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Abstract  Patients with sudden acute respiratory distress syndrome (SARDS) are characterized by changes in pulmonary 

edema associated with endothelial and epithelial permeability. Sudden acute respiratory failure in ARDS patients is highly 

prevalent and potentially prognostic due to misuse of wireless sensor. The study was conducted among individuals with 

BMI categories through wireless sensor tracking due to active open eyes, self-voice and a specific GPS location. Everyone 

uses advanced wireless technology but no one can be aware of its security. Studies have illustrated the misuse of wireless 

sensor device with in-body GPS sensor, individual’s lungs affect suddenly at the fixed GPS coordinates. The excess weight 

patients attack on the sudden onset of ARDS than that of other categories of BMI. These results reflect the importance of 

protecting human health that the State provides. For SARDS management and disease-free living for all, everyone's wireless 

sensor technical knowledge was essential, but such knowledge was insufficient. The study is a very timely scientific research- 

it will benefit those around the world who take it. There is no doubt about this research, but cyber criminals can create 

suspicion among others through artificial intelligence. So, everyone should be aware of this research positively. 
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1. Introduction 

Breathing is essential for the survival of all human beings 

and animals on earth. We all move comfortably to certain 

GPS locations, balancing the body's oxygen and atmospheric 

oxygen. This GPS location is controlled by light, word of 

mouth, thinking and advanced technology. This is because 

the electromagnetic force in them works in a certain 

proportion and keeps each of us alive. But when this balance 

is lacking, each of us suffers from respiratory disease. ARDS 

is one type of respiratory diseases [1],[2], which can be 

determined through this study. Sudden Acute Respiratory 

Distress Syndrome (SARDS) refers to a state of sudden 

respiratory failure due to fluid accumulation in the lungs and 

acute inflammation [1,2,3,4,5,6,7,8,9,10]. SARDS is a 

serious life-threatening problem that causes the current death 

rate to be around 100 percent [11],[12],[13],[14],[15],[16]; 

[17],[18],[19],[20],[21]. This condition  is also medically  
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called sudden shock lung, because it occurs after an 

abnormal sudden condition that leads to a state of shock, 

such as traumatic injury [22-35]. Suddenly experiencing 

such a syndrome, SARDS is an unimaginable concept of an 

underlying medical condition, usually a fatal phenomenon 

that causes blood, fluid, and tissue to cross the barrier and 

allow air to enter the lung cells, causing them to rupture 

[36-75]. Once the alveoli are compromised in this way, 

breathing becomes difficult and ultimately impossible 

without rapid treatment [76-99]. Many people have shortness 

of breath due to cold and cough suddenly [100-110]. At 

present almost, all patients with coronavirus disease are 

heard to talk about shortness of breath [111-119]. Different 

reasons can cause shortness of breath. Mainly cold-cough, 

pneumonia, bronchitis, causes of heart disease, stomach 

problems, gas and digestive problems, allergies, asthma, 

anemia, excessive stress and even shortness of breath in 

tension [120-125]. However, in most cases, lung problems 

are responsible [126-129]. Some internal health problems 

can also cause shortness of breath [130-132]. There may also 

be temporary shortness of breath [133-135]. Occasionally 

there may be mild shortness of breath due to nasal congestion 

[136-140]. If so, it can be easily managed at home [141-145]. 
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But if people have regular shortness of breath or a lot of 

problems, they must consult a doctor [146-150]. Sometimes, 

individuals suffer from sudden acute respiratory syndrome, 

but cannot recover it through doctor's advice or medication, 

meanwhile the patient was anxious and eventually died 

[151-155]. According to some doctors, environmental 

pollution is high in the city [156-160]. This disease of the 

lungs spreads rapidly due to environmental pollution like 

dust and washing [161-166]. People with asthma suffer  

more than others [167-170]. Asthma can be exacerbated in 

those who have fewer problems [171-175]. One of the other 

reasons for the increase in asthma in the city is overcrowding 

[176-179].  

