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Abstract During the last years of his life, Ramanujan defined 17 functions F(q), where | q | < 1, and he named them as
mock theta functions. The first detailed description of mock theta functions was given by Watson. In this paper, we obtain
relations connecting mock theta functions, partial mock theta functions of order 8 and infinite products analogous to the

identities of Ramanujan.
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1. Introduction

Ramanujan gave a list of seventeen mock theta functions
and labeled them as third, fifth and seventh orders without
giving any reason for his classification[1, 2]. Ramanujan’s
general definition of a mock theta function is a function of
f(q) defined by a q-series convergent when | q | < 1 which
satisfies the following two conditions,

(a)For every root & of unity, there exist a @ -function

6 (q) such that difference between f(g) and 6@ (q) is
boundedas ¢ —> &, radially.
(b)There is no single theta function which works forall &,

ie. for every @-function @(q) there is some root of unity
& for which f(g) minus the theta function & (q) is

unbounded as ¢ — & radially.

A study of these sums and expansions has been made by
Watson[3], Agarwal[4] and Andrews[5]. Later on, Andrews
and Hickerson[6], Choi[7] and Gordon and Mc Intosh[§]
studied certain g-series in the Lost Notebook and named
them as sixth, eighth and tenth order mock theta functions.
Although Gordon and Mc Intosh[8]have given definitions of
order of mock theta functions, and later Bringmann and
Ono[9, 10] have given clarification for the order of the mock
theta functions.

Also, relations connecting mock theta functions and
partial mock theta functions are given by Srivastava[l1] and
Denis et al.[12]. Bhaskar Srivastava[13] provided relations
connecting mock theta functions and partial mock theta
functions of order 3, 5, 6 and 10 and relations connecting
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mocktheta functions, partial mocktheta functions oforder 2,
3 and 6 and Ramanujan’s function p(q). Recently, Roselin
Antony and Atakalti Araya[l4] obtained relations
connecting mock theta functions of order 2 and infinite
products analogous to the identities of Ramanujan. Also,
Roselin Antony and Hailemariam Fiseha[l15] obtained
relations connecting mock theta functions of order 10 and
infinite products analogous to the identities of Ramanujan.
Also, Roselin Antony[16] obtained relations connecting
mock theta functions of order 6 and infinite products
analogous to the identities of Ramanujan

o0
If M(q)= z Qn
n=0
is a mock theta function, then the corresponding partial mock
theta function is denoted by the terminating series,

M.(9)=) Q,
n=0

(1.1)

(1.2)

2. Methodology

We shall make use of mock theta functions of order 8,
their partial sums and infinite products in the known identity
of Srivastava[ll] to obtain new relations connecting mock
theta functions of order 8.

Mock theta functions of order 8:

Gordon and McIntosh[8] found the following eight mock
theta functions of order §;
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Ramanujan, in chapter 16 of his second notebook
defined theta functions as follows;[17, 18]

A(q) = Z n(n+1)/2 _ (¢” 6] ") (L1
n=0 (49"
An identity due to Euler is,[ 19, 20]
w (n+])?
———=(x9) (1.12)
2 o0
n=0 (4347 )11
The special cases ofthe above identity are
n 2 2 2 4
B(q) = z (q »q jq q )oo (1.13)
=0 (%547, (4500
o n(n+l) 3 4. 4
=0 (4’34 ) (4:9)s,
The Famous Roger’s —Ramanujan identity is,[21, 22]
0 q}’l
D(q) = = (1.15)
0 @GDn (4,950,
o0 n(n+1) 1
E(g)= Z (1.16)

2 3.5
(q q)n (q »q 59 )oo
Hahn deﬁned the septic analogue of the Rogers-
Ramanujan functions as,[23, 24]

2/12

_(@qtds q)w(lm

F(q)= Z

=0 (4’ q)(qq)zn (q q)w
2n(n+1) .
G(q) z (q ’qzaqz’q )oo (118)
1=0(0%:0)u(~4:9)2, (47397 e
2n(n+l) 6 7.7
H(q)= Z (q,qz,q 2,61 )oo (1.19)
=0 (@G Do (@547
The Jackson — Slater identity;
Jackson[25] discovered the following identity;
2n? 3 5 8, 8
I _ - q " _(_q »—q .4 .4 )oo
n=0 (qaq)2n ((] -q )oo

