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Abstract  We constructed an )( 2sE -optimal supersaturated design (SSD) with an experimental run-size, n = 20 and 
number of factors, m = 57 (multip le of 19). The construction is based on balanced incomplete block designs using a theorem 
proposed by Bulutoglu and Cheng. This is achieved by constructing the initial b locks of the balanced incomplete block design 
using the theorem. Consequently, all other blocks are generated to constitute a balanced incomplete block design (BIBD),and 
the complete blocks that constitute the BIBD is transformed into the required supersaturated design( SSD). 
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1. Introduction 
Consider a two-level experimental design with n  

experimental runs and m factors. A two-level experimental 
design is called a supersaturated design(SSD) if m>n-1. 
According to[7], the analysis of supersaturated designs rely 
on the effect of sparsity principle in which the number of 
important factors is relatively small. 

In[11], the )( 2sE criterion is considered as the most 
popular criterion, and it measures the average correlation 
among the columns of the design matrix o f an SSD. Suppose 
we have a design with n  runs and m factors, and each of the 

factors has 2 levels, then 2
n  of the entries in each column 

have  values +1, and others -1 respectively. Let  X denotes 
the mn ´  design matrix . Hence, 
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where 

ijs  denotes the element in the ith row and jth column of 

XX T . 
For the supersaturated design with n runs and m factors,  
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each column of the design matrix contains the same number 
of 1’s and -1’s. The number of possible factors, m that could  
be accommodated satisfies the inequality 
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[8] showed that when n is even: 
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According to[7], the lower bound (1.3) is attainable when 
n is a  multiple of 4 and m is a  multip le o f 1-n , or 2=n  
(mod 4) or m is an even multiple of 1-n . 

Moreover,[6] and[8] independently derived the lower 
bound:  
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for any supersaturated design with m factors and n runs. 

[1] proposed the )( 2sE  criterion for constructing two-level 
supersaturated designs, and[8] based the construction of 
supersaturated designs on combining q Hadamard matrices. 
This means that a simple construction of an SSD is to p iece 
together q balanced incomplete balanced block 

designs( BIBD’s) ÷
ø
ö
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),1(,1 nnqn . Thus, the 

resulting SSD will have distinct blocks.[9] presented a 
method of using difference family to construct BIBD’s  
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),1(,1 nnqn with d istinct blocks, and from such a 

BIBD one could easily construct an )( 2sE -optimal SSD. 
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[10] introduced the construction of SSD’s that satisfy 

specified lower bounds of )( 2sE ,and[12] highlighted ways 
of constructing optimal mix-level supersaturated designs. 
In[4], a column wise-pairwise algorithm for constructing 
SSD’s is discussed. 

In this study, we shall construct an )( 2sE -optimal 
supersaturated design (SSD) with an even run-size, n, and 
number of factors, a multiple of 1-n . 

2. Materials and Method  
Theorem[2]: Suppose 1-n  is an odd prime power, q  

an even divisor of xnqn ,2with2 -¹-  a primit ive 

element of TandnGF ),1( -  a subset of qz of size 
2
q . 

Let e  be the smallest positive integer such that TeT =+ . 
Then, the )1( -ne sets: 

{ })1(,1,,0:, -Î-= nGFaerS ar K , where 
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are distinct and constitute a BIBD ÷
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Furthermore, if 
q

n )2( -
 is odd, and U  a subset of 
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where *U  is the complement of U  in { }1,,0 -eK

and 
the addition is reduced modulo q , then the 

{ })1(,:S:set)1(
ar, -ÎÎ

- nGFaUr
q

ne
constitutes 

a BIBD with distinct blocks.  
The theorem satisfies the lower bound (1.4), and shall be 

used in the construction of the supersaturated design (SSD). 
The construction of the SSD will be based on BIBD, which  is 
more general and flexib le[6].According to[2], given a 
Hadamard matrix of o rder n, there exists a BIBD 
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),1(,1 nnqn  for every 0>q . 

