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Abstract The Lorentz transformation is well known. In this paper, we have presented various types of applications of
different Lorenz Transformations according to the nature of movement of one inertial frame relative to the other inertial
frame such as relativistic aberration, relativistic Doppler’s effect and reflection of light ray by a moving mirror. When one
frame moves along X- axis with respect to the rest frame then we can find these applications for special Lorentz
transformation. When the motion ofthe moving frame is not along X-axis relative to the rest frame but the motion is along
any arbitrary direction then we can find these formulae for most general Lorentz transformation. We can generate these
formulae fordifferenttypes of most general Lorentz transformations using mixed number, quaternion and geometric product.
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1. Introduction 1.2. Most General Lorentz Transfor mation

When the motion of the moving frame is along any
1

1.1. Special Lorentz Transformation arbitrary direction instead of the X-axis , i.e., the veIocityV

Let us consider two inertial frames of reference Sand S,  has three components Vi, Vi and V, , then the relation
where the frame S is at rest and the frame S'is moving along  petween the space and time co-ordinates of S and S¢ is
the X-axis with velocity v with respect to the S frame. The

. . called the most general Lorentz transformation[2] which can
space and time co-ordinates of S and S'are (x, y, z t) and (X, g 21

be written as

Y, Z, tw) respectively. The relation between the co-ordinates ri rt i
b ; i r r r.
of_S and S'is ca_lled the special Lorentz transformation [1] rt=r+V I'( ) (g _ 1) ~tgy
which can be written as T V32 3
X -vt r
Xt=———o=—, yl=y, 2t =z 1 t¢:g{[—rr.V}

1-v?/c?
and the inverse most general Lorentz transformation[2]
which can be written as

_ VX
M= : 422 r
VL-vije [=ri+V

==

LV)

— -

( —1)+t¢g§

and the inverse special Lorentz transformation[1] can be T V2 (4)
written as r r
o xb+ vt 3 B t:g(t¢+r¢.V)
X=———y=yt z=12¢ ) )
J1-v?/c 2 V2§52
Where , =¢l-—z: and c=1
the I
t=—2C
2 2
1-v /C 1.3. Mixed Number Lorentz Transformation

. . _ In the case of the most general Lorentz transformation, the
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and V,. Let inthis case r and rt bethespacepartsin S

and S0 frames, respectively. Then using the mixed
[ | [ 1 1
product AAB=A.B+iA" B , the mixed number
Lorentz transformations [3— 6] can be written as
t= (t—rV)
r..r ®)
r@zg(r —tV -ir"Vv)

and the inverse mixed number Lorentz transformation[3- 6],
can be written as

t=g(t+reV)

r r (6)
[ =g(Ft+tV +irt” V)

Let, =X F =Y, =2z rf=Xxrf=y,

rz¢ =z0.1f V, Vy, and V; denote the components of the

velocity of the system S' relative to S then equation (5)
and (6) can be written as

= g{x -tv, - i(yvZ -2v, )}
yt= g{y -tv, - i(zvX - XV, )}

zt = g{z -tv, - i(xvy - YV, )} v
tt=g(t-xv, -yv, -2v,)
and
X= g{x¢+ thv, + i(y@vZ - z@vy)}
y= g{y@ +t¢\/y + i(z@\/X - xlv, )} ©

z= g{z¢+ thv, + i(xﬁ\/y - yiv, )}
t=g(tt+xiv, +ylv, +12Wv,)

1.4. Quaternion Lorentz Transformation

In this case the velocity \} of S¢ withrespectto S
has also three components, V,, Vy, and Vzas the mostgeneral
Lorentz transformation. Let in this case I and It be the
space parts in S and S¢ frames respectively. Then

1 1 ] 1
using the quaternion product AB=-AB+ A" B the
quaternion Lorentztransformatlon [7-10] can be written as

g(t +1. V)
r
r¢=g(r —tV T “V)

and the inverse quaternion Lorentz transformation[7-10] can
be written as

©)

t=g(tt-FLV)

r r (10)
[F=g(Ft+tV +117V)
Let, =X, I,=Y, L=z, =X rf=y,

r¢ =zt.If V,, Vy and V; denote the components of the

velocity of the system S' relative to S then equation (9)
and (10) can be written as
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= g{x -tv, - (yvZ - zvy)}
yb= g{y -tv, - (zvX - XV, )}

zt = g{z -tv, - (xvy - YV, )} 4y
=g(t+xv, +yv, +2zv,)
and
X = g{x¢ +ibv, + (y@\/Z - z@vy)}
y= g{y¢+t¢vy +(z0v, - xtv, )}
(12)

z= g{z¢+t¢\/Z + (xﬁvy -y, )}
t=g(tt-xtv, - ylv -2zlv,)