Many people in the city have to live in very crowded 

houses which makes the indoor environment damp and 

unhealthy [180-185]. In the corners of the house, the dust 

accumulated on the floor of the furniture and in that dust    

a kind of insect called 'dust mite' is made more [186-189]. 

Dust and these worms increase asthma [190-193]. The 

smoke from cooking also pollutes the indoor environment 

[194-196]. Closed rooms in the city do not have ventilation 

systems, especially for women and children [197-200]. 

These problems are lessened due to open environment in 

rural areas [201-202]. The changes that take place in people's 

lives in the city, such as the introduction of many artificial 

foods instead of fresh food [102]. Exercise and physical 

activity are also reduced in the city [108]. In the case of 

children in particular, pollution as well as lack of sports 

facilities, life in captivity hinders the vigorous growth of 

their lungs [203-205]. Weak lungs are more likely to cause 

asthma [206-210]. After hard work we continue to breathe 

[211-212]. Everyone's breathing is faster if they run or work 

hard [213-215]. But it is not shortness of breath. If there is an 

increase in the rate of breathing as well as difficulty in 

breathing and exhaling, then it is called shortness of breath 

[216-220]. This is actually a symptom of the disease 

[221-225]. Proper health service and treatment is much more 

likely to cure this problem [226-230]. 

The study is to find out the evidence of misusing of 

advanced wireless sensor technology to recover the sudden 

onset ARDS with core challenges in public health security 

worldwide. 

2. Materials and Methods 

2.1. Study Tools 

The study followed the materials and methods from the 

URLs [182-196]: 

 

 

a. URL: http://article.sapub.org/10.5923.j.geo.20211101.02.html [195] 

b. URL: http://article.sapub.org/10.5923.j.ijvmb.20211001.03.html [190]. 

c. URL: https://ir.unimas.my/id/eprint/24535/ [182] 

d. URL: http://article.sapub.org/10.5923.j.ajbe.20201001.03.html [192] 

e. URL: http://article.sapub.org/10.5923.j.bioinformatics.20211101.01.html [191] 

f. URL: http://article.sapub.org/10.5923.j.fs.20211101.01.html [194] 

g. URL: https://doi.org/10.30564/jer.v3i1.2826 [184] 

h. URL: http://article.sapub.org/10.5923.j.diabetes.20200902.02.html [188] 

i. URL: http://article.sapub.org/10.5923.j.ijas.20211102.02.html [186] 

j. URL: http://article.sapub.org/10.5923.j.scit.20211101.02.html [193] 

k. URL: http://article.sapub.org/10.5923.j.env.20211102.01.html [185] 

l. URL: https://ccsenet.org/journal/index.php/gjhs/article/view/0/46717 [196] 

m. URL: http://article.sapub.org/10.5923.j.ijim.20221101.01.html [187] 

n. URL: https://www.ccsenet.org/journal/index.php/jsd/article/view/0/40313 [189] 

Sensor Tracking towards lungs included different steps, which as shown in Figure 1. 

2.2. Study Site 

The study site of this research was conducted at the Universiti Malaysia Sarawak (UNIMAS), Sarawak, Malaysia from 

October 8, 2014 to May 21, 2018 as a part of PhD degree. The study follows the different parameters on sample size and 

ISNAH (Impact of Sensor Networks towards Animals, Human beings) data size and design, tracking procedure, data 

compilation and analysis related to the Sudden ARDS towards cat and dog due to misuse the advanced wireless sensor 

technology worldwide, which as shown in Figure 2. 
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Figure 1.  Sensor Tracking towards lungs of selected animals 

 

Figure 2.  Sudden onset ARDS with wireless sensor technology towards lungs of animals 
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2.3. Data Size and Design 

The research presented in different parameters including  

7 cats and 7 dogs individually with the design of ISNAH 

experiment. The study followed the tracking system towards 

animals to identify the effect of the processed wireless sensor 

networks towards them separately. 