The following definit ions shall be used in this work. 
Definition 1: Let )(sGF  denotes a fin ite field with s 

elements. An element in  a group within  a finite field  from 
which other elements  are obtained is called a generator of 
the group. The generator of a group is called a primit ive 
element of the field.  

Definition 2: Let { } 0,1,,2,1,0 >-= qqzq L . 

Multiplication and addition in qz  are in  reduced modulo 

q . Now, for each subset { }taaaT ,,, 21 K=  of 

,, qq zbifandz Î then 

{ }babababT t +++=+ ,,, 21 K . 
Definition 3: According to[5], an incomplete block design 
( )rkbvD ,,,  is called  a balanced incomplete b lock 

design (BIBD) if 
(i) each block contains k different treatments  
(ii) each treatment appears in r blocks, that is, each 

treatment is rep licated r times. 
(iii) every pair of t reatments appears within blocks exactly  

l  times. 
For a BIBD, according to[3] 
(a) rkorvb ³³  

(b) vrbk =  
(c) : ( ) ( ) ll >-=- rvkr ;11  
Definition 4: We define a BIBD by its incidence matrix 

,][ ijnN =  where  

î
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nij ,0

,1
 

Construction of an )( 2sE -Optimal Supersaturated 
Design:  

Let the primitive element 2=x . Then, we shall 
construct a BIBD (19, 57, 9) in the fo llowing way: 

Let  the value of integer q  in the theorem  be 6. 

{ }2,1,0== UT  since T is a subset of 36 sizeofz . 

There are many of such subsets of sizes 3 within 

{ }5,4,3,2,1,06 =z . The number of subsets of sizes 3 

in 203
6

6 =Cisz . The 20 subsets of 6z  each of size 3 

are: {0, 1, 2}, {0, 1, 3}, {0, 1,4}, {0, 1, 5}, {0, 2, 3}, {0, 2, 4}, 
{0, 2, 5}, {0, 3, 4}, {0, 3, 5}, {0, 4, 5}, {1, 2, 3}, {1, 2, 4}, {1, 
2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 
5}, {3, 4, 5}.Hence, T + e = T + 3=T for all these subsets 
except {0, 1, 2}. For the subset {0, 1, 2}, 3=e . 

We now obtain the initial blocks of the BIBD as fo llows:  
For 6=q ,  by the Theorem : 

1)2(0 -
-

££
q

nj
 

which reduces to 20for,20 =££ nj . 
Since, ( ),2,1,0,3 =+Î= rrTiande  then 

GFGFnGFa ==-Î )19()1( (0, 1, 2, 3, 4, 5, 6, 7, 8, 
9, 10, 11, 12, 13, 14, 15, 16, 17, 18). 
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Considering the set; 
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evaluating ijqx + , for ;2,1,0=j  ;2,1,0=i  ;6=q  
;3=e  2,1,0=r , we obtain Table 1 . 

Table 1.  Blocks 

ijqx +  ijqx +  ijqx +  

when 
( )2,1,0,0 Î= ir  

0=j  

210 ,, xxx  

1=j  

876 ,, xxx  

2=j  

141312 ,, xxx  

when 
( )3,2,1,1 Î= ir  

0=j  

321 ,, xxx  

1=j  

987 ,, xxx  

2=j  

151413 ,, xxx  

when 
( )4,3,2,2 Î= ir  

0=j  

432 ,, xxx  

1=j  

1098 ,, xxx  

2=j  

161514 ,, xxx  

3. Results and Discussion  
With the primit ive element 2=x , Table 1 contains three 

initial b locks namely, {20, 21, 22, 26, 27, 28, 212, 213, 214}, {21, 
22, 23, 27, 28, 29, 213, 214, 215}and {22, 23, 24, 28, 29, 210, 214, 215, 
216}. As multiplication is in reduced modulo ( )1-n , i.e., 
reduced modulo  19,  the first init ial b lock contains: {20, 21, 
22, 26, 27, 28, 212, 213, 214}, where 120 = , 221 = , 

422 = , 
76426 ==  (mod 19), 1412827 ==  (mod 19), 
925628 ==  (mod 19), 114096212 ==  (mod 19), 
38192213 ==  (mod 19), 616384214 ==  (mod 19). 