1.5. Geometric Product Lorentz Transfor mation

1
In this case the velocity V of S' with respectto S has
also three components, Vy, Vy, and V; as the Most general

Lorentz transformation. Let in thls case I and Il be the
space parts in S and SC frames respectively. Then

ulsipg .th? geon:etric product of two vectors
AB=A.B+ A" B the geometric product Lorentz
transformation [11, 12] can be written as
rl
tt=g(t-r.v
9( ) 13)

r r I r. I

re=g(r-tv-r"V)
and the inverse geometric product Lorentz transformation,
[11, 12] can be written as

t=g(tt+ e V)

r r rr._.r
r=g(rt+tv +rt”V)
=y, r=z rf=x rf{=y,

r{ =z¢.If V, Vy and V, denote the components of the

velocity of the system S' relative to S then equation (13)
and (14) can be written as

=gle-tv, - (w, - 2v, Jf
ye=gy -tv, - (2v, ‘XVZ)}

(14)

Let, I =X,

z¢ =g{z -tv, - (xvy A )} o
tt=g(t-xv, -yv, -2v,)
and
x = gxi+ i, + (yw, - z0v, )}
(16)

y=gfyt+tv, +(zv, - xiv, )}
2= gzt +tiv, +(xtv, - yiv, )t
t=g(tt+xiv, +yl +zlv,)

Now we are going to derive the formulae for relativistic
aberration, relativistic Doppler’s effect and reflection of light
ray by a moving mirror of different types of lorentz
transformations respectively.
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2. Aberration

The speed of light is independent of the medium of
transmission but the direction of light rays depends on the
motion of the source emitting light and observer [10]

2.1. Relativistic Aberration of Special Lorentz
Transformation
The earth moves round the sun in its orbit. Consider sun is
to be the system S and the earth is in the system S{ is

moving with velocity V relative to the system S along
positive direction of common X-axis. Let the star P observed

from the observers O and O¢ in system S and St
where the frame St is moving along X-axis with velocity

V withrespectto S frame. Letthe angles made by the light
ray in X-Y plane fromthe star Pat any instant in two systems

at O and Of be j (f=<POX) and jt
(j@ =< POtX ¢) respectively [Figure 1].

re Star P

Figure 1. Direction of light raysobserved from afixedframe S anda

moving frame St (the frame St is moving along common X-axis

with velocity V with repect to S frame)

It can be shown that [13]

= tan fy/1- b?

tan
J 1- bsecy
where
b= % (17)
and
-¢ _ 2
tanyg = fangiyi- o7 i-b (18)

1- bsecyt
It is clear from equation (17) and (18), J andj¢ are not

same in the two systems; they depend upon the motion of
source and observer. Hence equation (17) describes the
relativistic aberration of special Lorentz transformation.

2.2. Relativistic Aberration of Most General Lorentz
Transformation
Consider the light froma star P observed by the observers
Oand Of insystem S and S¢ where the frame SC is

155

moving along any arbitrary direction with velocity V with

respect to S frame as shown in figure -2. Let the angles
made by the light ray in X-Y plane from the star P at any

instant in two systems atO andO¢ be g (j =< POX)and
Jt (j¢ =< POtX ¢) respectively. Here the angle g is

same in Fig. 1 and 2. But the angle j@ is different Fixed
Moving

¥ Star P

Figure 2. Direction of light rays observed from a fixed frame S anda
moving frame St ( the frame St s moving along any arbitrary
direction with velocity V with respect to S frame)

It also can be shown that for two dimension case, the
Relativistic  aberration of most general Lorentz
transformation is clear which has been described [10] by the
following relationship

(g —1)VVV/V2 +?+ (g —1)VV4§tanj+vygsecj (19)
M e S

2
Fromequation (19), we have J and fi¢are notsame in the
two systems. i.e. the direction of light rays depends on the
motion of the source emitting light and observer. Equation
(19) gives the relativistic formula for aberration of most
general Lorentz transformation.

