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Abstract  When performing analysis of individual data on the application of a particu lar drug, it is useful to study the 
within variability. But when two drugs are used in combination, it is of more interest to study any combination effects on the 
subjects. In this paper we consider a new analytical framework that is a combination of the individual and combined data 
analyses, based on an estimating equation approach. The proposed analyses utilize a stochastic model for a two-drug 
combination and derive the mean and the variance terms based on Ito’s calculus. The proposed estimation methods are used 
to estimate model parameters from both individual and combined data, and they provide the basis for model free synergy tests. 
The strength of the fit of the model to the data is examined by statistical measures and the graphical method. Simulation 
studies were performed to show the strengths of the proposed approach in estimat ing the model parameters. A synergy test of 
the model fitted by the individual subjects confirmed that the combination of the isomers under study is synergistic in nature. 
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1. Introduction 
Combin ing drugs in biological systems is a common 

practice, and the effect can be one of three types: additive, 
synergistic, or antagonistic. Mathematical modeling is often 
used to describe the relationship of two drugs. One such 
model, referred to as the most suitable, is the Loewe 
additivity model under the assumption of no interactions in 
the model as in[1]. Th is model refers to a combination  of two 
concentrations of drug A and drug B being additive and 
equivalent to an interaction effect. Reference[2] has 
established an extension of a model free test for synergy in 
multip le drug combinations. Reference[3] used additive 
models generated from stochastic differential equations for 
combinations of two aesthetic agents. In this paper, we use 
the later approach for making the model for data involving 
two isomers applied in combination. We propose the 
necessary and sufficient conditions to validate the 
reference[2] test.  

It is well-known that the flow of a chemical in the human 
body and its concentration at various times can be described 
by  d ifferent ial equat ions . After an  in it ial dose o f the 
chemical is  in jected  into  the s ystem, some of it  will 
escapefrom the system and some will remain to decay over 
time. Observat ion o f th is phenomenon  suggests that the 
concentration  of the chemical in the system at time t  
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can be modeled by a linear differential equation of the form  
( ) ( ) ( )dx t x t f t

dt
α= − + .               (1) 

Here, α  is a positive constant that denotes the relative 
rate of elimination of the chemical from the body and 
is a generally decreasing function. The model is based on 
one- compartment linear model with  infusion.  Kinetic 
models of this type have been extensively studied (see e.g. 
the book of[4], papers of[5],[6] and many other works).  

As pointed out in[7], the function may  be subject to 
random fluctuations from a variety of physical and 
physiological sources. This has led to the introduction of 
stochastic versions of the model (1), where the function 

is assumed to contain a white noise component. In this 
case, equation (1) is more properly interpreted as a stochastic 
differential equation 

( ) ( ( ) )dx t x t g dt hdwα= − + +           (2) 
where w  is a  Wiener process and g  and h  are 
deterministic functions. Models of this type have been 
studied in[7],[8],[9],[10],[11] and others. An important 
feature of these works is the calculation of the internal 
variability of the system as defined by the variance of the 
process . 

The objective of this paper is to develop a stochastic 
model to study the nature of the interaction of two isomers, S 
and R, acting in combination on a single individual. We 
assume that the combined concentration is an a priori 
unknown linear combination of the two isomers. We 
determine this linear combination using a synergy test.  
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The underlying methodology is as follows. The amounts 
of isomer S and isomer R in the system at any given time are 
assumed to follow diffusion processes  and  of 
the form (2), driven by the same Wiener process w. We 
further assume that the combined concentration  of the 
chemicals is given by the linear combination 

1 1 2 2( ) ( ) ( )x t c x t c x t≡ + of the two processes, for some 

values of 1c  and 2c  to be determined numerically. In 
Section 2, we give formulae for the mean and variance of the 
process  and identify the distribution of  as 
Gaussian. The dataset is described in  section 3, fo llowed by 
the description of the synergy test and the statistical 
methodologies in  the subsequent sections. We present results 
in section 6 and a simulation study comparison in section 7. 
In Section 8, we provide the discussion of the findings.  

