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Abstract  In th is paper we recall some properties in d igital topology for example, dig ital set, digital function, digital 
homotopy etc. from Boxer[5] and then give the definition of digital category. Also we present digital version of important 
category models. 
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1. Introduction 
Digital Topology is a branch of mathemat ics where the 

image processing and digital image processing is studied. 
Many Mathematicians, fo r example Rosenfeld, Kopperman, 
Han, Kong, Malgouyres, Boxer, Ayala, Karaca and others 
have contributed this area with their research. The notion of 
digital image, d igital continuous map and digital homotopy 
studied in[3, 4, 6, 7, 12, 16]. Their recognition and efficient 
computation became a useful material for our study.  

Then we carry th is notion to category theory and we 
construct some fundamental category models in d igital 
topology.  

In section two we recall some definit ions and properties 
from Boxer[5] in section three we introduce the ‘Digital 
Category’ and give basic examples of digital categories in 
order to construct a tool for category theory researchers. 

2. Preliminaries 
In this paper we denote the set of integers by 



. Then 
n


represents the set of lattice points in  Euclidean 
n − dimensional spaces. A finite subset of n



 is called to  
be digital image. 

We will use a variety of adjacency relat ions it the digital 
image research. The following[7] are commonly used.  

Two po ints  p and  q  in  2


 are 8 adjacent−  i f 
they are distinct and differ by at most 1 in each coordinate; 
p a n d  q  in  2



 a r e  4 adjacent−  i f  t h e y  a r e 
8 adjacent−  and differ in exact ly one coordinate. Two 
points and  in  are  if they are 
distinct and differ by at most  in each coordinate; they 
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are 18 adjacent−  if they are 26 adjacent−  and differ 
in at most two coordinates; they  are 6 adjacent−  if 
they are 18 adjacent−  and differ in exactly one 
coordinate. For {4,8,6,18,26}k ∈ , a k neighbor− of 
a lattice point p  is a point that is k adjacent− to p .  

We generalize 4 adjacency−  in 2


 and 

6 adjacency−  in  3


 by taking , np q ∈  are 

2n adjacent−  if p q≠  and p and q  d iffer by 1  in 
one coordinate and by 0  in all other coordinates. 

More extensive adjacency relations are investigated in[5]. 
In the following, if κ  is an adjacency relat ion defined for 

an integer κ  on n
 as one of the k adjacencies−  

discussed above, that is, if 
( , ) {(1,2), (2, 4), (2,8), (3,6), (3,18), (3, 26)}n k ∈  

or 2k n= . 
We assume adjacencyκ −  as k adjacency− , 

connectednessκ − as k connectedness− ,etc. 
Suppose that κ  be an adjacency  relation defined on 
n


. A digital image nX ⊂   is connectedκ − [5] if 
and only if for every pair of points { , } , ,x y X x y⊂ ≠  

there is a set 0 1{ , ,..., }cx x x X⊂  such that 

0 , cx x x y= =  and ix and 1ix +  are 

, {0,1,..., 1}neighbors i cκ − ∈ − . 
Definition 2.1. Let X  and Y  are dig ital images such 

that 0nX ⊂  , 1nY ⊂  . Then the digital function 
:f X Y→  is a function which is defined between digital 

images. 
Definition 2.2. ([3]; see also[15]) Let X  and Y  are 

digital images such that 0nX ⊂  , 1nY ⊂  . Assume 
that :f X Y→  be a function. Let  iκ  be an 

adjacency  relation defined on in
 , {0,1}i ∈ . f  is 

called to be 0 1( , ) continuousκ κ −  if the image under f  

p q 3
 26 adjacent−

1
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of every 0 connectedκ −  subset of X  is 

1 connectedκ − . 
A function satisfying Defin ition 2.1 is referred to be 

digitally continuous. A consequence of this definit ion is 
given below. 

Definition 2.3. ([3]; see also[15]) Let X  and Y  are 
digital images. Then the function :f X Y→  is said to be 

0 1( , ) continuousκ κ −  if and only  if for every  

{ , }x y X⊂  such that 0x  and 1x  are 0 adjacentκ − , 

either 0 1( ) ( )f x f x=  or 0( )f x  and 1( )f x  are 

1 adjacentκ − . 
Definition 2.4. ([2]) Let ,a b ∈ , a b< . A digital 

interval is a set of the form  
[ , ] { | }a b z a z b= ∈ ≤ ≤




 

in which 2 adjacency−  is assumed.  
For example, if κ  is an adjacency  relation on a 

digital image Y , then :[ , ]f a b Y→


 is 

(2, ) connectedκ −  if and only  if for every 

{ , 1} [ , ]c c a b+ ⊂


, either ( ) ( 1)f c f c= +  or ( )f c  
and ( 1)f c +  are adjacentκ − . 

