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Abstract  The Multiple Vehicle Routing Problem with heterogeneous vehicles (MVRPWH) and soft time window is a 

variant of the standard VRP and a challenging NP hard nature combinatorial optimization problem. In This problem, vehicles 

are available to travel from depot to suppliers carrying the required demands with limited loading capacity and a limited 

travelling distance where cost penalty is applied associated with time window constraints. We propose hybrid model Genetic 

Algorithm (GA) and Ant Colony Optimization (ACO) to improve the searching ability to find the best solution realizing the 

minimum possible vehicles travelling costs. In this model, ACO is applied to the best performance individuals in GA to create 

neighborhood to discover new regions in the search space and to avoid being trapped in local minima. Experimental study 

carried out using our proposed model proves that it outperforms the standard GA model. 

Keywords  Multiple Vehicle Routing Problem, Soft Time Window, Heterogeneous Vehicles, Genetic Algorithm, Ant 

Colony Optimization 

 

1. Introduction 

The classical Vehicle Routing Problem (VRP) is NP-hard 

optimization problems and its objective is to minimize the 

total travelling cost, time, and distance with a vehicle, 

starting and ending its route at the depot while satisfying the 

various suppliers demands d [1]. In the literature, a number 

of variants of classical VRP have been studied, for example, 

the Multi Vehicle Routing Problem (MVRP) in which 

customers are to be served by a number of vehicles [2] and 

the Dynamic Vehicle Routing Problem (DVRP) where new 

suppliers orders arrive during the performance of the planned 

earlier work day, thus, routes must be reconfigured 

dynamically [3]. Another variant is the Capacitated Vehicle 

Routing Problem (CVRP) where the total demand of each 

route does not exceed the capacity of the vehicle [4] and the 

Vehicle Routing Problem with Time Windows (VRPTW), 

where the service at any suppliers starts within a given time 

interval, called a time window and a penalty is added if 

vehicle arrives after the upper bound of its time window 

while the arrival before the lower limit of the time window 

causes additional waiting time [5]. Another variant is the 

Vehicle Routing Problem with Simultaneous Pickups and 
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Deliveries (VRPSPD) the customers will require a delivery 

or pickup service, but not both and only a single depot can 

receive and supply the loads while [6]. In today’s practical 

business environment, production and inventory processes 

are dependent on more advanced variants of the traditional 

VRP [7] such as The Multi Vehicle Routing Problem With 

Heterogeneous vehicle (MVRPWH) [8] and The MVRPWH 

and a Soft Time Windows [9] which are multiple delivery 

vehicles profiles with various features (volume, capacity, 

consumption) to service a pre-specified set of suppliers with 

known delivery demands from a central depot and the choice 

of the vehicle has a direct impact on the cost calculation 

[8,9]. 

Heuristic approaches such as Tabu Search (TS), Simulated 

Annealing (SA), Genetic Algorithm (GA), Particle Swarm 

Optimization PSO and Ant Colony Optimization (ACO) 

have been previously used in solving the VRP and all its 

variants are [10], however, it was stated that hybridization  

of heuristics methods gives more promising result than 

utilization of a unique heuristic approach [11]. For example, 

TS is combined with GA mutation operator and local search 

tactics and is applied in VRP [12] and SA is combined   

with GA crossover operator to is applied in CVRP [13]. Also, 

PSO was combined with Variable Neighborhood Descent 

algorithm (VND) in solving VRPSPD [14], the Unified 

Hybrid Genetic Search (UHGS) was combined with the 

2-opt and 3-opt local search techniques in solving CVRP 

[15], while GA was combined with the cheapest insertion 
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method in solving VRPSPD [16]. ACO was combined with 

K-means and crossover operation in solving DVRP [17],  

and with nearest neighbour search methodin solving 

VRPTW with multiple depot [18]. In solving CVRP, GA 

was introduced to enhance ACO performance by adjusting 

pheromone matrix [19] or to increase local search capability 

[20]. As it is necessary to compromise between the 

exploration (global search ) and exploitation (local search) in 

any hybrid heuristic model [21], where exploration pushes 

towards much more promising areas of the search space, 

while exploitation aims to avoid being locked up in local 

minima [22]. Thus, we introduce our new proposed 

GA/ACO hybrid model to make use of both the evolutionary 

effect of GA representing local searching capability and   

the cooperative effect and feedback mechanism of ACO 

representing global searching capability. To do so, after each 

iteration, the best performance individual in GA is subjected 

to ACO while the worst performance individuals in GA   

are replaced by best performance ants in ACO leading to 

extensively exploring the search space and avoiding the 

trapping into prematurely local minimum. This paper is 

organized as follows, in section II the mathematical model of 

the MVRPWH and a Soft Time Windows is reviewed and in 

section III we present our proposed algorithm, and finally the 

experimental results comparing our proposed model with the 

GA used in [9] is done. 

