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Abstract  This paper presents a mathematical model for performing availability and reliability analysis of a parallel re-
pairable system consisting of n identical components with degradation facility and common-cause failures. In addition, 
system repair time is assumed to be arbitrarily distributed. Markov and supplementary variable techniques are used to de-
velop equations for the model. As an illustration, system of four-identical/repairable components is analysed. 
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1. Introduction 
Markov chain is a stochastic process that have a finite 

states at time t under consideration that the chain runs only 
through a continuous time, the basic assumption of Markov 
chain is the transition from the current state of the system is 
determined only by the present state and not by previous 
state or the time at which it reached the present state[1]. 

Parallel can be used to increase the reliability of a system 
without any change in the reliability of the individual com-
ponents that form the system. The probability of failure or 
unreliability for a system with n statistically independent 
parallel components is the probability that 1 fails and com-
ponent 2 fails and all of the other components in the system 
fail. Therefore, in a parallel system, all n components must 
fail for the system to fail[2]. The problem of evaluating the 
availability and reliability of the parallel system has been the 
subject of many studies throughout the literature[3-6]. 

It is observed that in the field of reliability, failures play a 
vital role. Many researchers[7-9] define different types of 
failures. In real systems, we cannot neglect the effect of 
various failures such as major failure, catastrophic failure, 
minor failure, common-cause failure, and so on. 

It is a common knowledge that redundancy can be used to 
increase the reliability of a system without changing the 
reliability of the individual unit that forms the system. It has 
been realized that in order to predict realistic reliability and 
availability of parallel systems the occurrence of com-
mon-cause failure must be considered. A common-cause 
failure is defined as the failure of single component or 
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multiple components due to a single common-cause[10]. 
Some of the common-cause failure may occur due to many 
reasons such as wrong designing of equipment during design 
phase, high temperature of computer chips, and so on.  

Most reliability models assume that the up and down times 
of the components are exponentially distributed. This as-
sumption leads to a Markovian model with constant transi-
tion rates. The analysis in such cases is relatively simple and 
the numerical results can be easily obtained. The assumption 
is often valid for the up time but the down times are likely to 
have non-exponential distribution. When the components are 
independent, the steady-state results are not affected by the 
shape of the distribution. If the distributions cannot be rep-
resented by a single exponential form then the process be-
comes non-Markovian and different techniques are required 
for system solution. In this paper, we use the supplementary 
variable method. This method is used to convert non-Markov 
process into a Markov process by redefinition of the state 
space[11]. 

By using the supplementary variable method, we can 
readily obtain all differential equations in terms of the state 
transition diagram of the model. However, it is still difficult 
to solve these differential equations because they usually 
involve some functions to be determined if there are at least 
two hazard rate functions involved in one of the equations.   

In the traditional systems, the units of the system have 
only two states up and down. However, in many situations 
the units of the system can have finite number of states. In 
this paper, we consider that each component of the system 
has three states: up, degraded, and down. The transition from 
up state to degraded state represents a partial failure and the 
transition from up state to down (failed) state or from de-
graded state to down (failed) state represents a complete 
failure. 

In[12], stochastic analysis of a repairable system with 
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three units and two repair facilities was introduced. In[13], 
reliability characteristic of cold-standby redundant system 
was introduced. In[14], some reliability parameters of a three 
state repairable system with environmental failure were 
evaluated. In[15], human error and common-cause failure 
modelling was established for a two-unit multiple system. 
In[16], reliability modeling of 2-out-of-3 redundant system 
is introduced subject to degradation after repair. In[10], 
Stochastic analysis of a non-identical two-unit parallel sys-
tem with common-cause failure using GERT technique. The 
model considered in the present paper generalizes the models 
discussed in literature. 

In this paper, we construct a mathematical model for a 
system consists of n repairable and identical components 
connected in parallel and each component has three states: 
up, degraded, and down. Each component of the system has 
three types of failures. All failures and repair rates are con-
stant and the repaired component is good as new. The system 
at any working state can completely fail due to a com-
mon-cause failure with constant failure rate and in this case 
the system will go to the critical case c. We assume that the 
repair time, when the system fails due to a common-cause 
failure, follows general distribution. We also introduce a 
numerical example to illustrate the computation of 
steady-state availability, reliability function, and mean time 
to failure of a system consists of 4 components.  

 
Figure 1.  State-space diagram 

2. Model Description 
We consider that the system consists of n components 

connected in parallel and these components are identical and 
repairable. At time t = 0, the system is operable and it fails 
when all components completely fail or it fails due to 
common-cause failure and in this case the system goes to the 
critical case c. Each component has three states: up, de-
graded, and down and each component fails with three types 
of failures. All failures are statistically independent. All 
failures and repair rates are constant except for the repair rate 

from the critical case which will be not constant. So, this 
process is non-Markovian and we will use the supplementary 
variable method to convert it into Markovian process. By 
using supplementary variable method, we can construct the 
differential equations associated with the model. The 
state-space for the model is shown in Figure 1.  