This identity was independently rediscovered by Slater[26,
Eqn.39] who also  discovered its companion
identity[Slater[26, Eqn.38]]

0 2n(n+1)
2

J
(@)= Z G (4%:9%)m

The identlty analogous to the Rogers- Ramanujan identity
is the so-called Gollnitz— Gordon identity given by,[27, 28]

8. 8
_(0.-4".4%4")s

(121)

(- q,q ) q
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The nonic analogue of Rogers — Ramanujan functions is

(79319 (q .0°,4°307 )
M(q) = (1.24)
,;)(q 1) (@307),, @ q)oo
(q’q)Bn(l ”+2)q3”(””) 4%.4",4°:90 )
N(g)= = 1.25
nZ;? (@)@ 30 ) ama (@07 (1:23)
3n(n+l) 8 9.9
P(q) Z (q q)3n+1 q — (q,q 3"] ;q )oo (1.26)
oY C 700 W C 760 T (7739 )

These equalities are due to Bailey[Bailey,[29];

Eqn.(1.6),(1.7) and (1.8)].
We shall make use of the following known identity of

Srivastava[11];

z 5mzar :(zarj[z 5mJ_Zar+l Z 5m (1.27)
r=0 m=0 r=0 m=0

m=0 r=0

3. Main Results and Discussion

We shall establish relations connecting mock theta
functions, partial mock theta functions of order 8 and infinite
products analogous to the identities of Ramanujan.

A) Taking 8, = ¢"""*"’* in (1.27) and by (1.11), we
get
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and making use of (1.3), we get
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ii) Taking o, =

in (2.1)

+

iii) Taking @, =

in (2.1)

2.4)
q
+ — rHAm(Q)-
r=0 (_Qaq )r+2
qr(r+l) (_qZ;qZ)r
=4:9)
and making use of (1.6), we get
2.2 ©
’ 0 /
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(4397 ) m=0
w02 (2. 02
+ 4 M)}
=0 (=459 )42

iv) Taking @, = in (2.1)

(2.5)

and making use of (1.7), we get

2.2 0
> 0 /
%UO(Q) => ¢"" V2 U,.(9)
B [e'e] m=0

0 (r+1)2 2
+ q ( q.9 )H—lAm(Q)'

4. 4
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and making use of (1.8), we get

(2.6)

vi) Taking &, =

in (2.1)

2.2
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=Y ¢""20,,(q) @7)
m=0
o  (r+2)° 2
q (=497 )11 4
+ > 4 m(4)-
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2¢* (—q*;q"),

L2
(Qa q )2r+1
and making use of (1.9), we get

vii) Taking &, =

in (2.1)

(@%:9%).
A oy (g)+1
(97w i ]

g" "2 [V, (q) +1] (2.8)

M8

0
w A 2042, 2. 4
207" (-q%4%)
2
=0 (@97 )1y

3
I

= 4,,(q).
q2r2+2r+1 (—q4;q4),
(4:9°)5,.

and making use of (1.10), we get

2.2 0
(49 )oo m=0

o 2(r+1)2+2(r+1)+1(_ 4 ah)
+ q q ;9 r+1Am((])-

viii) Taking @, = in (2.1)

2.9)

2
=0 (4397 )2(r+1)+2

2
m

q

2, 2
(@759
and by (1.13), we get

B) Taking O, = in (1.27)
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2 2 2.4 0
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Similarly, by assuming §m =—————, We can
(¢%:9%),

establish relations connecting mock theta functions of order
6 and the infinite product C(g).
2
m

C) Taking O

m =

in (1.27)
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and by (1.15), we get
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connecting mock theta functions and the infinite product
E(g).
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, relations can be developed
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relations connecting mock theta functions of order six and
the infinite products J(g), K(¢) and L(g) can be obtained.