2. Mathematical Model  

The objective of the MVRPWH and a Soft Time is based 

on the following characteristics 

1.  The decision model considers multiple periods, 

multiple suppliers, and multiple vehicles.  

2.  The depot is both the shipping point and the final 

destination of each vehicle.  

3.  The distance and travelling time between each two 

suppliers are fixed and known. 

4.  Different types of vehicles have different unit 

travelling costs.  

5.  The unloading time in each supplier is fixed and 

known.  

6.  The assigning cost for each vehicle is fixed and 

known and different assigning costs occur for 

different types of vehicles.  

7.  Each vehicle has a limited loading capacity and 

different types of vehicles have different loading 

capacities. 

8.  Each vehicle has a limited travelling distance in a 

period and different types of vehicles have different 

travelling distance limits.  

9.  Each supplier has a soft time window and if a vehicle 

arrives to a supplier after the latest soft time, a 

tardiness cost will be charged by the supplier based 

on the tardiness time.  

10.  Multiple vehicles can be used in a period and any 

supplier can be visited by only one vehicle in any 

period.  

11.  No shortage of outsourced materials is allowed.  

The objective function is to minimize the total 

transportation cost including the assignment cost for 

assigning vehicles, the travelling costs among the suppliers, 

and the tardiness cost when a vehicle arrives a supplier late 

and the mathematical model can be written as follows: 

𝑇𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡𝑎𝑡𝑖𝑜𝑛𝐶𝑜𝑠𝑡 = 

𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝐶𝑜𝑠𝑡 +  𝑇𝑟𝑎𝑣𝑒𝑙𝑖𝑛𝑔𝐶𝑜𝑠𝑡 +  𝑇𝑎𝑟𝑑𝑖𝑛𝑒𝑠𝑠𝐶𝑜𝑠𝑡 (1) 

𝐴𝑠𝑠𝑖𝑔𝑛𝑚𝑒𝑛𝑡𝐶𝑜𝑠𝑡 =     𝜏𝑣 ∗ 𝑋𝑡,0,𝑗 ,𝑣

𝑉

𝑣=1

       2 

𝐼

𝑗=0

𝑇

𝑡=1

 

where 𝜏𝑣 is the fixed cost for assigned vehicle 𝑣. 𝑋𝑡,0,𝑗 ,𝑣 is a 

binary variable equals one if vehicle 𝑣  departs from the 

depot (𝑖 = 0) to supplier 𝑗 in period 𝑡 and 0 otherwise.. 

𝑇𝑟𝑎𝑣𝑒𝑙𝑖𝑛𝑔𝐶𝑜𝑠𝑡 =      𝜋𝑖,𝑗 ∗ 𝜌𝑣 ∗ 𝑋𝑡,𝑖,𝑗 ,𝑣

𝑉

𝑣=1

  3 

𝐼

𝑗=0

𝐼

𝑖=0

𝑇

𝑡=1

 

Where 𝜋𝑖,𝑗  is the travelling distance from supplier 𝑖 to 

supplier 𝑗, 𝜌𝑣 is the travelling cost per unit of distance for 

vehicle 𝑣, 𝑋𝑡,0,𝑗 ,𝑣 is a binary variable equals one if vehicle 

𝑣 departs from the supplier 𝑖 to supplier 𝑗 in period 𝑡 and 

0 otherwise. 