2.1. Notations 

𝜆𝜆1 : the constant failure rate of the unit when it goes from 
up state to degraded state. 
𝜆𝜆2 : the constant failure rate of the unit when it goes from 

up state to down state. 
𝜆𝜆3 : the constant failure rate of the unit when it goes from 

degraded state to down state. 
𝜆𝜆𝑐𝑐  : the constant failure rate of the system when it fails 

due to a common-cause failure. 
𝜇𝜇1 : the constant repair rate of the unit from degraded state 

to up state. 
𝜇𝜇2 : the constant repair rate of the unit from down state to 

up state. 
𝜇𝜇𝑥𝑥(𝑐𝑐) : the repair rate of the failed system when it fails 

due to common-cause failure and the distribution of the 
elapsed repair time, x, is general. 
𝑃𝑃𝑡𝑡(𝑖𝑖, 𝑗𝑗) : the probability that the system is in state (i, j) at 

time t, where i is the number of degraded units and j is the 
number of failed units. 
𝑃𝑃𝑠𝑠∗(𝑖𝑖, 𝑗𝑗) : the Laplace transform of the probability 𝑃𝑃𝑡𝑡(𝑖𝑖, 𝑗𝑗). 
𝑃𝑃𝑥𝑥 ,𝑡𝑡(𝑐𝑐) : the probability that the system is in the critical 

state c at time t and the elapsed repair time is x. 
𝑃𝑃(𝑖𝑖, 𝑗𝑗) : the steady-state probability of being in state (i, j). 
n : the total number of components in the system 

2.2. State Probabilities  

By probability and continuity arguments, the difference- 
differential equations for the stochastic process which is 
continuous in time and discrete in space are given as follows. 

For 𝒊𝒊 = 𝒋𝒋 = 𝟎𝟎 
𝑑𝑑𝑃𝑃𝑡𝑡(0, 0)

𝑑𝑑𝑑𝑑
= −[𝑛𝑛(𝜆𝜆1 + 𝜆𝜆2) + 𝜆𝜆𝑐𝑐]𝑃𝑃𝑡𝑡(0, 0) + 𝜇𝜇1𝑃𝑃𝑡𝑡(1, 0) 

+𝜇𝜇2𝑃𝑃𝑡𝑡(0, 1) + ∫ 𝜇𝜇𝑥𝑥(𝑐𝑐)𝑃𝑃𝑥𝑥 ,𝑡𝑡(𝑐𝑐)𝑑𝑑𝑑𝑑 ∞
0      (1) 

For 𝟎𝟎 < 𝑖𝑖 < 𝑛𝑛, 𝑗𝑗 = 0 
𝑑𝑑𝑃𝑃𝑡𝑡(𝑖𝑖, 0)

𝑑𝑑𝑑𝑑
= −[(𝑛𝑛 − 𝑖𝑖)(𝜆𝜆1 + 𝜆𝜆2) + 𝑖𝑖𝜆𝜆3 + 𝑖𝑖𝜇𝜇1 + 𝜆𝜆𝑐𝑐] 𝑃𝑃𝑡𝑡(𝑖𝑖, 0) 

 +(𝑖𝑖 + 1)𝜇𝜇1𝑃𝑃𝑡𝑡(𝑖𝑖 + 1, 0) 
+(𝑛𝑛 − 𝑖𝑖 + 1)𝜆𝜆1𝑃𝑃𝑡𝑡(𝑖𝑖 − 1, 0) + 𝜇𝜇2𝑃𝑃𝑡𝑡(𝑖𝑖, 1)  (2) 

For 𝒊𝒊 = 𝒏𝒏, 𝒋𝒋 = 𝟎𝟎 
𝑑𝑑𝑃𝑃𝑡𝑡(𝑛𝑛, 0)

𝑑𝑑𝑑𝑑
=  −[𝑛𝑛𝜆𝜆3 + 𝑛𝑛𝜇𝜇1 + 𝜆𝜆𝑐𝑐]𝑃𝑃𝑡𝑡(𝑛𝑛, 0) 

+𝜆𝜆1𝑃𝑃𝑡𝑡(𝑛𝑛 − 1, 0)              (3) 
For 𝒊𝒊 = 𝟎𝟎,𝟎𝟎 < 𝑗𝑗 < 𝑛𝑛  
𝑑𝑑𝑃𝑃𝑡𝑡(0, 𝑗𝑗)

𝑑𝑑𝑑𝑑
= −[(𝑛𝑛 − 𝑗𝑗)(𝜆𝜆1 + 𝜆𝜆2) + 𝑗𝑗𝜇𝜇2 + 𝜆𝜆𝑐𝑐] 𝑃𝑃𝑡𝑡(0, 𝑗𝑗) 