2. Distribution Theorems 
We specialize the model (2). Assume that the level of 

concentration  of the isomer in the system follows a 
linear stochastic differential equation of the form 

( ) ( ( ) )tdx t x t ve dt kdwβα −= − + +          (3) 
Here v is the initial amount of isomer, β  is its rate of 
absorption, κ is a diffusion constant, and w  is a standard 
Wiener process. The rates α , β , and the diffusion 
coefficient κ  are considered to be constants. We assume 
that the initial concentration )0(x  is zero. The following 
results will be needed in Sect ion 6.  

Theorem 1.  
For each 0>t , the random variable )(tx  has a 

Gaussian distribution with mean 

)( tt eev αβ

βα
−− −

−
  ,                 (4) 

and variance  

)1(
2

2
2

te α

α
κ −− .                      (5) 

We now describe the distribution of a linear combination 
of two processes satisfying equations of the form (3). To this 
end, consider the linear stochastic differential equations  

( ) ( ( ) ) ,it
i i idx t x t ve dt k dwβα −= − + +    (6) 

with 0)0( =ix  for i =1, 2. Since the chemicals are act ing 

simultaneously, we assume the equations for  and 
 are driven by the same noise process w. Set  

             (7) 

and  

)1(
2

)( 2
2

2 t

i

i
i

iet α

α
κ

σ −−= .             (8) 

In the sequel, let  denote the process 

1 1 2 2( ) ( ) ( ).x t c x t c x t= +               (9) 
Theorem 2. 
The process  is Gaussian with a mean  

1 1 2 2( ) ( )c t c tµ µ+               (10) 
and a variance  

1 2( )2 2 2 2 1 2 1 2
1 1 2 2

1 2

2( ) ( ) (1 ).tc cc t c t e α ακ κσ σ
α α

− ++ + −
+

    (11) 

Here 1v  and 2v  are init ial amounts, 1α  and 2α  are 

the rates of eliminations, 1β  and 2β  are the rates of 

absorptions for two chemicals. 1κ  and 2κ represent the 

variability coefficients within each process, and 1c  and 2c  
are two constants as used in equation (9). We refer the α ’s 
and the β ’s as the main parameters for the model, κ ’s as 
the variance parameters, and c ’s as the synergy parameters. 

3. Description of Data 
This study focuses on the concentrations of two 

stereoisomers, referred to as S and R, in the human 
bloodstream. Isomers are essentially identical chemical 
substances that differ only in their stereochemistry. That is, 
the elemental make-up of the substances is exactly the same, 
but the 3-dimensional positioning is different. Specifically 
for S and R isomerism, certain components of the compound 
are arranged in a different circu lar pattern about the center. S 
isomers indicate “left-hand” arrangements while R isomers 
indicate “right-hand” arrangements. These differences are 
often compared to the direction of spokes on a wheel as 
in[12]. 

When the experiment begins, a  b lood sample is taken from 
each of seven volunteers (referred to as subjects). It is 
determined that the isomers are not present in any of the 
initial blood samples. That is, the concentration at time zero 
is 0 ng/mL as in[13]. A mixture containing equal parts of 
both isomers is applied via eye drops to the subjects at a rate 
of one drop per minute for three minutes. At the five minute 
time mark and eleven intervals thereafter, blood samples are 
taken from each subject and the concentration (in  ng/mL) is 
recorded. We define the concentration of the single dose 
(either R or S) by the concentration amount of the isomer 
over eleven time points. We also define the concentration of 
the combined dose by using the sum of the S and R 
concentrations over the corresponding eleven time points. 

4. A Study for Synergy  
Reference[14] proposed a synergy test of two-drug 

combinations that does not require modeling a response 
surface. They have used a Model Free Test (MFT) to 
establish a sufficient condition for synergy at a combination 
dose. The paper discusses the study of two or more agents in 
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combination of dose ratios and describes synergy as it 
applies to dose equivalents of the mathemat ical equation of 
the form below.  