Definition 2 .5. ([3]; see also[6]) suppose that nX ⊂   
and nY ⊂   be d igital images. Let  , :f g X Y→  be 
( , ) continuousκ λ −  functions. Assume there is a 

positive integer m  and a function : [0, ]F X m Y× →


 
such that 

i) For all , ( ,0) ( )x X F x f x∈ =  and  
( , ) ( )F x m g x= ; 
ii) For all x X∈ , the induced function 
:[0, ]xF m Y→



 defined by 

( ) ( , )xF t F x t= for all [0, ]t m∈


 
is (2, ) continuousλ − . 

iii) For all [0, ]t m∈


, the induced 

function :[0, ]tF m Y→


 defined by 

( ) ( , )tF x F x t= for all [0, ]t m∈


 
is ( , ) continuousκ λ − . 
Then F  is called to be a digital ( , ) homotopyκ λ −  

between f  and g , and f and g are said to be digitally  
( , ) homotopicκ λ −  in  Y . 

We use the notation  

,f gκ λ
 

to denote f  and g  are dig itally 

( , ) homotopicκ λ −  in  Y . 
Definition 2.6.[4]A digital pathκ −  in a digital 

image is a (2, ) continuousκ −  function 

:[0, ]f m X→


. A lso if (0) ( )f f m= , we say that 

f  is a  dig ital loopκ − , and the point (0)p f=  is the 
base point of the loop f . If f  is a  constant function, then 
it is called a t riv ial loop. 

If f  and g  are dig ital pathsκ −  in  X  such that 
g  starts where f  ends, the product of f  and g , written 
f g⋅ , is intuit ively, the pathκ −  obtained by following 

f  by g . Formally :[0, ]f m X→


, :[0, ]g m X→


 

and 1( ) (0)f m g= , then 1 2( ) :[0, ]f g m m X⋅ + →


 
is defined by 

1

1 1 1 2

( ) if [0, ]
( )( ) .

( ) if [ , ]
f t t m

f g t
g t m t m m m

∈
⋅ =  − ∈ +





 

Definition 2.7. Let f  and f ′  be 
( , ) continuousκ λ −  functions. Two paths f  and f ′ , 

mapping the digital interval [0, ]m


, are said to be digital 

path homotopic if they have the same in itial point 0x  and 

the same final point 1x , and there is a 

( , ) continuousκ λ −  map :[0, ] [0, ]F m m X× →
 

 
such that 

( ,0) ( )F s f s=  and ( , ) ( )F s m f s′= , 

0(0, )F t x=  and 1( , )F m t x=  

for each [0, ]s m∈


 and each [0, ]t m∈


. We call F  
to be a digital path homotopy between f  and f ′ , and we 
write ( , )pf fκ λ ′


. 

3. Digital Categories 
Definition 3.1. A dig ital category is a quintuple 

( , , , , )dom cod= MC O where  
(i) O  is a class whose members are called  −C object. 
−C object are digital images. 
(ii) M  is a class whose members are called 
−C morphisms. −C morphis ms are dig ital functions 

which is defined between digital sets. 
(iii) dom and cod  are dig ital functions from M  to O  

( ( )dom f  is called the domain of f  and ( )cod f is 
called the codomain of f ) 

(iv) 


 is a function from  
{( , ) | , and ( ) ( )}D f g f g dom f cod g= ∈ =M  

into M , called the composition law of C  
such that the following conditions are satisfied: 
(1) Matching Condition: If f g  is defined, then 

( ) ( )dom f g dom g=

 and ( ) ( )cod f g cod f=

; 
(2) Associativity Condition: If f g  and h f  are  

defined, then ( ) ( )h f g h f g=   

; 
(3) Identi ty Existence Condition: For each −C object 

A  there exist −C morphis m e  such that 
( ) ( )dom e A cod e= =  and  
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(a) f e f=

 whenever f e  is defined, and 
(b) e g g=

 whenever e g  is defined; 
(4) Smallness of Morphism Class Condition: For any 

pair ( , )A B  of −C  objects, the class 
{ | , ( ) and ( ) }f f dom f A cod f B= ∈ = =M  

is a set. 
Let , ,A B C  and D  be digital images. We will use the 

notation f gA B C→ →  to denote the 
composition g f .  

Thus the statement that the triangle 

 
is equivalent to the statement that 

f g hA B C A C→ → = → . When 
morph isms f  and g  exist such that the above triangle 
commutes, we say that h  factor through B . Similarly the 
statement that the square  

 
commutes means that g f k h= 

. 
Proposition 3.1. Let    be a d igital category and A  is 

a − object such that A  is a digital image. Then there 
exist exactly one  − morphis m :e A A→ satisfiying the 
properties 3(a) and 3(b) of Definit ion 3.1; i.e. such that  

(a) f e f=

 whenever f e  is defined, and 
(b) e g g=

 whenever e g  is defined; 
Proof: Suppose that each of e  and e  is such a 

morph ism. Then by (a) e e e= 


 and by (b) e e e=


; 
hence, e e=  . 