+(𝑗𝑗 + 1)𝜇𝜇2𝑃𝑃𝑡𝑡(0, 𝑗𝑗 + 1)  
+(𝑛𝑛 − 𝑗𝑗 + 1)𝜆𝜆2𝑃𝑃𝑡𝑡(0, 𝑗𝑗 − 1)  
+𝜇𝜇1𝑃𝑃𝑡𝑡(1, 𝑗𝑗) + 𝜆𝜆3𝑃𝑃𝑡𝑡(1, 𝑗𝑗 − 1)          (4) 

For 𝒊𝒊 = 𝟎𝟎, 𝒋𝒋 = 𝒏𝒏 
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𝑑𝑑𝑃𝑃𝑡𝑡(0,𝑛𝑛)
𝑑𝑑𝑑𝑑

=  −𝑛𝑛𝜇𝜇2𝑃𝑃𝑡𝑡(0,𝑛𝑛) + 𝜆𝜆2𝑃𝑃𝑡𝑡(0,𝑛𝑛 − 1) 
+𝜆𝜆3𝑃𝑃𝑡𝑡(1,𝑛𝑛 − 1)                (5) 

For 𝟏𝟏 < 𝑖𝑖 + 𝑗𝑗 < 𝑛𝑛, 0 < 𝑖𝑖, 𝑗𝑗 < 𝑛𝑛 − 1 
𝑑𝑑𝑃𝑃𝑡𝑡(𝑖𝑖, 𝑗𝑗)
𝑑𝑑𝑑𝑑

= −[(𝑛𝑛 − 𝑖𝑖 − 𝑗𝑗)(𝜆𝜆1 + 𝜆𝜆2) + 𝑖𝑖𝜆𝜆3 + 𝑖𝑖𝜇𝜇1 + 𝑗𝑗𝜇𝜇2

+ 𝜆𝜆𝑐𝑐] 𝑃𝑃𝑡𝑡(𝑖𝑖, 𝑗𝑗) + (𝑗𝑗 + 1)𝜇𝜇2𝑃𝑃𝑡𝑡(𝑖𝑖, 𝑗𝑗 + 1)
+ (𝑖𝑖 + 1)𝜇𝜇1𝑃𝑃𝑡𝑡(𝑖𝑖 + 1, 𝑗𝑗)
+ (𝑛𝑛 − 𝑖𝑖 − 𝑗𝑗 + 1)𝜆𝜆1𝑃𝑃𝑡𝑡(𝑖𝑖 − 1, 𝑗𝑗) 
+(𝑛𝑛 − 𝑖𝑖 − 𝑗𝑗 + 1)𝜆𝜆2𝑃𝑃𝑡𝑡(𝑖𝑖, 𝑗𝑗 − 1)  
+(𝑖𝑖 + 1)𝜆𝜆3𝑃𝑃𝑡𝑡(𝑖𝑖 + 1, 𝑗𝑗 − 1)        (6) 

For 𝒊𝒊 + 𝒋𝒋 = 𝒏𝒏,𝟎𝟎 < 𝑖𝑖, 𝑗𝑗 ≤ 𝑛𝑛 − 1 
𝑑𝑑𝑃𝑃𝑡𝑡(𝑖𝑖, 𝑗𝑗)
𝑑𝑑𝑑𝑑

= −[𝑖𝑖𝜆𝜆3 + 𝑖𝑖𝜇𝜇1 + 𝑗𝑗𝜇𝜇2 + 𝜆𝜆𝑐𝑐] 𝑃𝑃𝑡𝑡(𝑖𝑖, 𝑗𝑗) 
+𝜆𝜆1𝑃𝑃𝑡𝑡(𝑖𝑖 − 1, 𝑗𝑗) + 𝜆𝜆2𝑃𝑃𝑡𝑡(𝑖𝑖, 𝑗𝑗 − 1)  
+(𝑖𝑖 + 1)𝜆𝜆3𝑃𝑃𝑡𝑡(𝑖𝑖 + 1, 𝑗𝑗 − 1)         (7) 

For the critical case c 
� 𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝜕𝜕
𝜕𝜕𝜕𝜕
� 𝑃𝑃𝑥𝑥 ,𝑡𝑡(𝑐𝑐) = −𝜇𝜇𝑥𝑥(𝑐𝑐)𝑃𝑃𝑥𝑥 ,𝑡𝑡(𝑐𝑐)      (8) 

Boundary condition 
𝑃𝑃0,𝑡𝑡(𝑐𝑐) = 𝜆𝜆𝑐𝑐 ∑ 𝑃𝑃𝑡𝑡(𝑖𝑖, 𝑗𝑗)𝑛𝑛

𝑖𝑖+𝑗𝑗=0,
𝑗𝑗≠𝑛𝑛

          (9) 

Initial conditions 
𝑃𝑃0(0, 0) = 1,    𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑧𝑧𝑧𝑧𝑧𝑧𝑧𝑧  

2.3. System Availability Analysis 

To solve the previous mathematical model (1)-(9) for a 
given value of n, we will take Laplace transform of the 
equations from (1) to (9) and use the associated initial con-
ditions. Hence, we obtain the following system of equations. 