 

xi / xie =1
i=1

n

∑                   (12) 

Here, 

 

xi is the dose (or concentration) of the ith drug 
given in a combinat ion of n  drugs and 

 

xie  is the dose (or 
concentration) of the ith drug given individually that would 
produce  the magnitude of the combination concentration. 
If the value of the left-hand side of the equation (12) is less 
than 1, the effect is synergistic; if the effect is greater than 1, 
the effect is antagonistic. The equation (12) defines the 
theoretical, or more precisely, the e-theoretical line of dose 
additivity, where ),( 21 xxx =  lies on an e-isobole as 
in[14]. Here the authors describe the e-theoretical line as the 
line connecting the dose points of ex1  to ex2 . The e-isobole 
is the curve describing the different dose combinations 
between ex1 and ex2 . Depending on the position on the line, 
one can determine if the combination is synergistic or 
antagonistic. Their proposed method for establishing a 
sufficient condition for a synergy test uses an arbitrary line 
through ),( *

2
*
1 xx  given by 0)()( *

22
*
11 =−+− xxxxr  

where ),( *
2

*
1

* xxx =  is a given dose point. 
In the fixed rat io design, as in[15] of two drugs, individual 

compounds are combined together in amounts such that the 
proportion between them is constant. In other words for two 
levels of drugs we look at linear combinations of the form 

 or   
which must either be greater than, less than, or equal to 1.  

In the expression, ),( SR xxg  is a function of two drugs, 

)0,( Rxg , and ),0( Sxg  are the functions of one drug in 
the absence of the other and  is the correlat ion coefficient 
that depends on the ratio  of the combination of the two. For 
the synergy, we use the following tests,   

Ho: * * *( , ) ( ,0),R S Rrg x x g x≥ versus Ha:

for isomer R, and 

Ho: * * *( , ) (0, ),R S Srg x x g x≥ versus  

Ha:  
for isomer S, for a specified  value o f r. A necessary 

condition for this hypothesis test is that the power for the 
specified value of r is at least 0.5. Also, since correlation is 
time dependent and expected to change as concentration 
combination changes, we establish a bound on r for 
significant results of the synergy tests for all subjects. 

5. Statistical Methodology 
The NLIN procedure in SAS uses the mean and variance 

calculated from the stochastic model without any 

assumptions about the parametric form of the distribution. 
The procedure uses the least squares method to fit the curve 
to the observations and estimate the model parameters. The 
process requires that the first derivatives of the equation with 
respect to each model parameter to be estimated. Mean 
Squared Error (MSE) is calculated as a result of convergence 
of the NLIN procedure.  

The NLMIXED procedure in SAS requires that the mean 
and the variance expressions for the equations be supplied as 
the initial input with the assumption that model has a normal 
distribution with the stated parameters. The procedure uses 
maximum likelihood estimates of the parameters while 
fitting the model to the observations. It includes information 
about the mean and variance for the combined data, and 
hence we estimate the combination coefficients 1c  and 2c  
of the drug efficacies. We use individual data for later 
analyses where 1c  and 2c  are considered to be known 
constants.  

Akaike’s information  criterion (AIC) is a useful statistic 
for statistical model evaluation and has been widely  accepted 
in some areas of statistics, eg. See[16]. It is calculated for 
each selected model as AIC = (n)ln (SSE/n) + 2k , where k is 
the number of parameters to be estimated and SSE stands for 
sum of squared errors. A low value for AIC indicates a better 
fit as described in[17]. The value of AIC is computed after 
the convergence of the NLMIXED procedure. The value of 
AIC is calculated for NLIN procedure from the respective 
MSE values.  

As suggested in[18] we use the Wilcoxon  Rank Test for 
the linear combination of hypotheses, that were described in 
the synergy test establishes a sufficient condition for 
rejecting the hypotheses at a .05 significance level. Since the 
distribution of the time data for each subject is unknown, the 
nonparametric min test is appropriate and widely used. We 
perform the power study using the WILCOX.TEST 
procedure in R for a simulation size o f 5000 data sets. For the 
synergy hypotheses, we test seven pairs of hypotheses 
against one-sided alternatives, one pair per subject on each 
isomer type for combined and individual data.  