tan gt =
“tanj +v, secj

=)yt

Vy
v

2.3. Relativistic Aberration of Mixed Number Lorentz
Transfor mation
Consider the same situation as described in Figure 2. Let,
=X r,=Yy, r=zr{=X,

r& =y, rf =zt then using equation (5) and (6) we can

easily find out the aberration formula for two dimension case
of the mixed number Lorentz transformation[10]
__tangj+v secy
tan gt =

. (20)
1+v, secj

Fromequation (20), we have J andj¢ are notsame in the
two systems. i.e. the direction of light rays depends on the
motion of the source emitting light and observer. Equation

(20) gives the relativistic formula for aberration of mixed
number Lorentz transformation.
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2.4. Relativistic Aberration of Quaternion Lorentz
Transformation

Consider the same situation as described in Figure 2. Let,
=X r,=y, L=z, rf=x, rf=y,rf=1z
then using equation (9) and (10) we can easily find out the

aberration formula for two dimension case of the quaternion
Lorentz transformation [14]

tanj +v, secs

tan j¢ =
J 1+v, secy

(21)

2.5. Relativistic Aberration of Geometric Product
Lorentz Transformation

Consider the same situation as described in figure 2. Let,
=X r=y, =z rf=x, rf=y,rf=1z
Equation (13) can be written as
xt= g{x -tv, - (yvZ -2V, )}
yt= g{y ~tv, - (2v, - xv, )}
7t = g{z -tv, - (xvy -y, )}
tt=g(t-xv, -yv, -2v,)
Differentiating both sides of equation (22) we get
dxt = g{dx - v, dt - {v,dy - v, dz )}
dyt= g{dy - v, dt - (vxdz - vzdx)}
dtt = g(dt -v,dx -v,dy -v,dz
fromthe above equation we have
d_)(¢ _ g{d( - de - (qu/ —Vde )}
it gldt -v, o -v,dy -v,dz)

J;Ed%t “Ve o g"z d%t -v, 92 %ﬁﬁ

(22)

or, ut =
, ug g
1'de%t"’v %lt"’z d%t
or, U@( — {ux -V - (Vzuy _Vyuz)} (23)
1-v,u, -v,u, -v,u,
and
dyt _ gidy -v,dt - (v,dz - v,dx)}
dtt g(dt-v,dx-v,dy-v,dz
o Par )
’ d
1'de%t"’v %t_vz d%t
or, U?, - {uy _Vy - (uzvx _Vzux).} (24)

1-vu, -vu, -v,u,

Dividing equation (23) and (24) we get

velocity
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U@ _ {_Uy _Vy - (uzvx _Vzux)}
@_ {ux —Vy - (Vzuy _VVUZ)}

If we consider two dimension case, then we can write
u@ _Uy -y,

@_ u, -v, )

In this case the star light travelling in x-y plane with

¢, has component CCOS(,O +j) and
CCOS(p +j¢) along positive direction of X-axis in system
S and St respectively. Also those CSin(p +j) and

CSin(p +j¢) are along positive direction of Y-axis in

system S and St respectively. Thus we have

u, =ccos(p +j) = -ccosj
u, = csin(p +j) = -csing
ut = ccos(p + 4it) = -ccos it
uj =csin(p +.4¢) = - csin ji¢
From Equation (25) and (26) we have
-csingt _ -csing -v,
-ccosgt -ccosf -V
csing +v,
CCOSJ +V,
Considering ¢ =1 we have
sing +v,

(26)

X

or, tan gt =

tan gt = —
CoSJ +V,

tang +v, secy
1+v,secy

Fromequation (27), we have J andj¢ are notsame in the

two systems. i.e. the direction of light rays depends on the
motion of the source emitting light and observer. Equation
(27) gives the relativistic formula for aberration of geometric
product Lorentz transformation.

or, tanjt=

(27)