For 𝒊𝒊 =  𝒋𝒋 = 𝟎𝟎 
[𝑠𝑠 + 𝑛𝑛(𝜆𝜆1 + 𝜆𝜆2) + 𝜆𝜆𝑐𝑐]𝑃𝑃𝑠𝑠∗(0, 0) − 𝜇𝜇1𝑃𝑃𝑠𝑠∗(1, 0) − 𝜇𝜇2𝑃𝑃𝑠𝑠∗(0, 1)  

− ∫ 𝜇𝜇𝑥𝑥(𝑐𝑐)𝑃𝑃𝑥𝑥 ,𝑠𝑠
∗∞

0 (𝑐𝑐)𝑑𝑑𝑑𝑑 = 1        (10) 
For 𝟎𝟎 < 𝑖𝑖 < 𝑛𝑛, 𝑗𝑗 = 0 

[𝑠𝑠 + (𝑛𝑛 − 𝑖𝑖)(𝜆𝜆1 + 𝜆𝜆2) + 𝑖𝑖𝜆𝜆3 + 𝑖𝑖𝜇𝜇1 + 𝜆𝜆𝑐𝑐] 𝑃𝑃𝑠𝑠∗(𝑖𝑖, 0) 
−(𝑖𝑖 + 1)𝜇𝜇1𝑃𝑃𝑠𝑠∗(𝑖𝑖 + 1, 0) − (𝑛𝑛 − 𝑖𝑖 + 1)𝜆𝜆1𝑃𝑃𝑠𝑠∗(𝑖𝑖 − 1, 0) 

−𝜇𝜇2𝑃𝑃𝑠𝑠∗(𝑖𝑖, 1) = 0               (11) 
For 𝒊𝒊 = 𝒏𝒏, 𝒋𝒋 = 𝟎𝟎 

[𝑠𝑠 + 𝑛𝑛𝜆𝜆3 + 𝑛𝑛𝜇𝜇1 + 𝜆𝜆𝑐𝑐]𝑃𝑃𝑠𝑠∗(𝑛𝑛, 0) − 𝜆𝜆1𝑃𝑃𝑠𝑠∗(𝑛𝑛 − 1, 0) = 0  (12) 
For 𝒊𝒊 = 𝟎𝟎, 𝟎𝟎 < 𝑗𝑗 < 𝑛𝑛 

[𝑠𝑠 + (𝑛𝑛 − 𝑗𝑗)(𝜆𝜆1 + 𝜆𝜆2) + 𝑗𝑗𝜇𝜇2 + 𝜆𝜆𝑐𝑐] 𝑃𝑃𝑠𝑠∗(0, 𝑗𝑗) 
−(𝑗𝑗 + 1)𝜇𝜇2𝑃𝑃𝑠𝑠∗(0, 𝑗𝑗 + 1) − (𝑛𝑛 − 𝑗𝑗 + 1)𝜆𝜆2𝑃𝑃𝑠𝑠∗(0, 𝑗𝑗 − 1) 

−𝜇𝜇1𝑃𝑃𝑠𝑠∗(1, 𝑗𝑗) − 𝜆𝜆3𝑃𝑃𝑠𝑠∗(1, 𝑗𝑗 − 1) = 0       (13) 
For 𝒊𝒊 = 𝟎𝟎, 𝒋𝒋 = 𝒏𝒏 
[𝑠𝑠 + 𝑛𝑛𝜇𝜇2]𝑃𝑃𝑠𝑠∗(0,𝑛𝑛) − 𝜆𝜆2𝑃𝑃𝑠𝑠∗(0,𝑛𝑛 − 1) − 𝜆𝜆3𝑃𝑃𝑠𝑠∗(1,𝑛𝑛 − 1) = 0 (14) 
For 𝟏𝟏 < 𝑖𝑖 + 𝑗𝑗 < 𝐧𝐧, 𝟎𝟎 < 𝑖𝑖, 𝑗𝑗 < 𝐧𝐧 − 𝟏𝟏 

[𝑠𝑠 + (𝑛𝑛 − 𝑖𝑖 − 𝑗𝑗)(𝜆𝜆1 + 𝜆𝜆2) + 𝑖𝑖𝜆𝜆3 + 𝑖𝑖𝜇𝜇1 + 𝑗𝑗𝜇𝜇2 +
𝜆𝜆𝑐𝑐 𝑃𝑃𝑠𝑠∗𝑖𝑖, 𝑗𝑗−𝑗𝑗+1𝜇𝜇2𝑃𝑃𝑠𝑠∗𝑖𝑖, 𝑗𝑗+1−𝑖𝑖+1𝜇𝜇1𝑃𝑃𝑠𝑠∗𝑖𝑖+1, 