𝑇𝑎𝑟𝑑𝑖𝑛𝑒𝑠𝑠𝐶𝑜𝑠𝑡 =     𝑃𝑖 ∗ 𝐿𝑡,𝑖,𝑣

𝑉

𝑣=1

        (4)

𝐼

𝑖=0

𝑇

𝑡=1

 

Where 𝑃𝑖  is the tardiness cost per unit of time for the 

supplier 𝑖 , and 𝐿𝑡,𝑖,𝑣  is the tardiness time in period 𝑡  of 

vehicle 𝑣 when arriving at supplier 𝑖 
Subject to the following conditions  

  𝑋𝑡,0,𝑗 ,𝑣 ≤ 𝑉

𝑉

𝑣=1

∀𝑡 ∈ 𝑇                   5 

𝐼

𝑗=1

 

  𝑋𝑡,𝑖,0,𝑣 ≤ 𝑉

𝑉

𝑣=1

∀𝑡 ∈ 𝑇                   6 

𝐼

𝑖=1

 

These two constraints ensure that at any period 𝑡, any 

vehicle 𝑣 should depart from the depot (node 0) and return 

to the depot  

  𝑋𝑡,𝑖,𝑗 ,𝑣  = 1 

𝑉

𝑣=1

∀𝑡 ∈ 𝑇, 𝑖 ∈ 𝐼\  0 , 𝑖 ≠ 𝑗      7 

𝐼

𝑗=1

 

  𝑋𝑡,𝑖,𝑗 ,𝑣  = 1 

𝑉

𝑣=1

∀𝑡 ∈ 𝑇, 𝑗 ∈ 𝐼 \ 0 , 𝑖 ≠ 𝑗      8 

𝐼

𝑖=1

 

These two constraints ensure that at any period 𝑡 only one 

vehicle 𝑣  leaves from only one supplier 𝑖  and enters to 

another one supplier 𝑗 

 𝑋𝑡,𝑖,𝑗 ,𝑣 − 𝑋𝑡,𝑗 ,𝑖,𝑣  = 1 

𝐼

𝑖=0

∀𝑡 ∈ 𝑇, 𝑣 ∈ 𝑉,

𝐼

𝑖=0

𝑗 ∈ 𝐼, 𝑖 ≠ 𝑗, 𝑋𝑡,𝑖,𝑗 ,𝑣 = 1                              9  



36 Tarek Aboueldahab and Hanan Farag:  Solving the Multiple Vehicle Routing Problem with Heterogeneous  

Vehicles and a Soft Time Window Using Genetic Algorithm and Ant Colony Optimization 

 

This constraint ensures that at any period 𝑡, if any vehicle 

𝑣 leaves from supplier 𝑖 to another supplier 𝑗, it should not 

return back form supplier 𝑗  to supplier 𝑖 

  𝑑𝑡,𝑖 − 𝑋𝑡,𝑖,𝑗 ,𝑣

𝐼

𝑗=0

 ≤ 𝑄𝑣∀𝑡 ∈ 𝑇, 𝑣 ∈ 𝑉, 𝑖 ∈ 𝐼, 𝑖 ≠ 𝑗 10 

𝐼

𝑖=0

 

This constraint ensures that at at any period 𝑡, the total 

demand of all suppliers 𝑑𝑡,𝑖  visited by any vehicle 𝑣 should 

be less than or equal to the vehicle's maximum loading size 

𝑄𝑣 

   𝜋𝑖,𝑗 ∗ 𝑋𝑡,𝑗 ,𝑖,𝑣 ≤

𝐼

𝑗=0

𝑅𝑣  ∀𝑡 ∈ 𝑇, 𝑣 ∈ 𝑉, 𝑖 ∈ 𝐼, 𝑖 ≠ 𝑗 11 

𝐼

𝑖=0

 

This constraint ensures that at any period 𝑡 , for any 

vehicle 𝑣, the total travelling distance 𝜋𝑖,𝑗  should be less 

than or equal to the vehicle's maximum travelling distance 

𝑅𝑣 

 𝑆 𝑡,,𝑖,,𝑣
+ 𝑢𝑖  + 𝑤𝑖,𝑗 > 𝑆𝑡,,𝑗 ,𝑣  ∀𝑡 ∈ 𝑇, 𝑣 ∈ 𝑉, 𝑖 ∈ 𝐼, 𝑖 ≠ 𝑗 (12) 

This constraint ensures that for any vehicle 𝑣  visits 

supplier 𝑗 after supplier 𝑖,  𝑆𝑡,,𝑗 ,𝑣  the service start time for 

supplier 𝑗 should start after  𝑆𝑡,,𝑖,𝑣  the service start time for 

supplier 𝑖 plus 𝑢𝑖  the unload time at supplier 𝑖  and 𝑤𝑖,𝑗  

the travelling time from supplier i to supplier 𝑗. 