2.4. ISNAH Procedures 

Primary and secondary health data collection procedures 

are diverse. The study identified the impact of advanced 

wireless sensor technology on cardiac arrest with GPS 

locations and GNSS positions according to research 

objectives from ISNAH procedure. The steps of this 

procedure illustrated in Figure 3. 

2.5. Diverse Tracking Process 

The diverse tracking procedures include in different  

stages with ISNAH experiment from built-in sensor device, 

particularly identification of fixed GPS locations including 

longitude, latitude and ellipsoid height, which as shown in 

Figure 4 towards dogs and in Figure 5 towards cats. The 

wireless sensor tracking systems included at a fixed GPS 

location and GNSS distances of animals in required stages. 

The processed wireless sensor networks tracked animals for 

digital poisoning in different GPS and GNSS locations 

including (i) ellipsoid height, (ii) longitudinal distance, and 

(iii) adjacent latitude. The tracking parameter included (a) 

open active eyes cats and dogs, (b) tightly closed eyes of cats 

and dogs, (c) at dark environment, (d) at light environment, 

(e) selection on the category of FBMI (Feline Body Mass 

Index). 

 

Figure 3.  The procedures of ISNAH 



620 Md Rahimullah Miah et al.:  Towards the Misuse of Advanced Wireless  

Sensor Technology to Enable the Sudden Onset of ARDS 

 

 

Figure 4.  Tracking towards Lungs of dog with In-body wireless GPS sensor at a fixed location 

 

Figure 5.  Tracking towards Lungs of cat with In-body wireless GPS sensor at a fixed location 

2.6. Data Compilation and Analysis 

All quantitative and qualitative related experimented  

data were collected and compiled according to research 

objectives. These compiled data checked for accuracy from 

diverse sources are also verified for the preparation of master 

sheet for analysis and interpretation using update software 

like MS Office 2021, R ver. 3.6 and SPSS ver. 27. 

3. Results 

3.1. Identified Symptoms 

Misuse of advanced wireless sensor devices at a specific 

GPS location, depending on the underlying cause, has led to 

sudden onset of acute respiratory syndrome in a variety of 

situations and with a variety of symptoms, such as: 

 Sudden extreme effort to breathe 

 Unusual cough 

 Frequent sneezing 

 Discharge from the nose 

 Sudden fever 

 Hypnosis 

 Unexpected sweating 

 Severe lung infection 

 Lung injury due to high radio frequency abuse 

 Sudden serious illness 

 Sudden runny nose 

The tracking time showed in Figure 6 mentioning Feline 

Body Mass Index occurring sudden acute respiratory 

distress syndrome. Excess weight animals affected quickly 

in SARDS than that of other animals. The study evaluated 

the condition of cats and dogs and cured them through 

emergency treatment at once. A thorough history of cat and 

dog health, the onset of symptoms, and possible events 

prior to this condition was recorded, such as injury to any 

part of the body, or inhalation of gas, sensor smoke, or 

solids. In addition to emergency treatment, the researcher 

was able to find the underlying cause of sudden lung 

failure. 

Blood test, urine test, serum biochemical test and blood 

gas analysis were normal. One of the most important 

diagnostic methods used in veterinary practice to diagnose 

SARDS is blood gas analysis. Researchers have instructed 
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X-rays and echocardiography of the chest to visually 

examine and evaluate the functioning of the lungs and heart. 

3.2. Impact on Wireless Sensor Tracking 

The impact of wireless sensor tracking included different 

steps, which as shown in Figure 6. 

3.3. Tracking Time 

Excess weight individuals affected in SARDS in less 

time than that of other FBMI, which as shown in Figure 7. 

3.4. Risk Factors 

Most people who develop SARDS were already 

hospitalized for another condition and many are critically ill. 

The patients are specially at risk if they have a widespread 

infections and disorders in sepsis. The individuals who have 

a history of chronic alcoholism are at higher risk of 

developing SARDS. They are also more likely to die of 

SARD due to collapsing lung through tracking with smoke 

sensor, which as shown in Figure 8 and Figure 9. 