𝑗𝑗−𝑛𝑛−𝑖𝑖−𝑗𝑗+1𝜆𝜆1𝑃𝑃𝑠𝑠∗𝑖𝑖−1, 𝑗𝑗  
−(𝑛𝑛 − 𝑖𝑖 − 𝑗𝑗 + 1)𝜆𝜆2𝑃𝑃𝑠𝑠∗(𝑖𝑖, 𝑗𝑗 − 1) 
−(𝑖𝑖 + 1)𝜆𝜆3𝑃𝑃𝑠𝑠∗(𝑖𝑖 + 1, 𝑗𝑗 − 1) = 0        (15) 

For 𝒊𝒊 + 𝒋𝒋 = 𝒏𝒏, 𝟎𝟎 < 𝑖𝑖, 𝑗𝑗 ≤ 𝑛𝑛 − 1 
[𝑠𝑠 + 𝑖𝑖𝜆𝜆3 + 𝑖𝑖𝜇𝜇1 + 𝑗𝑗𝜇𝜇2 + 𝜆𝜆𝑐𝑐] 𝑃𝑃𝑠𝑠∗(𝑖𝑖, 𝑗𝑗) − 𝜆𝜆1𝑃𝑃𝑠𝑠∗(𝑖𝑖 − 1, 𝑗𝑗) 
−𝜆𝜆2𝑃𝑃𝑠𝑠∗(𝑖𝑖, 𝑗𝑗 − 1) −(𝑖𝑖 + 1)𝜆𝜆3𝑃𝑃𝑠𝑠∗(𝑖𝑖 + 1, 𝑗𝑗 − 1) = 0 (16) 

For the critical case c 
𝜕𝜕𝑃𝑃𝑥𝑥 ,𝑠𝑠

∗ (𝑐𝑐)
𝜕𝜕𝜕𝜕

+ 𝑠𝑠𝑠𝑠𝑥𝑥 ,𝑠𝑠
∗ (𝑐𝑐) + 𝜇𝜇𝑥𝑥(𝑐𝑐)𝑃𝑃𝑥𝑥 ,𝑠𝑠

∗ (𝑐𝑐) = 0    (17) 
The boundary condition becomes 

𝑃𝑃0,𝑠𝑠
∗ (𝑐𝑐) = 𝜆𝜆𝑐𝑐 ∑ 𝑃𝑃𝑠𝑠∗𝑛𝑛

𝑖𝑖+𝑗𝑗=0,
𝑗𝑗≠𝑛𝑛

(𝑖𝑖, 𝑗𝑗)       (18) 

Solving differential equation (17), we get the following 
resulting expression 

𝑃𝑃𝑥𝑥 ,𝑠𝑠
∗ (𝑐𝑐) = 𝑃𝑃0,𝑠𝑠

∗  (𝑐𝑐) exp⁡{−𝑠𝑠𝑠𝑠 − ∫ 𝜇𝜇𝑥𝑥
𝑥𝑥

0 (𝑐𝑐)𝑑𝑑𝑑𝑑}    (19) 
Thus, from equation (18), we have 

𝑃𝑃𝑥𝑥 ,𝑠𝑠
∗ (𝑐𝑐) = �𝜆𝜆𝑐𝑐 ∑ 𝑃𝑃𝑠𝑠∗𝑛𝑛

𝑖𝑖+𝑗𝑗=0,
𝑗𝑗≠𝑛𝑛

(𝑖𝑖, 𝑗𝑗) � exp�−𝑠𝑠𝑠𝑠 − ∫ 𝜇𝜇𝑥𝑥
𝑥𝑥

0 (𝑐𝑐)𝑑𝑑𝑑𝑑� (20) 

Now, substituting from equation (20) into the following 
integration, we have 

∫ 𝜇𝜇𝑥𝑥(𝑐𝑐)𝑃𝑃𝑥𝑥 ,𝑠𝑠
∗∞

0 (𝑐𝑐)𝑑𝑑𝑑𝑑 = �𝜆𝜆𝑐𝑐 ∑ 𝑃𝑃𝑠𝑠∗𝑛𝑛
𝑖𝑖+𝑗𝑗=0,
𝑗𝑗≠𝑛𝑛

(𝑖𝑖, 𝑗𝑗) �∫ 𝜇𝜇𝑥𝑥(𝑐𝑐)∞
0 exp�−𝑠𝑠𝑠𝑠 −

0𝑥𝑥𝜇𝜇𝑥𝑥𝑐𝑐𝑑𝑑𝑥𝑥𝑑𝑑𝑥𝑥  

= �𝜆𝜆𝑐𝑐 ∑ 𝑃𝑃𝑠𝑠∗𝑛𝑛
𝑖𝑖+𝑗𝑗=0,
𝑗𝑗≠𝑛𝑛

(𝑖𝑖, 𝑗𝑗) �  𝑁𝑁∗(𝑠𝑠)    (21) 