3. Relativistic Doppler’s Effect

The Doppler’s effect [15] is an apparent change in
frequency of a wave that results from the motion of source or
observer or both. The relativistic Doppler’s effect [16] is the
change in frequency and wavelength of light, caused by the
relative motion of the source and observer such as in the
regular Doppler’s effect, when taking into account effects of
special theory of relativity. The relativistic Doppler’s effect
is different fromthe true (non - relativistic) Doppler’s effect
as the equations include the time dilation effect of the special
relativity. They described the total difference in the
frequencies and possess the Lorentz symmetry.
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We can analyse the Doppler’s effect [17] of light by
considering a light source as a clock thatticks /7, times per

second and emits a wave of light with each tick. In the case
of observer receding from the light source, the observer

travels the distance Vt away from the source between the
ticks, which mean that the light wave froma given tick takes

Vit
— longer to reach him than the previous one. Hence the
c

total time between the arrivals of successive waves is

and the observed frequency i

In the case of observer approaching the light source, the
observed frequency is

n= (28)
3.1. Relativistic Doppler’s Effect of Special Lorentz
Transfor mation
Consider two frames of references S and St where

St is moving along common X-axis with velocity V with
respect to S frame. Let the transmitter and receiver be
situated at origins O and O¢ of frames S and St
respectively. Let two light signals or pulses be transmitted at
time t=0 andt=T , T being the true period of light
pulses. Let Dt¢ be the interval between the receptions of
the pulses by the receiver in the frame S¢ . Since the
observer and receiver is at rest in frame S¢ | Dtt is the
proper time interval T¢ between these pukes. Since the
observer continues to be at O¢ all the time, the distance
Drt covered by him in the frame S¢ during the
reception of the two pulses is zero.

Using the inverse Lorentz transformation we can write,

VT¢ T¢

DX=——=—= & Dt = —— (29)
Ja-v?) Ja-v?)
But Dt =T + DX where c=1 (30)
Using the equations (29) and (30) we can write [13]
nt=n 1% (31)

1+V
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If 7 and /7% be the actual and observed frequencies of

light pulses, respectively .This equation (31) is the formula
of the relativistic Doppler’s effect of Special Lorentz
transformation for light.

Fixed frame Moving frame

-
L ad

Xl‘

‘ﬂ
Gy "5’3'&

f,x@ X
Z f
Figure 3. The frame St is movingalong common X-axis with velocity

Vwith respectto S frame

3.2. Relativistic Doppler’s Effect of most General
Lorentz Transfor mation

S and St

1
velocity V' of S{ with respectto S is not along X-axis

Consider two frames of references the

I
i.e. thevelocity V hasthree components Vy, V, and V,. Let
the transmitter and receiver be situated at origins O and
Ot of frames S and S¢ respectively. Let two light

signals or pulses be transmitted attime t=0 and t=T,

T being the true period of light pulses. Let Dt be the
interval between the receptions of the pulses by the receiver

in the frame S¢ . Since the observer and receiver is at rest in
frame S¢ , Dtt is the proper time interval T¢ between

these pukes. Since the observer continues to be at Ot all
the time, the distance Drt¢ covered by him in the frame
St during the reception of the two pulses is zero.

Fixed frame Moving frame

Figure 4. The frame St is moving along any arbitrary direction with
1
velocity V with repectto S frame

Using the space part and time part of inverse most general
Lorentz transformation [2] any one can get the formula of
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relativistic Doppler’s effect [18] in the most general Lorentz
transformation which is

nt=n,|—+F

1+V

This formula of the relativistic Doppler’s effect coincides
with the formu la of Special Lorentz transformation

(32)

3.3. Relativistic Doppler’s Effect of Mixed Number
Lorentz Transformation

Consider the same situation described in Figure 4. Using
the similar way of most general Lorentz transformation [2]
we can find the formula of Relativistic Doppler’s Effect of
mixed number Lorentz transformation [18] which is given by

1-V
nt=n.—=+F (33)
1+V

3.4. Relativistic Doppler’s Effect of Quaternion Lorentz
Transfor mation
Consider two frames of references S and St as

described in Figure 4. If /7 and 77¢ be the actual and

observed frequencies of light pulses, respectively, then the
formula for the relativistic Doppler’s Effect of quaternion
Lorentz transformation [14] can be found as

n@zgn(l—\})

3.5. Relativistic Doppler’s Effect of Geometric Product
Lorentz Transformation

(34)

Consider two frames of references S and S¢ . The
1

velocity V' of S¢ with respectto S is not along X-axis
1

i.e.thevelocity V hasthree components Vy, Vyand V,. Let

the transmitter and receiver be situated at origins O and

Ot of frames S and St respectively. Let two light

signals or pulses be transmitted at time t =0 andt=T,

T being the true period of light pulses. Let Dt¢ be the
interval between the receptions of the pulses by the receiver

in the frame S¢ . Since the observer and receiver is at rest in
frame S¢ , Dttis the proper time interval T¢ between
these pules. Since the observer continues to be at O¢ all
the time, the distance Dr¢ covered by him in the frame
St during the reception of the two pulses is zero.