For model (9), using R software we generate 20,000 data 
sets for each patient using the estimated parameters from 
both the NLIN and NLMIXED procedures. We supply the 
initial estimates of the parameters, and use the NLS function 
to check the convergence of the model parameters to their 
initial values.  

6. Results  
The initial dose amounts are considered known and used 

as constants throughout the analyses. We use the combined 
data for seven patients to estimate the parameters in equation 
(9). We use the equations (10) and (11) to input the mean and 
variance required in the procedure. NLMIXED was 
necessary to incorporate the subjects as blocking variables. 
This allowed us to analyze the data in its entirety and 
estimate the synergy parameters 1c  and 2c as given in 
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Table 1. Th is capability is not available from the NLIN 
procedure. 

However, we use the individual data to estimate mean and 
variance parameters fo r seven subjects using both the NLIN 

and NLMIXED procedures. The results are presented in 
Tables 2 - 3, using the given coefficients of 1c  and 2c  
from Table 1.  

Table 1.  Parameter estimates from PROC NLMIXED using the full model, using combined data (standard errors are in parenthesis) 

Parameter α1 β1 c1 κ1 α2 β2 c2 κ2 

Estimate 
(standard 

error) 

0.09299 
( 0.1077) 

0.02499  
(0.06809) 

1.113  
(1.0098) 

-10.640  
(24.4854) 

0.02475  
(0.01893) 

0.00028  
(0.00056) 

1.107  
(0.825) 

17.0014  
(6.0380) 

Table 2.  Parameter estimates for subjects 1-7 from PROC NLIN using individual data (standard errors are in parenthesis) 

Subject 
PROC NLIN 

α1 β1 κ1 α2 β2 κ2 

1 0.0116 0.0001 -1.6259 0.0304 0.0590 2.7249 

(0.0138) (0.00083) (0.9421) (0.0101) (0.1688) (1.0368) 

2 0.0078 0.0010 -0.4173 0.0260 0.0239 0.7696 

(0.0184) (0.00272) (0.4009) (0.0135) (0.0530) (0.4214) 

3 0.0476 0.0427 1.0600 0.0103 -0.0003 -0.4560 

(0.0296) (0.1007) (0.0748) (0.0110) (0.00085) (0.1791) 

4 0.0626 -0.0016 -0.6967 0.0046 0.0050 0.2330 

(0.0788) (0.00206) (0.4343) (0.0426) (0.0176) (0.5246) 

5 0.1163 -0.0018 1.0275 0.0109 0.0016 -0.3480 

(0.0927) (0.0209) (0.2282) (0.0608) (0.0173) (0.4120) 

6 0.0195 0.0508 -0.2631 -0.0119 0.0572 0.0470 

(0.0130) (0.2504) (0.0850) (0.0322) (0.1945) (0.0927) 

7 0.1702 -0.2898 2.6484 -0.2928 -0.2646 -0.5329 

(4.9554) (4.7923) (42.5844) (4.7738) (4.7690) (4.3407) 

Table 3.  Parameter estimates for subjects 1 - 7 from PROC NLMIXED using individual data (standard errors are in parenthesis) 

Subject 
PROC NLMIXED 

α1 β1 κ1 α2 β2 κ2 

1 0.0796 -0.0005 0.0001 7.8761 3.2148 -18.3960 

(0.00324) (0.00015) (4.8522) (5.1508) (0.00001) (4.4106) 

2 0.0231 0.0230 2.7994 0.0209 0.0003 -0.5299 

(0.01068) (0.01063) (36.5755) (0.00203) (0.0003) (35.7244) 

3 0.0346 -0.0009 1.3451 0.0251 0.3338 -3.0440 

(0.00173) (0.00015) (8.0622) (0.01983) (0.1183) (7.5456) 