where 
 𝑁𝑁∗(𝑠𝑠) = ∫ 𝜇𝜇𝑥𝑥(𝑐𝑐)∞

0 exp�−𝑠𝑠𝑠𝑠 − ∫ 𝜇𝜇𝑥𝑥
𝑥𝑥

0 (𝑐𝑐)𝑑𝑑𝑑𝑑� 𝑑𝑑𝑑𝑑  
= 1 − 𝑠𝑠 ∫ exp{−𝑠𝑠𝑠𝑠}  𝑅𝑅(𝑥𝑥)∞

0 𝑑𝑑𝑑𝑑 = 1 − 𝑠𝑠 𝑅𝑅∗(𝑠𝑠) (22) 
where 𝑅𝑅∗(𝑠𝑠)  is the Laplace transform of the reliability 
function of the random variable X. The availability function 
can be obtained by taking the inverse of Laplace transform as 
follows. 

𝐴𝐴(𝑡𝑡) = 𝐿𝐿−1 �∑ 𝑃𝑃𝑠𝑠∗𝑛𝑛
𝑖𝑖+𝑗𝑗=0,
𝑗𝑗≠𝑛𝑛

(𝑖𝑖, 𝑗𝑗)�            (23) 

2.4. System Reliability and Mean Time to Failure  

To obtain the reliability function of model (1)-(9), we 
assume that all failed states are absorbing states and set all 
transition rates from these states equal to zero. We also 
consider that 𝑃𝑃𝑡𝑡(𝑖𝑖, 𝑗𝑗) → 𝑃𝑃𝑡𝑡� (𝑖𝑖, 𝑗𝑗). The reliability function can 
be obtained by taking the inverse of Laplace transform as 
follows. 

𝑅𝑅(𝑡𝑡) = 𝐿𝐿−1 �∑ 𝑃𝑃𝑠𝑠�
∗(𝑖𝑖, 𝑗𝑗)𝑛𝑛

𝑖𝑖+𝑗𝑗=0,
𝑗𝑗≠𝑛𝑛

�         (24) 

The mean time to system failure (MTTF) can be obtained 
from the following relation. 
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = lim

𝑠𝑠→0
 𝑅𝑅∗(𝑠𝑠)  

= lim𝑠𝑠→0 �∑ 𝑃𝑃𝑠𝑠�
∗(𝑖𝑖, 𝑗𝑗)𝑛𝑛

𝑖𝑖+𝑗𝑗=0,
𝑗𝑗≠𝑛𝑛

� = ∑ 𝑃𝑃�𝑠𝑠=0
∗ (𝑖𝑖, 𝑗𝑗)𝑛𝑛

𝑖𝑖+𝑗𝑗=0,
𝑗𝑗≠𝑛𝑛

 (25) 

2.5. System Steady-State Availability 

Now, to obtain the steady-state availability, we consider 
that: 

lim
𝑡𝑡→∞

𝑃𝑃𝑡𝑡(𝑖𝑖, 𝑗𝑗) = 𝑃𝑃(𝑖𝑖, 𝑗𝑗), 
𝑑𝑑𝑃𝑃𝑡𝑡(𝑖𝑖 ,𝑗𝑗 )

𝑑𝑑𝑑𝑑
= 0  

Equations (2)-(8) reduce to equations (26)-(32) respec-
tively. 

For 𝟎𝟎 < 𝑖𝑖 < 𝑛𝑛, 𝑗𝑗 = 0 
[(𝑛𝑛 − 𝑖𝑖)(𝜆𝜆1 + 𝜆𝜆2) + 𝑖𝑖𝜆𝜆3 + 𝑖𝑖𝜇𝜇1 + 𝜆𝜆𝑐𝑐] 𝑃𝑃(𝑖𝑖, 0) −

(𝑖𝑖 + 1)𝜇𝜇1𝑃𝑃(𝑖𝑖 + 1, 0) − (𝑛𝑛 − 𝑖𝑖 + 1)𝜆𝜆1𝑃𝑃(𝑖𝑖 − 1, 0) −
𝜇𝜇2𝑃𝑃(𝑖𝑖, 1) = 0              (26) 