 

Figure 6.  Impact of advanced wireless sensor tracking towards lungs 
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Figure 7.  Tracking time towards animals with FBMI 

 

Figure 8.  Sudden onset airways block due to tracking with wireless sensor  

3.5. Complications 

Due to misuse of wireless in-body GPS sensor, there are 

several complications in this study. If the patients have 

SARDS, they develop other medical problems while in the 

hospital. The major complications were identified from the 

study, such as: Lying still in the hospital while the patients 

were on a ventilator increasing their risk of developing blood 

clots, particularly in the deep veins in their legs. If a clot 

forms in their legs, a portion of it broke off and travelled to 

one or both of their lungs (pulmonary embolism)- where its 

blocked blood flow. In most SARDS cases, a breathing 

machine called a ventilator used to increase oxygen in the 

body and force fluid out of the lungs. However, the pressure 

and air volume of the ventilator could force gas to go through 

a small hole in the very outside of a lung and caused that  

lung to collapse. The ventilator is attached directly to a tube 

inserted in patient’s windpipe, which made it much easier for 

germs to infect and further injure their lungs. Scarring and 

thickening of the tissue between the air sacs occurred within 

a week of the onset of SARDS. This stiffened their lungs, 

was making it even more difficult for oxygen to flow from 

the air sacs into their bloodstream. The airways block due to 

tracking with the wireless in-body GPS sensor, which as 

shown in Figure 10. 
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Figure 9.  Collapsed Lungs due to misuse of wireless sensor tracking 

 

Figure 10.  Problematic airways due to tracking with advanced wireless sensor devices 
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3.6. Inference 

The results of the above study show the wireless sensor 

network tracking is the root cause of SARDS in humans and 

animals, instantly making them sick and killing them at a 

fixed GPS location due to active open eyes and uttering 

self-voice. Therefore, use of advanced technology, safe 

measures and dynamic law enforcement with RAFAC 

(Rapid Action Force Against CASSID) linking global public 

health security. 

4. Discussion 

The study illustrates with different parameters according 

to its objectives on sudden acute respiratory distress 

syndrome (SARDS). The SARDS is a part of CASSID 

(Common Acute Sensor Sudden Infections and Disorders) 

on medical emergency that requires special attention for 

immediate treatment. Infected cats and dogs in this study 

require emergency treatment in an intensive care unit with 

wireless network isolator and anti-radiation unit. In addition 

to emergency treatment, the underlying cause was of course 

established and prompt DRAST (Disease Recovery through 

Advanced Sensor Technology) treatment was arranged to 

avoid further complications or death [185,196].  

4.1. ARDS and Technology 

Despite recent advances, treating SARDS in health 

practice is one of the most difficult and challenging issues. 

Supplemental oxygen therapy was started immediately to 

reduce shortness of breath. If the experimented cat and dog 

do not respond well to oxygen therapy and continue to have 

severe shortness of breath, ventilator-assisted breathing  

may be more successful [231-235]. Medications to treat 

SARDS include antibiotics, analgesics, fluid therapy,    

and corticosteroids to reduce inflammation and swelling. 

Frequent readings of temperature, pulse, respiratory rate, and 

blood pressure are required to follow the cat's progress in the 

early stages of treatment [236-240]. If cats and dogs are kept 

on ventilator support, regular physiotherapy sessions and 

frequent changes in body position are required to avoid 

complications related to ventilator support. Cats and dogs 

infected with SARDS are kept in strict cages and kept on   

a wireless network until fully recovered [182,183]. Many 

people think that shortness of breath means asthma 

[241-242]. But not all shortness of breath is asthma. Asthma 

causes special types of shortness of breath. It starts suddenly. 

Then there is a sound like a flute inside the chest. At the same 

time coughing and shortness of breath are felt in the chest. In 

addition to asthma, heart disease can also cause shortness of 

breath. The left side of the heart becomes useless but there is 

severe shortness of breath. Its name is cardiac asthma. This is 

because of the accumulation of water in the lower part of the 

lungs. The patient cannot lie down with so many problems, it 

only increases when he is sick. Asthma of both the lungs and 

the heart there is shortness of breath in both cases. The doctor 

can easily tell by the patient's age, symptoms and chest 

examination what kind of asthma the patient is suffering 

from. In addition, kidney failure can also cause shortness of 

breath [243-245]. Difficulties in various organs also cause 

shortness of breath [246-250]. Because the causes of these 

shortness of breath are different, the treatment system is 

different [251-261].  