4 0.0410 0.0008 -3.4502 0.0008 0.0397 0.0162 

(0.02101) (0.00196) (1.2728) (0.00191) (0.02022) (0.5374) 

5 0.2167 0.0001 7.6815 0.0373 0.0000 -4.7880 

(0.09124) (0.00335) (4.3065) (0.00514) (0.0006) (1.5228) 

6 0.0730 0.0004 15.7446 0.0272 0.0005 -4.6469 

(0.03567) (0.00588) (9.8340) (0.00892) (0.00233) (9.0839) 

7 0.0926 0.0229 4.5984 0.0005 0.0183 0.0762 

(0.0531) (0.02304) (2.1488) (0.00029) (0.00161) (0.6630) 
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Figure 1.  Concentration versus time for individual subjects plotted with estimated curves by NLIN (dotted lines) and NLMIXED (solid lines) methods on 
the observed values 
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The above two procedures generated parameter estimates 
with reasonably low standard errors of estimat ion. An AIC 
comparison further shed insights on the nature of the analysis 
done. The AIC values in Table 4 show lower numbers for the 
NLIN procedure in every subject than the NLMIXED and 
points towards a better fit of the data by the former 
procedure.  

Using the parameter estimates obtained from the data in  
previous tables, we fit  the estimated equations to the 
individual data as shown in Figure 1. The fitted curves below 
indicate an extremely  good fit  of the model to the data by 
both the procedures. A careful look at the fitted curves by the 
NLIN procedure confirms that it  fo llows the data for the 
individual subjects slightly better than the curves fitted by 
the NLMIXED procedure.  

The results for power study of each are given in Table 5. 
The lower bound for r is the maximum (i.e. it is equal to 
1.00). The upper bound for r is the estimate that generated a 
power, which we accept (i.e. it is above 0.5). Using these 
ranges, we perform the synergy tests on the observed data. 

In table 5 the sixth  subject shows the maximum strength of 
maintaining the power. The synergy tests for individuals 
based on the choice of correlation coefficient between .08 
and .23 (over all data) gives p-values less than .05 for each 
subject when performed fo r both the isomers. The W-score 
for the W ilcoxon  Rank-Sum statistics and the p-values are 
shown in Tables 6 and 7. 

A description of the estimated values fo r the correlat ion 
coefficient is shown below in the isobologram in Figure 2. 
The theoretical isobole described as in[14] illustrates two 
hypothetical doses with a generic placement of the 
synergistic locations. The straight line represents the 

e-theoretical line o f additiv ity connecting and . In  
Figure 2, we use the same line setup and place the correlation 
bounds to show the synergistic power and possible location 
for the dose combination of the data.  

Table 4.  AIC comparisons for the individual subjects using two SAS 
procedures 

SUBJECT NLMIXED NLIN 

1 79.2 35.8 
2 93.6 68.5 

3 88.5 54.3 
4 98.0 71.8 
5 94.9 63.0 

6 115.8 78.5 

7 97.7 72.1 

Table 5.  Power study for the synergy tests using individual data 

Subject 
Result for r 

Lower Bound Upper Bound 

1 0.08 0.23 

2 0.17 0.26 

3 0.19 0.27 

4 0.20 0.29 

5 0.12 0.23 

6 0.34 0.71 

7 0.21 0.28 

 

Table 6.  Synergy tests for hypothesis for subjects 1 – 7 using the isomer R 

Subject 
Wilcoxon Rank-Sum Results 

Lower Bound Upper Bound 

1 
W-score 121 97 
p-value <0.0001 0.009025 

2 
W-score 121 92 
p-value <0.0001 0.01999 

3 
W-score 118 101 
p-value <0.0001 0.003317 

4 
W-score 121 97 
p-value <0.0001 0.009025 

5 
W-score 119 89 
p-value <0.0001 0.03291 

6 
W-score 121 90 
p-value <0.0001 0.02837 

7 
W-score 121 97 
p-value <0.0001 0.009025 

ex1 ex2

)0,(),(*: ***
0 RSR xgxxgrH ≥
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Figure 2.  A hypothetical isobologram with the estimated bounds for the correlation coefficient and the corresponding power is shown here. Note that the 
isobole curve represents only a sampling of the possible dose combinations 