Definition 3.2. For each object A  of the digital category 
 , the unique  − morphism :e A A→ satishfiying (a) 
and (b) above is denoted by 1A  and is called the 

 − identity of A . 
Definition 3.3.  A digital category   is said to be: 
(1) Small prov ided that   is a dig ital set; 
(2) Discrete provided  that all o f its morphis ms are 

identities; 
(3) Connected that for each pair ( , )A B  of  − objects, 

hom ( , ) A B ≠ ∅ . 

Example 3.1. Let  a d iagram that shows all of the objects as 

dots and the non-identity morphisms as arrows. Thus  

 
and 

 
can be considered to be digital categories, but neither 

 
nor 

 
can be digital categories. 

Definition 3.4. For each natural number n , the set 
{0,1,2,..., 1}n −  supplied with the usual order can be 
considered to be digital category n , thus we have the 
special small digital categories: 

=0  The empty category 
= •1  

0 1= • → •2  

 

 
Boxer defined the path homotopy in [5]. We can consider 

equivalence classes of digital paths (path homotopy classes) 
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because digital path homotopy relation is an equivalence 
relation. 

Example 3.2. Given a digital image X  and points 
,x y X∈ a digital κ − path from x  to y  is a 

(2 )κ− −continuous mapping f  from some d igital set 

[0, ]m


to X  with (0)f x= and ( ) .f m y= If 

1:[0, ]f m X→


 is a digital path from x to y and 

2:[0, ]g m X→


is a dig ital path from y to z , there is a  

path 1 2:[0, ]gf m m X+ → defined by 

1

1 1 1 2

( ) [0, ]
( )

( ) [ , ]
f t t m

gf t
g t m t m m m

∈
=  − ∈ +





 

from x to z .This makes X  into a category, the dig ital 
path category of X . 

Now g iven digital paths 
:[0, ] , :[0, ]f m X g m X→ →

 

, both from x  to 

y . 
There is a d igital continuous mapping 
:[0, ] [0, ]F m m X× →

 

 in  a d igital image in 2


such 
that 

( ,0) ( )
( , ) ( )
( , )
(

[0, ]
[0) ,, ]

F t f t
F t m g t
F t m x
F m

s m
s ms y

=         
=        
=        
=      

∈
∈





 

It easy to see that this is an equivalence relation. The 
quotient of the digital path category by this congruence 
relation is a category called the digital category of digital 
homotopy classes of digital paths in X . 

Definition 3.5. Let   be a dig ital category and ,A B  
digital dig ital sets. A digital morphis m : →f A B  in   
said to be monic if it is left cancelable. 

Theorem 3.1. Suppose that , {1,...,8}∈iA i be digital 
sets. Consider the following ‘cube’ of digital objects and 
digital morphis ms in a given dig ital category  : 

 
(i) Suppose that all faces except the top face are given to 

be commutative. If 4 8→A A  is monic, then the top face 
is also commutative. 

(ii) Suppose that all faces except the bottom face are 
given to be commutative. If 1 5A A→  is epic, then the 
bottom face is also commutative. 

Proof: Let [ , ]i j  denote the digital morphis m from iA  

to jA . We have to prove that [3, 4] [1,3] [2,4] [1,2]= 

. 
Now [4,8]  is given to be monic and (writing 


 as 

juxtaposition)  
[4,8][3,4][1,3] [7,8][3,4][1,5]

[6,8][5,6][1,5]
[6,8][2,6][1,2]
[4,8][2,4][1,2]

=
=
=
=

 

Then the result follows by left cancellat ion of[4,8] . 
ii) We have to prove that [7,8][5,7] [6,8][5,6].= [1,5] 

is given to be epic and 
[7,8][5,7][1,5] [4,8][2,4][1,2]

[7,8][3,7][1,3]
[6,8][5,6][1,5].

=
=
=

 

Then the result follows by right cancellation of [1,5].  
Example 3.3.Given a digital image X and points 
,x y X∈ a digital κ path from x  to y  is a  

(2 )κ− −continuous mapping f  from some d igital set 

[0, ]m


to X  with (0)f x=  and 1( )f m y= . If 

1:[0, ]f m X→


 is a d igital path from x  to y  and 

2:[0, ]g m Y→


 is a digital path from y to z  there is 

a path 1 2:[0, ]gf m m X+ → defined by 

1

1 1 1 2

( ) [0, ]
( )

( ) [ , ]
f t t m

gf t
g t m t m m m

∈
=  − ∈ +





 

from x  to z . This makes X  into a category the digital 
path category of X . Now given digital paths 

1 2:[0, ] , :[0, ]f m X g m Y→ →
 

, both from x  to y , 

one can define (2, )~f gκ  if there is a continuous map 

1 2:[0, ] [0, ]H m m X× →
 

 

 
in 2


 such that  

2

1

( ,0) ( )
( , ) ( )
(0, )
( , ) .

H s f s
H s m g s
H t x
H m t y

=
=
=
=  
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4. Conclusions 
 in this paper we construct the digital category model for 
digital images and gave some conditions made the diagram 
commutative. 
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