Therefore, the first in itial b lock (FIB) is {1, 2, 4, 7, 14, 9, 
11, 6} 

From Table 1, the second initial block (SIB) contains: {21, 
22, 23, 27, 28, 29, 213, 214, 215}, where 221 = , 422 = , 

823 = , 
1412827 ==  (mod 19), 925628 ==  (mod 19), 

1851229 ==  (mod 19), 38192213 ==  (mod 19), 
616384214 ==  (mod 19), 1232768215 ==  (mod 19). 

Therefore, the second initial b lock is  {2, 4, 8, 14, 9, 18, 3, 
6, 12} 

When the above procedure is repeated for the third init ial 
block, we have the third initial block (TIB) as  {4, 8, 16, 9, 
18, 17, 6, 12, 5}. 

We note that in the three initial blocks, the numbers 
indicate the treatments that occur in each block. In th is case, 
the three initial blocks are shown in Table 2 . 

Table 2.  The Three Initial Blocks 

  Blocks  

Treatments 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

FIB 
1 
1 
1 
1 
0 
1 
1 
0 
1 
0 
1 
0 
0 
1 
0 
0 
0 
0 
0 

SIB 
0 
1 
1 
1 
0 
1 
0 
1 
1 
0 
0 
1 
0 
1 
0 
0 
0 
1 
0 

TIB 
0 
0 
0 
1 
1 
1 
0 
1 
1 
0 
0 
1 
0 
0 
0 
1 
1 
1 
0 

Now, consider ax ijq ++
, where );19(GFa Î  that is, 

adding the integers 0, 1, . . . ,18 (mod 19) to all the elements 
in the three initial blocks produces a BIBD with 57 d istinct 
blocks each of size 9 and 19 blocks. From the First Init ial 
Blocks:  

FIB + 0 = {1, 2, 4, 7, 14, 9, 11, 3, 6},FIB +1 = {2, 3, 5, 8, 
15, 10, 12, 4, 7}, 

FIB + 2 = {3, 4, 6, 9, 16, 11, 13, 5, 8}, FIB + 3 = {4, 5, 7, 
10, 17, 12, 14, 6, 9}, 

FIB + 4 = {5, 6, 8, 11, 18, 13, 15, 7, 10},FIB + 5 = {6, 7, 9, 
12, 19, 14, 16, 8, 11}, 

FIB + 6 = {7, 8, 10, 13, 1, 15, 17, 9, 12},FIB + 7 = {8, 9, 11,  
14, 2, 16, 18, 10, 13}, 

FIB + 8 = {9, 10, 12, 15, 3, 17, 19, 11, 14},FIB + 9 = {10, 
11, 13, 16, 4, 18, 1, 12, 15}, 

FIB + 10 = {11, 12, 14, 17, 5, 19, 2, 13, 16},FIB + 11 = 
{12, 13, 15, 18, 6, 1, 3, 14, 17}, 

FIB + 12 = {13, 14, 16, 19, 7, 2, 4, 15, 18},FIB + 13 = {14, 
15, 17, 1, 8, 3, 5, 16, 19}, 

FIB + 14 = {15, 16, 18, 2, 9, 4, 6, 17, 1},FIB + 15 = {16, 
17, 19, 3, 10, 5, 7, 18, 2}, 

FIB + 16 = {17, 18, 1, 4, 11, 6, 8, 19, 3},FIB + 17 = {18, 
19, 2, 5, 12, 7, 9, 1, 4}, 

FIB + 18 = {19, 1, 3, 6, 13, 8, 10, 2, 5}. 
The above procedure is  repeated on the Second Initial 

Block and the Third Initial Block respectively, altogether 
gives the BIBD (19, 57, 9). The First 19 blocks of the BIBD 
(19, 57, 9) obtained from the First Init ial Block are shown in 
Table 3 below . 