Table 7.  Synergy test for hypothesis for subjects 1 – 7 using  the isomer S 

Subject 
Wilcoxon Rank-Sum Results 

Lower Bound Upper Bound 

1 
W-score 121 110 
p-value <0.0001 0.0006443 

2 
W-score 119 104 
p-value <0.0001 0.002369 

3 
W-score 121 104 
p-value <0.0001 0.002369 

4 
W-score 113 96 
p-value <0.0001 0.009615 

5 
W-score 121 110 
p-value <0.0001 0.0006443 

6 
W-score 121 114 
p-value <0.0001 <0.0001 

7 
W-score 121 97 
p-value <0.0001 0.009025 

 

7. Simulations and Efficiency 
Comparison for Parameter 
Estimations 

A Bootstrapping Monte Carlo simulation study was 
conducted for individual subjects to compare the inferential 
performance of the NLIN and NLMIXED procedures 
described in section 5. We considered the parameter 
estimates from the data as the initial starting points. After 
20,000 iterations, the estimates converged to assigned 

criteria and produced the average of each parameter value 
with the corresponding standard deviation. We used the 
known estimates of 1c  and 2c  in the simulation to be 
consistent with the synergy test. 

In most cases in Tables 8 –  9 the estimates are very  close 
to the true parameters in Tables 2 - 3. Differences shown in 
Tables 10-11 indicate that some of the variance ( ) 
parameters were incorrectly estimated by the data, though 
the main parameter estimates were quite close. There was 

),0(),(*: ***
0 SSR xgxxgrH ≥

21 ,κκ
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only one indication of a large difference that was detected by 
the simulation. Table 11, the NLMIXED difference table 

shows a large difference for two  main parameter estimates 
for Subject 1. 

Table 8.  Simulation results for subjects 1 – 7 using parameters of PROC NLIN procedures (standard errors are in parenthesis) 

Subject 
PROC NLIN 

α1 β1 κ1 α2 β2 κ2 

1 0.0116 0.0001 -1.6270 0.0304 0.0593 2.7250 
(0.00003) (0.000002) (0.00185) (0.00002) (0.00033) (0.00204) 

2 0.0078 0.0010 -0.4174 0.0260 0.0239 0.7696 
(0.00001) (0.000001) (0.00017) (0.00001) (0.00002) (0.00018) 

3 0.0477 0.0426 1.0600 0.0103 -0.0003 -0.4561 
(0.00002) (0.00008) (0.00006) (0.00001) (0.000001) (0.00014) 

4 0.0626 -0.0016 -0.6967 0.0046 0.0050 0.2330 
(0.00003) (0.000001) (0.00019) (0.00002) (0.00001) (0.00023) 

5 
0.1162 -0.0018 1.0280 0.0109 0.0016 -0.3479 

(0.00005) (0.00001) (0.00012) (0.00003) (0.00001) (0.00022) 

6 0.0195 0.0509 -0.2632 -0.0118 0.0571 0.0470 
(0.000004) (0.00007) (0.00002) (0.00001) (0.00006) (0.00003) 

7 0.1699 -0.2899 2.6495 -0.2929 -0.2647 -0.5330 

(0.00215) (0.00208) (0.01848) (0.00207) (0.00207) (0.00188) 

Table 9.  Simulation results for subjects 1 – 7 using parameters of PROC NLMIXED procedures (standard errors are in parenthesis) 

Subject 
PROC NLMIXED 

α1 β1 κ1 α2 β2 κ2 

1 0.0323 -0.0005 -4.0940 0.0985 0.0197 9.7950 
(0.00031) (0.00001) (0.05381) (0.00094) (0.00055) (0.0706) 

2 0.0231 0.0230 2.7990 0.0209 0.0002 -0.5299 
(0.01237) (0.01327) (16.7000) (0.0005) (0.00001) (16.8000) 