Using the space part of the inverse geometric product
Lorentz transformation of equation (13)
1

DI = g(Drt+ Dt®V +iDrt” V) (35)

Since Dr =0and Dt¢=T¢ then equation (35) can be
written as

DI = g DttV

or,
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DF = gTW (36)
This equation (36) Ishows the second pulse has to travel
this extra distance Dr then the first pulse in the frame S to
be able to reach at origin O¢ in the moving frame S¢ .

Using the time part of the geometric product Lorentz
transformation of equation (13)

Dt = g(Dtt + Dr¢ .\}) (37

Since Df =0and Dt¢=T¢ then equation (37) can be
written as

Dt=¢gT¢ (39)

This relation includes bothlthe actual time period T of the

Dr
pulses and the time taken —— by the second pulse to cover

c
the extra distance DI in the frame S , e
Dr
Dt=T+— (39)
C
Using ¢ =1 the equation (39) can be written as
Dt=T +Dr (40)
Using (36), (38) and (40) we can write
Tl=T+VTl
2
1-V
or, T =T¢ 4
MRVE (41)
Using equation (23), the equation (41) can be written as
1-V
T=TH—+F 42)
1+V
If 7 and 77 be the actual and observed frequencies of
1 1
light pulses, respectively, we have 77 2? and nt= ﬂ
then equation (42) gives
1-V
nt=n.—=~F (43)
1+V

this equation (43) is the formula of the relativistic Doppler’s
effect of geometric product Lorentz transformation for light.

4. Reflection of Light by a moving
Mirror

4.1. Reflection of light by a moving mirror in Special
Lorentz Transformation

Consider two frames of references S and S¢ where
St s moving along common X-axis with velocity V with
respectto S frame. Consider a mirror M to be fixed in the
Y¢ - Z¢ plane of system St . Consider the mirror is
perfectly reflecting, moving along the direction of its normal
relative to S¢ . Let a ray of light in X¢ =Y ¢ be incident at
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angle i atOt in system St As mirror M is stationary
in system S¢ ordinary laws of reflection hold good and so
the angle of reflection will be 7% and the reflected ray lies in
Xt-Y¢ plane. Let the angles of incidence and reflection

are measured in system She ; & £, , we get [2]

sinf, _sinf,y1-b?
= (44)

cosf+b  (cosf, - b)
Using g= ! = 1 ,c:]_&b:\i
\/ VZ o 1- b2 c

1-—
C
we get from (44)
sinf; sin £,

(45)

cosf, +V  g(cosf, -V)
This equation (45) is the law of reflection of light by a
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4.2. Reflection of Light by a moving Mirror in Most
General Lorentz Transfor mation

Consider two frames of references S and S¢ . The
velocity \} of SC with respectto S is not along X-axis
i.e. the velocity \} has two components V,, and Vi .
Consider a mirror M to be fixed in the Y¢ — Z(plane of
system S¢ . Consider the mirror is perfectly reflecting,
moving along the direction of its normal relative to S¢ .
Let a ray of lightin X¢-Y¢ beincidentatangle 74 atOt
in system S¢ .

As mirror M is stationary in system S¢ ordinary laws of
reflection hold good and so the angle of reflection will be
Tl and the reflection ray lies in X¢ =Y ¢ plane.