Adopting the BIBD(19, 57, 9), we obtain a 19 x 57 
treatment-block incidence matrix for BIBD(19, 57, 9). Using 
SSD(n, m) = SSD(n, e(n-1)), we obtain an SSD(20, 57) from 
the BIBD(19, 57, 9) by converting all 0’s in the incidence 
matrix o f the BIBD(19, 57, 9) to -1’s and adding a first row 
of all 1’s to the treatment-block incidence matrix. Th is gives 
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an )( 2sE -optimal 20-run SSD for 57 factors shown in 
Table 4 below. 

Table 4 shows the complete 57 factors of the SSD(20, 57) 
constructed from the BIBD(19, 57, 9). We observe that all 

the two level factors occur in the higher level for the first run 
(run 1) of the design.  

Table 4 shows the complete 57 factors of the SSD(20, 57) 
constructed from the BIBD(19, 57, 9). We observe that all 
the two level factors occur in the higher level for the first run 
(run 1) of the design.  

Table 3.  First 19 blocks of the BIBD (19, 57, 9) obtained from the first  initial block  

Blocks 

Treat- 
ments   1     2     3     4     5     6     7      8     9     10      11     12      13      14     15     16     17     18      19 

         +    +    +     +    +     +    +     +     +      +      +      +       +       +        +      +     +      +      +     
       0     1   2     3     4     5     6     7     8     9       10     11      12       13     14     15    16    17    18 

1        1     0     0     0     0     0     1     0     0     1       0      1       0        1      1      0      1      1       1 
2        1     1     0     0     0     0     0     1     0     0       1      0       1        0      1      1      0      1       1 
3        1     1     1     0     0     0     0     0     1     0       0      1       0        1      0      1      1      1       1 
4        1     1     1     1     0     0     0     0     0     1       0      0       1        0      1      0      1      1       0 
5        0     1     1     1     1     0     0     0     0     0       1      0       0        1      0      1      0      1       1 
6        1     0     1     1     1     1     0     0     0     0       0      1       0        0      1      0      1      0       1 
7        1     1     0     1     1     1     1     0     0     0       0      0       1        0      0      1      0      0       0 
8        0     1     1     0     1     1     1     1     0     0       0      0       0        1      0      0      1      0       1 
9        1     0     1     1     0     1     1     1     1     0       0      0       0        0      1      0      0      1       0 
10       0     1     0     1     1     0     1     1     1     1       0      0       0        0      0      1      0      0       1 
11       1     0     1     0     1     1     0     1     1     1       1      0       0        0      0      0      0      0       0 
12       0     1     0     1     0     1     0     0     1     1       1      1       0        0      0      0      0      1       0 
13       0     0     1     0     1     0     1     1     0     1       1      1       1        0      0      0      0      0       1 
14       1     0     0     1     0     1     0     1     1     0       1      1       1        0      0      0      0      0       0 
15       0     1     0     0     1     0     1     0     1     1       0      1       1        1      1      0      0      0       0 
16       0     0     1     0     0     1     0     1     0     1       1      0       1        1      1      1      0      0       0 
17       0     0     0     1     0     0     1     0     1     0       1      1       0        1      1      1      1      0       0 
18       0     0     0     0     1     0     0     1     0     1       0      1       1        0      1      1      1      1       0 
19       0     0     0     0     0     1     0     0     1     0       1      0       1        1      0      1      1      1       1 

Table 4.  The complete 57 factors of the SSD(20, 57) constructed from the BIBD(19, 57, 9) 