4.2. Modified Definition of SARDS 

Any lung problem or disease can cause shortness of breath. 

The main symptom of pneumonia is shortness of breath. The 

more parts of the lungs are affected, the more obvious the 

shortness of breath will be. Chronic bronchitis also causes 

shortness of breath. Among the various causes of this disease 

are excessive smoking, dusty and smoky environment and  

in some cases hereditary causes. Lung asthma has many 

similarities with chronic bronchitis. Although these two 

diseases are of completely different types and natures 

[262-272]. Shortness of breath in chronic bronchitis 

continues to increase day by day. The earlier definition    

of ARDS as: ARDS is an acute diffuse, inflammatory lung 

injury, leading to increased pulmonary vascular 

permeability, increased lung weight, and loss of aerated lung 

tissue…[with] hypoxemia and bilateral radiographic 

opacities, associated with increased venous admixture, 

increased physiological dead space and decreased lung 

compliance [229]. There is disagreement among doctors, 

nurses and others about the current definition of SARDS. 

The disease is a component of CASSID (Common Acute 

Sensor Sudden Infections and Disorders), which is caused  

by sudden sensor poisoning. Cyber trackers can kill selected 

people and animals via instantaneous wireless sensor 

tracking in a GPS designated area, where health 

professionals can easily prevent disease through DRAST 

(disease recovery through advanced sensor technology) 

systems. But many physicians, scientists and researchers do 

not know yet. The current definition of ARDS is very old. 

Depending on the long time and the discovery of advanced 

technology, there is no similarity in definition with the 

symptoms of this disease. Therefore, the World Health 

Organization (WHO) can redefine the disease as a leading 

body with the participation of medical experts, sensor 

technologists and relevant authorities from around the world. 

However, in this case, this study may serve as an aid. 

4.3. SARDS and Chronic Conditions 

Sudden head, chest, other major injuries, falls or car 

accidents, etc., can directly damage the lungs or parts of the 

brain that control breathing [186-188]. People with severe 

COVID-19 may have SARDS [190-196]. It also develops 

pancreatitis (inflammation of the pancreas), extensive blood 

circulation and burns. The most common cause of SARDS is 

sepsis, which is a serious and widespread infection of the 

bloodstream [273-275]. Inhalation of harmful substances, 

inhalation of smoke or high concentrations of chemical 

fumes can result in SARDS, such as inhaling (desirable) 
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vomiting or almost drowning. SARDS occurs when fluid 

accumulates in a tiny and elastic air sac (alveoli) in the 

person's lungs. The fluid prevents their lungs from filling 

with enough air, which means less oxygen reaches their 

bloodstream [276-279]. This deprives the individual's organs 

of the oxygen they need to function. SARDS usually occurs 

in people who are already seriously ill or have significant 

injuries. Acute shortness of breath - the main symptom of 

SARDS - usually creates within hours to days of the injury or 

infection [280]. Many people who evolve SARDS do not 

survive due to avoid risks [281-282]. The risk of death 

increases with age and severity of illness. Some survivors of 

SARDS recover completely while others experience chronic 

damage to their lungs [283-285]. 