For 𝒊𝒊 = 𝒏𝒏, 𝒋𝒋 = 𝟎𝟎 
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[𝑛𝑛𝜆𝜆3 + 𝑛𝑛𝜇𝜇1 + 𝜆𝜆𝑐𝑐]𝑃𝑃(𝑛𝑛, 0) − 𝜆𝜆1𝑃𝑃(𝑛𝑛 − 1, 0) = 0  (27) 
For 𝒊𝒊 = 𝟎𝟎,𝟎𝟎 < 𝑗𝑗 < 𝑛𝑛  

[(𝑛𝑛 − 𝑗𝑗)(𝜆𝜆1 + 𝜆𝜆2) + 𝑗𝑗𝜇𝜇2 + 𝜆𝜆𝑐𝑐] 𝑃𝑃(0, 𝑗𝑗) − (𝑗𝑗 + 1)𝜇𝜇2𝑃𝑃(0, 𝑗𝑗 +
1−𝑛𝑛−𝑗𝑗+1𝜆𝜆2𝑃𝑃0, 𝑗𝑗−1−𝜇𝜇1𝑃𝑃1, 𝑗𝑗  

−𝜆𝜆3𝑃𝑃(1, 𝑗𝑗 − 1) = 0           (28) 
For 𝒊𝒊 = 𝟎𝟎, 𝒋𝒋 = 𝒏𝒏  
𝑛𝑛𝜇𝜇2𝑃𝑃(0,𝑛𝑛) − 𝜆𝜆2𝑃𝑃(0,𝑛𝑛 − 1) − 𝜆𝜆3𝑃𝑃(1,𝑛𝑛 − 1) = 0  (29) 

For 𝟏𝟏 < 𝑖𝑖 + 𝑗𝑗 < 𝑛𝑛, 0 < 𝑖𝑖, 𝑗𝑗 < 𝑛𝑛 − 1 
[(𝑛𝑛 − 𝑖𝑖 − 𝑗𝑗)(𝜆𝜆1 + 𝜆𝜆2) + 𝑖𝑖𝜆𝜆3 + 𝑖𝑖𝜇𝜇1 + 𝑗𝑗𝜇𝜇2 + 𝜆𝜆𝑐𝑐] 𝑃𝑃(𝑖𝑖, 𝑗𝑗)  

−(𝑗𝑗 + 1)𝜇𝜇2𝑃𝑃(𝑖𝑖, 𝑗𝑗 + 1) − (𝑖𝑖 + 1)𝜇𝜇1𝑃𝑃(𝑖𝑖 + 1, 𝑗𝑗) 
−(𝑛𝑛 − 𝑖𝑖 − 𝑗𝑗 + 1)𝜆𝜆1𝑃𝑃(𝑖𝑖 − 1, 𝑗𝑗) − (𝑛𝑛 − 𝑖𝑖 − 𝑗𝑗 + 1)𝜆𝜆2𝑃𝑃(𝑖𝑖, 𝑗𝑗 − 1)  

−(𝑖𝑖 + 1)𝜆𝜆3𝑃𝑃(𝑖𝑖 + 1, 𝑗𝑗 − 1) = 0      (30) 
For 𝒊𝒊 + 𝒋𝒋 = 𝒏𝒏,𝟎𝟎 < 𝑖𝑖, 𝑗𝑗 ≤ 𝑛𝑛 − 1 

[𝑖𝑖𝜆𝜆3 + 𝑖𝑖𝜇𝜇1 + 𝑗𝑗𝜇𝜇2 + 𝜆𝜆𝑐𝑐] 𝑃𝑃(𝑖𝑖, 𝑗𝑗) − 𝜆𝜆1𝑃𝑃(𝑖𝑖 − 1, 𝑗𝑗)  
−𝜆𝜆2𝑃𝑃(𝑖𝑖, 𝑗𝑗 − 1) − (𝑖𝑖 + 1)𝜆𝜆3𝑃𝑃(𝑖𝑖 + 1, 𝑗𝑗 − 1) = 0 (31) 

For the critical case c 
𝑑𝑑𝑃𝑃𝑥𝑥 (𝑐𝑐)
𝑑𝑑𝑑𝑑

= −𝜇𝜇𝑥𝑥(𝑐𝑐)𝑃𝑃𝑥𝑥(𝑐𝑐)         (32) 

The sum of all probabilities equals to one 

∑ 𝑃𝑃(𝑖𝑖, 𝑗𝑗) + 𝑃𝑃(𝑐𝑐) = 1,𝑛𝑛
𝑖𝑖+𝑗𝑗=0          (33) 

where 
𝑃𝑃(𝑐𝑐) = ∫ 𝑃𝑃𝑥𝑥(𝑐𝑐) 𝑑𝑑𝑑𝑑∞

0            (34) 
The boundary condition becomes 

𝑃𝑃0(𝑐𝑐) = 𝜆𝜆𝑐𝑐 ∑ 𝑃𝑃(𝑖𝑖, 𝑗𝑗)𝑛𝑛
𝑖𝑖+𝑗𝑗=0,
𝑗𝑗≠𝑛𝑛

           (35) 