(9,9
(q3 :qs)m (q3;q3)2m
and by (1. 24) we get
(¢*.4°.4°:q )wza
@) =

F) Taking &, =

in (1.27)

m

2

3 3.3
38 ) (@59 )om =0

0 3 2
_ (GD3md"
3

m=0 ((]

o]

+ Z ar+1Mm (Q)

r=0

(2.46)

q(q,q)

2

(-4°:9%),
and by (1.3), we get

i) Taking o, = in (2.46)

¢".9°.4°:9),,
So(q)
@)

(Q'q)gmq3’”2
) (@30 ) om
¢V (~g:¢7),
pr S G/ S W
qr(r+2) (_q;qz)r
(-q%:9%),

0

_23

mO(q

Som(q)  (2.47)

+

‘Mm (q)

ii) Taking &, =

in (2.46)
and by (1.4), we get
¢*.4°.4":4")u S.(q)
(@:47)s0

2
_ (@93 g
.3 3. 3
m=0 (@39 ) (@307 )om
[0 q(r+1)(r+3)(_q_q2)

o0

(2.48)

3 Slm(q)

+

r+l

M, (q).
R G S R W
q (r+1)(r+2) (—q2 g 2 ),

iii) Taking &, =
(—-4:9°) 41

in (2.46)

and by (1.5), we get
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and by (1.9), we get

q*.9°.9°; q)wT(q)

(q,97:9 59 )oo
(@:07)ss Vo(q)+1
(@507 ol +1]

0

2
(6:9)3mq" )
- - T()m (q) (2.49) (qq) mq3m
w0 (3 (@50 )01 Z(q ) 3(q R [Vom(@)+1] (253)
m=0 m 2m
o q(r+2)(r+3) (- qz, qz)

+> A g (g). “ 2g 2(r+1)?
2 m ( 4*34)rn
r=0 (_qaq )r+2 +Z M (q)
r(r+l)(_q2,q2) =0 (q:9 )2(r+1)+l
iv) Taking @, = T in (2.46) zr 2t gty
(=4:97) 1 vili) Taking ¢, = in (2.46)
and by (1.6), we get (9:9 )2r+2
(q4’q5,q9;q9)ooT( ) andby(llO) weget
3 3 1\q
Ut (4" q q = )°°V(q)
_ 9:9)3m4q T 2
=> 2.50) o . 3m
53 in(9) ( (4:9)3m4
m=0 (q »q )m(QJq)Zm = z 3 3 3m3 3 Vlm(q) (2.54)
. (r+1)(r+2)( 2. 2) m=0 (q 5q )m(q 54 )2m
LY 4 2q 9 Jril M, (q). o q2(r+1)2+2(r+1)+1( 7"
r=0 (_q q )r+2 + }’+1M (q)
g (=g:q7). =0 (@:97) 2041y
V) Takmg a, s — (246) ( ) (1 3m+2) 3m(m+1)
(_q 7q4)r By assuming O, = &) 3q and
and by (1.7), we get (q 3q )m(q 397 ) amn
. 3m+1
(C] ,(C] q ;q )OO Uo(q) 5m = ( 3(q,3q))3(m+13q 3) , relations connecting mock
q , q >q m q ’q 2m+1
2 theta functions of ordersixand the infinite products N(q) and
© . 2m
_ (9:9)3m9 Uy, (9) (2.51)  P(q) can be obtained.
= (q3. q3) (q3. q3) om 4 Similar works have been done on mock theta functions of
m=0 ’ " ’ 2m order 8 by various mathematicians. Ahmad Ali[30] obtained
0 q(r+l)2 (_q.qz) relations connecting mock theta functions of order 8 and
+ S r+1Mm (9). various mock theta functions of other orders. Maheshwar
= (=97:9)1 Pathak and Pankaj Srivastava[31] established relations
(r+1) L2 connecting connecting partial mock theta functions and
vi) Taking o, = (_% q )r in (2.46) mock theta functions of order two, six, eight and ten.
T4
and by (1.8), we get 4. Conclusions
(997,939 ) U,(q) In the similar way, many relations can be obtained using
(613; )oo mock theta functions of different orders and infinite products
analogous to Ramanujan’s identities.
o0
(¢; q) q
= Z 3. = lm (C]) (2.52)
0 (@30) (@472
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