4.4. ICU Admission and Healthcare Technology 

Patients with the acute respiratory distress syndrome 

(ARDS) are characterized, to different degrees, by an 

alteration in pulmonary endothelial and epithelial 

permeability with associated lung edema [59]. Acute 

circulatory failure is highly prevalent and potentially 

prognostic in ARDS patients [286-290]. Optimal fluid 

management in these patients remains challenging and 

controversial because it should provide an adequate oxygen 

delivery while avoiding inadvertent increase in lung edema, 

thus balancing a liberal versus a restrictive fluid strategy 

approach. Positive fluid balance and low serum albumin 

concentration have been found to be independent risk 

factors for ARDS development [291]. Moreover, an 

increased body weight related to cumulative fluid balance 

has been associated with a worse outcome [293]. Clinical 

data from patients with ARDS confirm that fluid overload is 

deleterious for patient outcomes. Early in the course of 

critical illness, positive fluid balance prior to the 

development of ARDS portends its development and a 

higher risk of dying [189]. Net positive fluid balance occurs 

in the majority of patients at the onset of ARDS even when 

closely monitored, and predicts prolonged mechanical 

ventilation, longer intensive care unit (ICU) and hospital 

stay, and higher mortality [294],[295]. 

4.5. Focus on Data Richness 

Increased hydrostatic pressure is common in ARDS 

patients, at least intermittently during the course of the 

disease, and associated with a higher risk of death [296,297]. 

Intravenous fluid administration is necessary in many 

critically ill patients, and the ebb and flow phenomenon 

across time in these patients is evident in observing the 

lowest mortality for sepsis and ARDS patients receiving 

adequate early fluid administration followed by later 

conservative fluid management, compared to patients   

who received either inadequate early fluids or more liberal 

later fluid administration [298,299]. Compared to healthy 

subjects, ARDS patients present a higher amount of 

extravascular lung water (EVLW) for a given arterial 

pulmonary pressure and a linear increase in the fluid shift 

from capillaries to alveoli consequent to any increase in the 

pulmonary pressure [300],[301],[302]. 

4.6. Research Potentiality 

Research into wireless sensor technology has proven to 

be revolutionarily beneficial to mankind over the past few 

decades, but due to the lack of proper security, its misuse  

is also increasing day by day and cyber criminals are 

emerging new pandemics [303],[304].  

4.7. Diagnosis and Treatment 

Pathological features, advance sensor technology, clinical 

presentation, long-term prognosis, complications and major 

risk factors for SARDS vary abruptly between different 

CASSID diseases as a result of being in a cloud network 

system, which lead to certain deaths. In this moment all 

types of medicine can’t recover from SARDS due to 

switch-on at tracking wireless sensor device. So, PANCU 

(Personal Area Network Control Unit) and tightly closed 

eyes are essential for life safety net [309]. 

4.8. Innovation 

The lungs are an important part of the human body used 

for breathing. People die when this breathing stop. Both 

natural and technological stoppage can occur at a specific 

GPS location. But technological stoppage occurs sudden 

due to tracking with advanced wireless sensor devices. 

Many people are dying everyday in the world due to sudden 

cessation of breathing. But many of us do not know the 

secret of the sudden cessation of breathing? Even many 

scientists and researchers do not know the exact source of 

this SARDS. But this researcher does believe all mankind 

will know it from today’s published research paper through 

diverse media. 

4.9. Legal Aspect in Trust 

Sensor technology sometimes creates a lot of problems  

in CASSID that may be subjected our life to be lost. The 

victimization of such deed is not only any individual but also 

national, regional and global levels, which as shown in 

Figure 11. Some legal aspects in trust are outlined to tackle 

this sensor health crime, particularly in SARDS, such as: 

i.  Public Awareness or Social Movement: Social 

movement should be launched and public awareness 

should be raised against these crimes through the 

media of press, TV, newspaper and other audio-visual 

aid. Seminar, symposium etc. should be arranged to 

aware the public. 

ii.  Invention of New Technology: Modern and 

sophisticated devices should be invented as well as 

upgraded to identify such incident. Adequate training 

should be provided to the law enforcing authority.  

iii.  Amendment of Law providing Vehement 

Punishment: The Digital Security Act 2018 needs to 

be amended and should incorporate vehement 

punishment for the violator who commits crime 
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against human body using sensor technology. 

iv.  Incorporation of Healthcare Education to 

Curriculum: Healthcare Education should be 

incorporated to the curriculum of every disciplines so 

that the learners can be acquainted and be aware of the 

bad impact of cyber technology. 

v.  Monitoring system: Proper monitoring is perquisite to 

such types of crime. Lack of vigilance paves the 

criminal a way to commit crime. So, the offenders 

should always be monitored to curb this crime. 

vi.  Global Effort: The problems is not confined to the 

territory of any individual state rather it is a global 

problem. So, pragmatic approach and effort of the 

whole world needs to be taken. 