 Factors 

Runs 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
2 1 -1 -1 -1 -1 -1 1 -1 -1 1 -1 1 -1 1 1 -1 1 1 1 
3 1 1 -1 -1 -1 -1 -1 1 -1 -1 1 -1 1 -1 1 1 -1 1 -1 
4 1 1 1 -1 -1 -1 -1 -1 1 -1 -1 1 -1 1 -1 1 1 1 1 
5 1 1 1 -1 -1 -1 -1 -1 -1 1 -1 -1 1 -1 1 -1 1 1 -1 
6 -1 1 1 1 1 -1 -1 -1 -1 -1 1 -1 -1 1 -1 -1 -1 1 1 
7 1 -1 1 1 1 1 -1 -1 -1 -1 -1 1 -1 -1 1 -1 1 -1 1 
8 1 1 -1 1 1 1 1 -1 -1 -1 -1 -1 1 -1 -1 1 -1 1 -1 
9 -1 1 1 1 -1 1 1 1 -1 -1 -1 -1 -1 1 -1 -1 1 -1 1 

10 1 -1 1 -1 -1 -1 1 1 1 -1 -1 -1 -1 -1 1 -1 -1 1 -1 
11 -1 1 -1 1 1 -1 1 1 1 1 -1 -1 -1 -1 -1 1 -1 -1 1 
12 1 -1 1 1 1 1 -1 1 1 1 1 -1 -1 -1 -1 -1 1 -1 -1 
13 -1 1 -1 -1 -1 1 1 -1 1 1 1 1 -1 -1 -1 -1 -1 1 -1 
14 -1 -1 1 1 1 -1 1 1 -1 1 1 1 1 -1 -1 -1 -1 -1 1 
15 1 -1 -1 1 -1 1 -1 1 1 -1 1 1 1 1 -1 -1 -1 -1 -1 
16 -1 1 -1 -1 1 -1 1 -1 1 1 -1 1 1 1 1 -1 -1 -1 -1 
17 -1 -1 1 -1 -1 1 -1 1 -1 1 1 -1 1 1 1 1 -1 -1 -1 
18 -1 -1 -1 1 -1 -1 1 -1 1 -1 1 1 -1 1 1 1 1 -1 -1 
19 -1 -1 -1 -1 1 -1 -1 1 -1 1 -1 1 1 -1 1 1 1 1 -1 
20 -1 -1 -1 -1 -1 1 -1 -1 1 -1 1 1 1 1 -1 1 1 1 1 
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Table 4.  Cont’d 

 Factors 

Runs 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
2 -1 -1 1 -1 -1 -1 1 -1 -1 -1 -1 1 1 -1 1 -1 1 1 1 -1 
3 -1 -1 -1 1 -1 -1 -1 1 -1 1 -1 -1 1 1 -1 1 1 1 1 -1 
4 1 -1 -1 -1 1 -1 -1 -1 1 -1 1 -1 -1 1 1 -1 1 1 1 -1 
5 1 1 1 -1 -1 1 -1 -1 -1 1 -1 1 -1 -1 1 1 -1 1 1 1 
6 -1 1 1 1 -1 -1 1 -1 -1 -1 1 -1 1 -1 -1 1 1 -1 1 1 
7 1 -1 1 1 1 -1 -1 1 -1 -1 -1 1 -1 1 -1 -1 1 1 -1 1 
8 -1 -1 -1 1 1 1 -1 -1 1 -1 -1 -1 1 -1 1 -1 -1 1 1 -1 
9 1 -1 1 -1 1 1 1 -1 -1 1 -1 -1 -1 1 -1 1 -1 -1 1 -1 

10 1 1 -1 1 -1 1 1 1 -1 -1 1 -1 -1 -1 1 -1 1 -1 -1 1 
11 -1 1 1 -1 1 -1 1 1 1 -1 -1 1 -1 -1 -1 1 -1 1 -1 -1 
12 -1 -1 1 1 -1 1 -1 1 1 1 -1 -1 1 -1 -1 -1 1 -1 1 -1 
13 1 -1 -1 1 1 -1 1 -1 1 1 1 -1 -1 1 -1 -1 -1 1 -1 -1 
14 -1 1 -1 -1 1 1 -1 1 -1 1 1 1 -1 -1 1 -1 -1 -1 1 -1 
15 1 1 1 -1 -1 1 1 -1 1 -1 -1 -1 -1 1 -1 1 -1 -1 -1 -1 
16 -1 1 -1 1 -1 -1 1 1 -1 1 -1 1 1 1 -1 -1 1 -1 -1 -1 
17 -1 -1 1 -1 1 -1 -1 1 1 -1 1 -1 1 1 1 -1 -1 1 -1 1 
18 -1 -1 1 1 -1 1 -1 -1 1 1 -1 1 -1 1 1 1 -1 -1 1 1 
19 1 -1 1 -1 1 -1 -1 1 1 -1 1 -1 1 -1 1 1 1 -1 -1 1 
20 -1 1 -1 -1 -1 1 -1 1 -1 -1 1 1 -1 1 -1 1 1 1 -1 -1 

