat ive and 

contemporary filament of empirical researches should focus 

on the calculation of value-at-risk (VaR) in the markets. 
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