𝐿𝑡,𝑖,,𝑣 = 𝑀𝑎𝑥 0, 𝑆𝑡,,𝑖,𝑣 − 𝐿𝑖 ∀𝑡 ∈ 𝑇, 𝑣 ∈ 𝑉, 𝑖 ∈ 𝐼 13  

This constraint ensures that at any period 𝑡  for any 

vehicle 𝑣 arriving at supplier 𝑖, the tardiness time exist if 

𝐿𝑡,𝑖,,𝑣  the service start time  𝑆𝑡,,𝑖,𝑣  is higher than the 

maximum allowable start time 𝐿𝑖  

 𝑋𝑡,𝑖,𝑗 ,𝑣 ≤  𝐸 − 1, 2  𝐸 

𝑉

𝑖,𝑗∈𝑆

≤ 𝐼 − 1 ∀𝑡 ∈ 𝑇, 𝑣 ∈ 𝑉,

𝑖 ∈ 𝐼, 𝑖 ≠ 𝑗, 𝐸 ⊆ I                                  (14) 

This ensures the elimination of any sub-tour 𝐸  within 

the main tour 𝐼. 

3. Proposed Hybrid GA/ACO 

The balancing between exploration (global search) and 

exploitation (local search) is necessary to adequately 

searching the whole search space without being trapped in a 

local minimal where exploration is the process of visiting 

entirely new regions of a search space, whilst exploitation is 

the process of visiting those regions of a search space within 

the neighborhood of previously visited points [21]. In the 

literature, there are three different forms of GA/ACO 

hybridization, first GA is a global search while ant ACO is a 

local search [22], second GA is used to adapt ACO 

parameters [23], and finally, GA concepts is incorporated 

into ACO to enhance its performance [24]. In our research, 

we adopt a new strategy by considering the GA as a local 

search and ACO as a global search, to ensure the 

compromise between the GA local search (exploitation) 

capability and ACO global search (exploration) capability 

The three heuristic algorithms: Genetic Algorithm (GA), Ant 

Colony Optimization (ACO), and our proposed hybrid 

(GA/ACO) are introduced below.  

A. Genetic Algorithm (GA) 

Genetic Algorithm (GA) was first introduced by Holland 

is an evolutionary based searching approach based on the 

process of natural evolution and the idea of survival of the 

fittest [25]. GA is started with a set of solutions (population) 

and move from one generation to a new one according to 

their fatness, and this process is repeated until certain 

conditions are satisfied. GA algorithm can be outlined in the 

following steps [25]. 

1.  (Start) Generate random solution (population) in the first 

generation. 

2.  (Fitness) Evaluate the fitness of each chromosome x in 

the population.  

3.  (New population) Create a new population by repeating 

the following steps until the new population is complete.  

a.  (Selection) Select two parent chromosomes from a 

population according to their fitness and as fitness 

increases, probability of acceptance increases. 

b.  (Crossover) with a crossover probability cross-over 

the parents to form a new offspring (children). If no 

crossover was performed, offspring is an exact copy 

of parents.  

c.  (Mutation) new offspring will be mutated according 

to a pre specified mutation probability. 

d.  (Replace) new offspring are used to form a new 

population in the next generation 4.  

4.  (Test) if the end condition is satisfied, stops, and returns 

the best solution in current population. 

5.  (Loop) Go to step 2. 

B. Ant Colony Optimization (ACO)  

Ant Colony Optimization ACO was first introduced by 

Macro Dorigois a population bases searching approach based 

on the behavior of ants. The ants always stay in their colonies 

and work in groups and explore many paths to find the 

shortest path to reach the food. Initially, ants randomly move 

around their surrounding and lay some sort of chemical on 

the ground which is known as Pheromone. When an ant finds 

the food it goes back to its nest by filling the ground again 

with that pheromone trails, thus, other ants know which path 

to follow [26]. ACO incorporates three important processes, 

first the solution construction when ants move through their 

surrounding, second, pheromone density update, and finally 

the centralized actions to improve obtained solution based  

on mutual cooperation between ants via exchanging 

information according to the following equations [26].  