Solving equation (32), we get 

𝑃𝑃𝑥𝑥(𝑐𝑐) = 𝑃𝑃0(𝑐𝑐)exp{−∫ 𝜇𝜇𝑥𝑥(𝑐𝑐)𝑑𝑑𝑑𝑑} 𝑥𝑥
0           (36) 

Substituting from equations (35) and (36) into equation 
(34), we get 

𝑃𝑃(𝑐𝑐) = ∫ 𝑃𝑃0(𝑐𝑐) 𝑒𝑒𝑒𝑒𝑒𝑒�−∫ 𝜇𝜇𝑥𝑥(𝑐𝑐) 𝑑𝑑𝑑𝑑𝑥𝑥
0 � 𝑑𝑑𝑑𝑑∞

0   

𝑃𝑃(𝑐𝑐) = �𝜆𝜆𝑐𝑐 ∑ 𝑃𝑃(𝑖𝑖, 𝑗𝑗)𝑛𝑛
𝑖𝑖+𝑗𝑗=0,
𝑗𝑗≠𝑛𝑛

�  𝐸𝐸[𝑋𝑋]           (37) 

The steady-state availability probability can be obtained 
from the following relation. 

𝐴𝐴 = lim
𝑡𝑡→∞

𝐴𝐴(𝑡𝑡) = lim
𝑡𝑡→∞

∑ 𝑃𝑃𝑡𝑡(𝑖𝑖, 𝑗𝑗)𝑛𝑛
𝑖𝑖+𝑗𝑗=0,
𝑗𝑗≠𝑛𝑛

  

𝐴𝐴 = ∑ 𝑃𝑃(𝑖𝑖, 𝑗𝑗)𝑛𝑛
𝑖𝑖+𝑗𝑗=0,
𝑗𝑗≠𝑛𝑛

                    (38) 

3. Numerical Example 
In this example, we will apply the introduced mathe-

matical model (1)-(9) for n = 4 and determine steady-state 
availability, reliability function, and mean time to failure of 
this model. 

In this case for (n = 4), the working states are: (0, 0), (1, 0), 
(0, 1), (2, 0), (0, 2), (1, 1), (3, 0), (0, 3), (1, 2), (2, 1), (4, 0), (3, 
1), (1, 3), (2, 2), and the failed states are: (0, 4), (c). 

To obtain the reliability function, we consider that all 
failed states are absorbing states in the model (1)-(9), and we 
consider the following data:  
𝜆𝜆1 = 0.01,𝜆𝜆2 = 0.03,𝜆𝜆3 = 0.05,𝜆𝜆𝑐𝑐 = 0.07,𝜇𝜇1 = 0.06,𝜇𝜇2 = 0.08 

Using numerical solutions with MAPLE program, we can 
solve the resultant system of equations by using equation (24) 
and the results are shown in Figure 2. Also, we obtain the 
mean time to failure by using equation (25) and the mean 
time to failure (MTTF) versus the common-cause failure rate 
𝜆𝜆𝑐𝑐  and 𝜆𝜆3 are shown in Figure 3 and Figure 4, respectively. 

 
Figure 2.  Reliability function R(t) versus time 

Now, We consider that the random variable X follows 
Gamma distribution with parameters (𝛼𝛼 = 1,𝛽𝛽 = 2), hence 
the expected value of X will be given by 𝐸𝐸[𝑋𝑋] = 2, and then 
we substitute in equation (37). Using the same data given in 
reliability, we can solve the system of equations from (26) to 
(31), equation (33), and equation (37) by using MAPLE 
program and get the steady-state availability probability by 
the aid of equation (38). The results for the steady-state 
availability probability A versus the common-cause failure 
rate 𝜆𝜆𝑐𝑐  and 𝜆𝜆1 are shown in Figure 5 and Figure 6, respec-
tively. 

 

Figure 3.  MTTF versus 𝜆𝜆𝑐𝑐  

 
Figure 4.  MTTF versus 𝜆𝜆3 
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Figure 5.  Steady-state availability probability A versus 𝜆𝜆𝑐𝑐  

 
Figure 6.  Steady-state availability probability A versus 𝜆𝜆1 

4. Conclusions 
The main objective for this study was to offer a method-

ology for analysing parallel repairable system subject to 
degradation, common-cause failures, and general repair rate. 
The problem of evaluating the availability and reliability 
depending on the size of the parallel system was formulated 
in a set of first order linear differential equations form, which 
seems convenient for computation with software packages 
like Maple. Numerical solutions based on Runge-Kutta and 
Laplace Transform methods were used in this model to 
evaluate the state probabilities from the set of first order 
linear differential equations. Tractable solutions were found 
for the repairable parallel system of 4-component and 
16-state. The results obtained in this paper can be applied to 
similar models. 
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