3 0.0346 -0.0009 1.2730 0.0248 0.3344 -2.9730 
(0.00075) (0.000002) (0.1415) (0.00108) (0.00771) (0.1348) 

4 0.0419 0.0008 -3.5496 0.0008 0.0418 0.1042 
(0.00257) (0.01442) (0.36869) (0.01535) (0.01326) (0.39592) 

5 0.2163 0.0004 7.6820 0.0373 0.0000 -4.7880 
(0.00035) (0.00038) (0.01632) (0.00022) (0.00005) (0.01551) 

6 0.0718 0.0004 15.5999 0.0271 0.0005 -4.5510 
(0.0019) (0.00088) (0.21123) (0.00016) (0.00034) (0.22363) 

7 0.0947 0.0253 4.6770 0.0005 0.0187 0.0122 
(0.00143) (0.00189) (0.07197) (0.000005) (0.00028) (0.06414) 

Table 10.  Difference of true parameter values from NLIN procedure from the estimated values from the simulation results for subjects 1 – 7 

Subject 
PROC NLIN 

α1 β1 κ1 α2 β2 κ2 

1 0.0000 0.0000 0.0011 0.0000 -0.0004 -0.0001 

2 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 

3 0.0130 0.0436 -0.2851 -0.0148 -0.3341 2.5880 

4 0.0215 -0.0024 2.7535 0.0038 -0.0347 0.2168 

5 -0.1004 -0.0019 -6.6540 -0.0265 0.0016 4.4400 

6 -0.0535 0.0504 -16.0077 -0.0391 0.0567 4.6939 

7 0.0776 -0.3127 -1.9500 -0.2933 -0.2829 -0.6091 
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Table 11.  Difference of true parameter values from NLMIXED procedure from the estimated values from the simulation results for subjects 1 – 7 

Subject 
PROC NLMIXED 

α1 β1 κ1 α2 β2 κ2 

1 0.0796 -0.0005 -1.0000 7.8645 3.2147 -16.7690 

2 0.0231 0.0230 0.7994 0.0131 -0.0008 -0.1125 

3 0.0346 -0.0009 -1.6549 -0.0226 0.2912 -4.1040 

4 0.0410 0.0008 -7.4502 -0.0617 0.0414 0.7129 

5 0.2167 0.0001 2.6815 -0.0789 0.0018 -5.8160 

6 0.0730 0.0004 9.7446 0.0076 -0.0504 -4.3837 

7 0.0926 0.0229 -2.4016 -0.1694 0.3082 -2.5733 

 

The NLIN procedure seems to converge faster than the 
NLMIXED procedure and the parameter estimates are also 
closer to the actual values obtained from the experimental 
data. We encountered problems of occurring singular values 
using the NLMIXED method. The variance estimates 
seemed not to converge well to the true values for the either 
procedure. However the bulk of the convergence was smooth, 
giving precise estimates with very small standard errors. 

8. Conclusions 
In this paper we have addressed one very important 

question of drug combination. Pharmacology studies deal 
with combined data that are interactive in nature. In 
mathematical terms an interaction is usually represented by 
multip licat ion of terms. It is not quite clear for drug 
interactions whether the combined concentrations are 
additive, mult iplicative, or inh ibitive in nature. Combination 
of isomers in eye doses gives a reason to test for synergy to 
assert the researchers’ effort to show an additive effect.  

The proposed model uses very simple stochastic 
differential equation techniques to solve for the model mean 
and variance in closed form.  The two different statistical 
procedures are used here to confirm that our model has the 
flexib ility for use by practitioners.   

The proposed model is simple in nature and uses a limited 
number of dose combinations. We were faced with the 
challenge of using the existing data. But the data collection 
can be done based on the recommendations in the paper[14].  

While many other methods of drug assessment and model 
building are available, our model tests for a mathematical 
synergy instead of a biological synergy. A biological 
synergy may or may not happen in the experiment; but, if 
data are collected based on the combined dose levels as 

suggested by other researchers, a mathematical synergy can 
be tested as shown in this paper. 
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