𝐏𝐢𝐣
𝐤 𝐭 

=  

 
 

  𝛕𝐢𝐣 𝐭  
𝛂

∗  𝛈𝐢𝐣 
𝛃

  𝛕𝐢𝐣 𝐭  𝐣∉𝐭𝐚𝐛𝐮𝐤 𝐭 

𝛂

∗  𝛈𝐢𝐣 
𝛃
𝐢𝐟 𝐣 ∉ 𝐭𝐚𝐛𝐮𝐤 𝐭 

𝟎 𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞  
 

 

       (15) 
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Where 𝐏𝐢𝐣
𝐤 𝐭 : the probability that ant 𝒌  will move   

from position 𝒊 to position 𝒋 at iteration 𝒕, 𝐭𝐚𝐛𝐮𝐤(𝐭) is the 

tabuset of already visited positions by ant 𝒌 at iteration 𝒕. if 
the position 𝒋 has been set to be visited, it is removed from 

the 𝐭𝐚𝐛𝐮𝐤(𝐭) and the. The last remaining index remaining is 

the last visited position. 𝛕𝐢𝐣(𝐭) is the pheromone density of 

the connection (𝒊, 𝒋), 𝛈𝐢𝐣 is the visibility of the connection 

(𝒊, 𝒋) and 𝜶,𝜷 are the relative influence of the pheromone 

trails and the visibility values, respectively. At the end of 

each iteration, 𝛕𝐢𝐣(𝐭) is updated according to the following 

equation [23,26]. 

𝛕𝐢𝐣
𝒌(𝐭)𝐧𝐞𝐰 =  𝟏 −  𝝆 ∗  𝛕𝐢𝐣

𝒌(𝐭)𝐨𝐥𝐝 +  ∆𝛕𝐢𝐣
𝒌(𝐭)𝒎

𝒌=𝟏 𝝆 ∈ (𝟎, 𝟏) 

(16) 

Where 𝝆 is the pheromone evaporation rate to adjust the 

speed of convergence and it takes on positive values from   

0 to 1. 𝒎 is the number of ants (solutions), and ∆𝛕𝐢𝐣
𝒌(𝐭) is 

the increased pheromone of link (𝒊, 𝒋) in ant 𝒌. Ant weight 

strategy is used in updating pheromone by the following 

equation [24] 

𝐏𝐢𝐣
𝐤(𝐭) =   

𝐐

𝐊∗𝐋
 +  

𝐃𝐤−𝐝𝐢𝐣

𝐃𝐤∗𝐧𝐢𝐣
𝐤 𝐢𝐟 𝐣 ∉ 𝐭𝐚𝐛𝐮𝐤(𝐭)

𝟎 𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞

      (17) 

𝐋 =  𝐃𝐤𝐦
𝐤=𝟏                 (18) 

Where 𝐃𝐤  is the fitness (length) of the ant (solution) 

number 𝑘, 𝐿 is the sum of lengths of all solutions, 𝐝𝐢𝐣 is the 

length of the connection (𝒊, 𝒋), and 𝐧𝐢𝐣
𝐤  is the connection 

order in the ant number 𝑘. 

C. Hybridization of GA and ACO 

As GA is evolutionary based searching algorithm, so it is 

capable of effectively performing the exploitation due to 

mutation, crossover, and reproduction processes but it is  

not capable in properly performing the exploration due to 

leakage of population diversity [27]. On the other hand, as 

ACO is a population based searching algorithm so it is 

capable of effectively performing the exploration due to 

mutual feedback cooperative information between ants, but 

it is not adequate for exploitation due to leakage of local 

search capability [28]. 

In our proposed GA/ACO algorithm, after each GA 

iteration, the best performance individual is subjected to 

ACO to ensure that it is not trapped in a local minima, if a 

new better solution is found after applying ACO, so it 

emphasize that the GA old best solution was trapped in a 

local minima. Also the worst performance GA individuals is 

replaced by the best performance ACO ants to increase the 

diversity in the search space and avoid being restricted in 

regions that couldn't achieve any improvement in finding 

new regions with better solutions and our algorithm is done 

by the following steps  

1 - At any new generation  𝑦  for any individual 𝑘  in the 

population calculate its fitness function 𝐹𝑦
𝑔 𝑘  and the best 

GA fitness individual 𝐹𝑏𝑒𝑠𝑡
𝑔

 is decided according to: 

𝐹𝑏𝑒𝑠𝑡
𝑔

=   
𝐹𝑦
𝑔 𝑘 𝐹𝑏𝑒𝑠𝑡

𝑔
≥ 𝐹𝑦

𝑔 𝑘 

𝐹𝑏𝑒𝑠𝑡
𝑔
𝐹𝑏𝑒𝑠𝑡
𝑔

< 𝐹𝑦
𝑔 𝑘 

  ∀ 𝑘 = 1, 2, … , 𝐾. (19) 

Where 𝐾  is the number of individual in the GA 

population. 