Table 4.  Cont’d 

 Factors 

Runs 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
2 1 1 1 1 -1 -1 -1 1 -1 -1 1 1 -1 1 1 1 -1 -1 
3 -1 -1 1 1 1 -1 -1 -1 1 -1 1 1 1 -1 1 1 1 -1 
4 -1 -1 -1 1 1 1 -1 -1 1 1 1 -1 1 1 -1 1 1 1 
5 -1 -1 -1 -1 1 1 1 -1 -1 -1 1 -1 -1 1 1 -1 1 1 
6 1 -1 -1 -1 -1 1 1 1 -1 -1 -1 1 -1 -1 1 1 -1 1 
7 1 1 -1 -1 -1 -1 1 1 1 -1 -1 -1 1 -1 -1 1 1 -1 
8 1 1 1 -1 -1 -1 -1 1 1 1 -1 -1 -1 1 -1 -1 1 1 
9 -1 1 1 1 -1 -1 -1 -1 1 1 1 -1 -1 -1 1 -1 -1 1 

10 1 -1 1 1 1 -1 -1 -1 -1 1 1 1 -1 -1 -1 1 -1 -1 
11 1 1 -1 1 1 1 -1 -1 -1 -1 1 1 1 -1 -1 -1 1 -1 
12 -1 1 1 -1 1 1 1 -1 -1 -1 -1 1 1 1 -1 -1 -1 1 
13 -1 -1 1 1 -1 1 1 1 -1 -1 -1 -1 1 1 1 -1 -1 -1 
14 1 -1 -1 1 1 -1 1 1 1 -1 -1 -1 -1 1 1 1 -1 -1 
15 -1 1 -1 -1 1 1 -1 1 1 1 -1 -1 -1 -1 1 1 1 -1 
16 -1 -1 1 -1 -1 1 1 -1 1 1 -1 -1 -1 -1 -1 1 1 1 
17 -1 -1 -1 1 -1 -1 1 1 -1 1 1 1 -1 -1 -1 -1 1 1 
18 1 -1 -1 -1 1 -1 -1 1 1 -1 1 1 1 -1 -1 -1 -1 1 
19 1 1 -1 -1 -1 1 -1 -1 1 1 -1 1 1 1 -1 -1 -1 -1 
20 1 1 1 -1 -1 -1 1 -1 -1 1 1 -1 1 1 1 -1 -1 -1 

 
4. Conclusions 

Using the primit ive element of the field, GF(s) as defined 
in the work of[2], we constructed a supersaturated design, 
SSD(20, 57) with 57 factors and 20 experimental runs. We 
determine the )( 2sE -value for the SSD(20, 57) as 40.31 

which satisfies the )( 2sE  lower bound proposed by[8]. This 

guarantees the validity of design, SSD(20, 57). In the 
literature, a number of E(s2)-optimal supersaturated design 
construction techniques have been utilised, but oftentimes, 
most are very rigorous, not adaptable and flexible. In this 
respect, constructing an E(s2)-optimal supersaturated design 
from balanced incomplete block design excels. All the 
details of this construction technique have been successfully 
demonstrated in this paper. Obviously, this technique would 
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be of great aid in the search for more E(s2)-optimal 
supersaturated designs for factors screening in the 
preliminary stage of industrial o r scientific experiments. 
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