Let the angles of incidence and reflection are measured in
systemSbe £, &7, we get [3]

¥

moving mirror [2] in the case of special Lorentz
transformation
g
4
Ficed Y Y Moving
£
F 3
I Z
7
A =

Figure 5. The reflection of light by a moving mirror where M is fixed inthe Y6 - prlane of system St

Let the incident ray in system S and S¢ be represented by y and y¢ where

A e .1
Y =—expa2pinjt-
g ¢ I

and

Co6 3
yi= AexpSZ,o |n¢}\t¢—
g € 1

wcos(p + £)+ ysin (o + £)gi
Y

(46)
c u

xtcos(p + )+ ytsin (o + A) i
E;I,'J
c u

(47)

As phase is a Lorenz invariant quantity, using equations (46) and (47) we must have
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e xcos(p+ F)+ysin(o+ )y _ i xtcos(p + A)+ ytsin (o + )y
T c E; T c
or n\:’t N xcosf +ysinf{ ¢}t¢+ xtcos £ + ytsin AA{j (48)
T c 5 T c
Using € =1 we get fromequation (48)
nft + xcos £, + ysin £+ = ntftt + xtcos A + ytsin A} (49)

Using equations (3), (4) and (49) and considering the velocity V has two components V, and Vy , we can get the formula
[19] of the reflection of light ray by a moving mirror in most general Lorentz transformation

gV N +sinfV? +(g -1V, cos £ +(g -1V, sin £;
gV, V? +cosfV’ +(g -1V, sin £ + (g -1)v,” cos £;
_-gV,V? —smf;V2+(g—1)\/V cos?, - (g -1)V,’sin £,
gV Vi+coshVE-(g -1V, sinf + (g -1V, cosf,
e

s

Fixed frame Moving frame

Yr.il ) -"'X
v 4

L J

1
Figure 6. The frame St s moving along any arbitrary direction with velocity V' with repect to S frame where a mirror M is fixed in the
Yt -2Z¢ plane of system St

equation (7) and (49) we have considering the velocity V has

4.3. Reflection of Light by a moving Mirror in mixed two components V, and V

number Lorentz Transformation
C0n5|der two frames of reference S and S¢ . The ”{t"' xcosf; + ysin f} negt - 169
velocity V of S¢ with respectto S is not along X-axis ”@{XV AL +(x-tv )COSﬂ"'(y v )S'nﬂ

i.e. the velocity V has three components V,, Vy and V,.

Consider same situation as described in the Figure 6.Using bvz =0 &z= 0]
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Equating the coefficient of t of equation (50) we get,
n=nylL-v, cos -V, sin £ (51)
Equating the coefficient of x of equation (50) we get,
ncosf, =nig(cos A -V, )

or,

ng(L-V, cos fi -V, sin f)cos 7, =nig(cos A -V,)

_ (cosA-V,)
or, cosf, = . (52)
[L-V, cos At -V, sin fi)

Equating the coefficient of y of equation (50) we get,
nsinf, =n@(sin R —Vy)

or,
nyg(L-V, cos i -V, sin filsin £ =ny(sin A —Vy)
e [sinA-v,)
or ST = [L-V, cos Ai-V,sin A) (59
Now from equation (52) and (53) we get,
sinft-V,
tanf, = SV v, (54)

Using equation (8) and (49) we have considering the
velocity V has two components V, and Vy
ngdte+ x, + yov, + (xt+t0V, Jcos 7 + (yt + v, Jsin ﬂ(SS)
=ntftt + xtcos A+ ytsin A}
Equating the coefficient of t¢ of equation (55) we get,
/7;](1+VX cosf; +V, sin ﬁ)zn@ (56)
Equating the coefficient of x¢ of equation (55) we get,
ng(V, +cos £)=ntcos A

or,

ng(v, +cos %) =ng{L+V, cos £, +V, sin £, )cos A

_ V, +cosf;
or, cosft= - (57)
1+V,cosf; +V, sinf

Equating the coefficient of y¢ of equation (55) we get,

/7g(\/y +sin £, )= ntsin A
or,
/7g(\/y +sin 1";)=/7g(1+vX cosf; +V, sin ﬁ)sin r
V, +, sinf]
1+V,cosf, +V sinf,

Now from equation (57) and (58) we get,

or, sin fi= (58)
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V, +sinf]
tan i=————
V, +cost;

Similarly, for reflected ray the relation between angle of
reflection in system S and S¢ can be obtained as

(59)

-V, -sinf,
tanfi=—L — 2 (60)
V, +cosft,
Fromequation (59) and (60), we get,
V,+sinf; -V -sinf, (61

V,+cosf, V +cosft,

This equation (61) is the law of reflection of light ray by a
moving mirror in mixed number Lorentz transformation.