2 - The individuals in the GA population will be sorted 

according to their fitness to construct a new modified GA 

population where the first individual in the new modified 

population has the best fitness in the original population 

𝐹𝑛𝑒𝑤
𝑔  1 = 𝐹𝑏𝑒𝑠𝑡

𝑔
 

3 - The new modified population will be divided into two 

portions, the first is the discarded portion (L*Ψ) containing 

the worst individuals' fitness function who will be discarded 

in the next generation where Ψ is the arbitrary selected 

breeding ratio between zero and one and the other (L*(1-Ψ)) 

individuals will continue in the next generation [29]. 

4 - The best fitness individual 𝐹𝑏𝑒𝑠𝑡
𝑔

 will be the ant 

representing the initial solution to the ACO  

5 - As done in GA, for any ant 𝑧 in the colony calculate its 

fitness function 𝐹𝑦
𝐴 𝑧  and the best ACO fitness ant 𝐹𝑏𝑒𝑠𝑡

𝐴  

is decided according to: 

𝐹𝑏𝑒𝑠𝑡
𝐴 =   

𝐹𝑦
𝐴 𝑧 𝐹𝑏𝑒𝑠𝑡

𝐴 ≥ 𝐹𝑦
𝐴 𝑧 

𝐹𝑏𝑒𝑠𝑡
𝐴 𝐹𝑏𝑒𝑠𝑡

𝐴 < 𝐹𝑦
𝐴 𝑧 

   ∀ 𝑧 = 1, 2, … , 𝑍. (20) 

Where 𝑍 is the number of ants in the ACO colony. 

6 - As done in GA, The ants in the ACO colony will be 

sorted according to their fitness to construct a new modified 

ACO colony where the first ant in the new modified colony 

has the best fitness in the original population 𝐹𝑛𝑒𝑤
𝐴  1 =

𝐹𝑏𝑒𝑠𝑡𝐴 

7 - The minimum of the best GA fitness individual 𝐹𝑏𝑒𝑠𝑡
𝑔

 

and the best ACO fitness ant 𝐹𝑏𝑒𝑠𝑡
𝐴  is selected to be the best 

GA fitness individual 𝐹𝑏𝑒𝑠𝑡
𝑔

 for the new generation 

𝐹𝑏𝑒𝑠𝑡
𝑔

= min(𝐹𝑏𝑒𝑠𝑡
𝑔

, 𝐹𝑏𝑒𝑠𝑡
𝐴 )          (21) 

8 - The first (L*Ψ) ants in the new modified ACO colony 

will replace the discarded individuals in the new modified 

GA population  

𝐹𝑛𝑒𝑤
𝑔  𝑘 ←  𝐹𝑛𝑒𝑤

𝐴  𝑧 , 𝑘 =  𝐿 ∗  1 − Ψ  , . . K, 𝑧 

= 1, . . ,  𝐿 ∗ Ψ         (22) 

9 - After replacement, the new modified GA population 

will replace the original GA population for the next 

generation 𝑦 + 1 

4. Results and Discussion 

The case study is based on a manufacturer in the food 

industry [9] where there are one manufacturer, 12 suppliers, 

and 5 vehicles and the objective is to minimize the total 

transportation cost using the software packages MATLAB 

2015 (The MathWorks, Inc., Natick, MA, USA) is used [30]. 

For GA, the population size is 150, the mutation rate is 0.15, 

the crossover rate is 0.85, and the generation number is 1000 

as selected in the original experiment [9] and for ACO, for 
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simplicity, the arbitrary selected constants, 𝜶 is 1, 𝜷 is 2, 

and 𝜌 is 0.5 as stated in [24] and Ψ is selected to be 0.1 as it 

was firstly introduced in [29] Table 1 shows the fixed cost 

for assigning a vehicle, loading and travelling distance limits 

of each vehicle, and the travelling cost per distance unit [9]. 