4.10. Challenges 

We are still investigating the dynamic security measures 

of the proposed public health policy to address real-world 

challenges. This study is a challenging step in image 

processing, which plays a key role in identifying humans, 

animals and objects, and their patterns [305,306,307,308]. 

On the other hand, after the publication of this study, many 

researchers, scientists, health professionals and others will 

be misled by cyber criminals in various ways through 

message bounce, scamming text, phishing voice and false 

interface. As a result, cybercriminals will infect the readers 

through CASSIDs by keeping their eyes open, talking 

through their mouths, and having a specific GPS location. 

However, the conscious community will be fully aware of 

this and will not be disappointed, as opportunities for 

cooperation between the World Health Organization 

(WHO), INTERPOL and RAFAC (Rapid Action Force 

against CASSID) will increase the security assistance to 

victims as citizens of UN member states. 

4.11. Paths Forwards 

If the SARDS patient is taken to the hospital's IUC 

(Intensive Care Unit), the patient is at greater risk if the ICU 

does not have a wireless network control unit. Since the 

patient's bed is in a specific GPS location, cybercriminals 

make it even sicker by cloud-tracking around the hospital. 

This cloud wireless network disrupts the flow of oxygen 

through digital poisoning and is virtualized by wireless 

telematic particles in the patient's lungs, and cybercriminals 

increase the amount of radio frequency to further 

complicate the patient's condition. When this cloud wireless 

network applied to the patient is connected, the amount of 

digital poisoning due to the obstruction of oxygen flow 

increases, more mucus is produced instantly and the 

primary alveoli are blocked by digital knots. Eventually, the 

patient died instantly due to severe shortness of breath. 

Again, wireless digital gravity fluctuates body-temperature 

and blood pressure but causes sudden shortness of breath, 

which is blocked by node tracking for one person and 

re-tracking is distributed to multiple people to block the 

respiratory system at selected GPS locations. In this case, 

the patient cannot be cured by various high quality 

medicines, treatment by an experienced doctor or advanced 

care by a nurse. Therefore, the first and foremost task of 

such patient recovery is to treat the patient through an 

'anti-radiation zone' and a private network control unit. 

People are responsible for SARDS and people know how to 

cure this disease. This requires participation, cooperation, 

integration and awareness of all. Global health security can 

be ensured through timely government effective legislation, 

administrative support from higher authorities, coordination 

of development agencies and public participation in the 

media. 

 

 

Figure 11.  Legal aspects in Trust for sustained life 
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5. Conclusions 

In concluding, the ARDS occurs through the misuse of 

advanced wireless sensor technology due to active open eyes, 

self-voice and a specific coordinate. For this reason, SARDS 

is a very serious health problem that requires endless proper 

awareness for successful treatment, dynamic management 

and effective healthcare of the condition. The patients must 

follow the doctor's instructions closely and they consult their 

doctors if they have any doubts. If SARDS is not finally 

diagnosed and resolved, another occurrence of shortness of 

breath may follow. The patients who have survived in 

SARDS usually need time, rest and good nutrition for a full 

recovery. Patients should not be confined to crowded or hot 

places and they have enough time to walk or exercise. Even 

after the condition has resolved, many patients may have 

scarring in the lungs, a condition called fibrosis, and the lung 

tissue may become stiff and unable to hold oxygen. It is 

therefore very important to follow the diet and direction 

made by the physician and adhere to the best measures to 

prevent recurrence to keep the activity to a minimum. Lastly, 

this is a very timely study- it will benefit those around the 

world who take it. There is no doubt about this research, but 

cyber criminals can create suspicion among people. So, 

everyone should be aware of this research. 
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