4.4. Reflection of Light by a moving Mirror in
Quaternion Lorentz Transformation

Consider two frames of reference S and S¢ . The

1
velocity V of S{ with respectto S is not along X-axis

]
i.e. the velocity V has three components V, Vi, and V..
Consider same situation as described in the Figure 6.
Using equation (11) and (49) we have considering the
velocity V has two components V, and Vy we can get by
the similar process of mixed number Lorentz transformation,

the same formula for the reflection of light ray by a moving
mirror in quaternion Lorentz transformation

V,+sinf; -V -sinf,
V,+cosf, V +cosf,

(62)

4.5. Reflection of Light by a moving Mirror in Geometric
Product Lorentz Transfor mation

Consider two frames of reference S and S¢ . The

]
velocity V of S with respectto S is notalong X-axis

]
i.e. the velocity V has three components V, Vy and V.
Consider same situation as described in the Figure 6.
Using equation (15) and (49), we have considering the

velocity Vhas two components V, and Vy then after a little

bit lengthy calculation according to the similar process of
mixed number Lorentz transformation we can get the same
formula for the reflection of light ray by a moving mirror in
geometric product Lorentz transformation

V,+sinf; -V, -sinf,
V,+cosf, V, +cosf,

(63)

5. Comparison of the Study

5.1. Comparison of Relativistic Aberrations of Special,
Most General, Mixed Number, Quaternion and
Geometric Product Lorenz Transformations
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Names of Lorentz transformations Relativigic aberration formula
= 2

Special tan §t = tang4/1- b

Lorentz transformation nJ*= 1- bSECj

i > Ju ]
(9 —1)Vyv/vz + %’l+ (g-2)" 4 gtaru +V,gsecy

Mogt general

Lorentz transformation tan-l¢ = i v 2 /0 V.V
i (g —1) X4g+ (_[] —1) \y/zx tanj +v, secj
|
Mixed Number tanj¢ — tan.l + Vy Secs
Lorentz transformation 1+vV secj
X
Quatemion tanj@ — tan.l + Vy SeC_I
Lorentz transformation 1+v SECj
X

tanj +v, secy
1+v,secy

Geometric product Lorentz
transformation

tan gt =

5.2. Comparison of Relativistic Doppler’s Effect of Special, Most General, Mixed Number, Quaternion and
Geometric Product Lorenz Transfor mations

Names of Lorentz transformations Relativistic Doppler’s effect formula
, _ 1-V
Special Lorentz transformation nt=n
1+V
, 1-V
Most general Lorentz transformation nt=n.—=r
1+V
. . 1-V
Mixed number Lorentz transformation nt=n.|—%r
1+V
1
Quatemion Lorentz transformation nt= gn(]_ -V )
, _ 1-V
Geometric product Lorentz transformation nt=n.—%r
1+V

5.3. Comparison of the Formulae of the Reflection of Light by a Moving Mirror in Special, Most General, Mixed
Number, Quaternion and Geometric Product Lorenz Transfor mations
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Names of Lorentz transformations

The formulae of reflection of light by a moving mirror

Special Lorentz transformation

sinf;

sin £,

cosf +V  g(cost, -V)

gV NV +sinfV? +(g -1VV, cos £ + (g -1V, sin £;
2 2 2
Most general Lorentz gVXV +COSI§V (g l)\/V sinf; (_(] 1)V cos ﬁ
transfomation _-gV,Vi-sinfy?+ (9 -1VV, cosf, - (g -2V, sin f;
gV, V2 +coshV? - (g -1VV, smf; +(g-1)v,? cosf
Mixed number Lorentz Vy +sin f _V -sin f;
transformation Vx +COSfi- Vx +COS f;
Quatemion product Lorentz Vy +sin 7 — _Vy -sin f;
transformation Vx +COS ﬁ Vx +COS f;
V, +sin ﬁ -V, -sin £,
Geometric Lorentz transformation
V, +cos ﬁ V, +cosf,
0. COﬂClUSiOﬂS [7]1 Alam, M.S. 2003. Different types of product of vectors,

The Relativistic aberration, Doppler’s effect and the

reflection of light ray by a moving mirror formulae of special,
most general,

mixed number, quaternion and geometric

product Lorenz transformations have been derived clearly.
We have found that the formulae for Relativistic aberration
and for the reflection of light ray by a moving mirror of
mixed number, quaternion and geometric product Lorenz
transformations are simp ler than the formula of most general
Lorenz transformation .
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