Table 2 shows the data of all suppliers which are, the unload 

time (in minutes) required at supplier 𝑖, the tardiness cost 

per minute charged by supplier loading and travelling 

distance limits of each vehicle when a vehicle arrives after 

the latest soft time 𝜌𝑖 , and is the latest soft time (in minutes) 

to start the service at the supplier 𝑙𝑖  [9]. Table 3 and Table 4 

show the travelling distance the required travelling time 

between all suppliersand the depot [9] and there are 6 periods 

and the suppliers demand during these periods are shown in 

Table 5 [9]. 

The best solution obtained using both GA approach as 

mentioned in [9] and our proposed hybrid GA/ACO are 

shown in Table 6 and Table 7 respectively. 

Comparing between these two above tables we can find 

the following 

First: -Referring to Table 6 and Table 7, it is obvious that 

our hybrid proposed model gives lower cost than the 

standard GA model for all the six mentioned period 

indicating that our proposed model is better in searching the 

whole entire search space to find new regions with better 

performance which can not be found by the standard GA 

model. 

Second: -Referring to Table 7 in period 4, its construction 

is based on using vehicle no. 3 in visiting only one supplier 

(supplier no. 9) which different from the constructions of all 

other periods in both tables where the first three vehicles visit 

two cities while the other two visit three cities. This proves 

that our proposed model can avoid trapping in a local minima 

leading to find new places in the search space with new 

better solutions which could not be achieved by the standard 

GA model. 

Third: - Referring to Table 6 and Table 7 in periods 5&6, 

for Table 6 the cost function is the same although the vehicle 

routing is different in the two periods while for Table 7 both 

the cost function and vehicle routing are identical. It provides 

that the standard GA model can easily trapped in many local 

minima due to its leakage in making the necessary 

compromise between local search and global search while 

our proposed model can avoid this trapping and reach the 

regions with better solutions due to its capability in making 

this compromise. 

Table 1.  Vehicles Assignment, limits, and travelling cost [9] 

Vehicle 1 2 3 4 5 

Loading(ℎ𝑣) 40 50 50 60 60 

Assigning cost (𝜏𝑣) 200 300 300 400 400 

Unit travelling cost (𝜌𝑣) 0.9 1 1 1.1 1.1 

Travelling distance (𝑘𝑣) 300 550 550 660 660 

Unit of measurement for ℎ𝑣: unit, 𝐿𝑣: km, 𝜏𝑣: $, 𝜌𝑣: $. 

 

Table 2.  Suppliers data [9] 

Supplier 𝑖 1 2 3 4 5 6 7 8 9 10 11 12 

𝑢𝑖  11 10 12 21 10 13 15 12 8 16 13 1 

𝑃𝑖  1.1 2.1 3.2 2.2 2.3 3 5.2 4.4 2.6 3.7 2.5 1.4 

𝐿𝑖, 120 260 310 160 295 340 358 415 320 340 375 455 

Unit of measurement for 𝑢𝑖 : min, 𝑃𝑖,: $/ min, 𝐿𝑖,: min 

Table 3.  Travelling distance symmetric matrix among suppliers [9] 

𝜋𝑖,𝑗  𝑗 = 0 1 2 3 4 5 6 7 8 9 10 11 12 

𝑖 = 0 0 150 100 120 210 100 135 150 127 85 175 120 115 

1 150 0 160 310 120 195 140 158 215 227 40 175 255 

2 100 160 0 150 145 65 55 250 245 190 147 40 173 

3 120 310 150 0 285 95 200 256 178 82 265 124 35 

4 210 120 145 285 0 205 70 270 310 290 32 169 309 

5 100 195 65 95 205 0 115 270 235 160 207 61 125 

6 135 140 55 200 70 115 0 260 275 225 100 80 225 

7 150 158 250 256 270 270 260 0 111 195 215 283 254 

8 127 215 245 178 310 235 275 111 0 80 305 265 143 

9 85 227 190 82 290 160 225 195 80 0 290 198 55 

10 175 40 147 265 32 207 100 215 305 290 0 180 289 

11 120 175 40 124 169 61 80 283 265 198 180 0 168 

12 115 255 173 35 309 125 225 254 143 55 289 168 0 

Unit of measurement for 𝜋𝑖,𝑗 : km.  
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Table 4.  Travelling time symmetric matrix among suppliers [9] 

𝑤𝑖,𝑗  𝑗 = 0 1 2 3 4 5 6 7 8 9 10 11 12 

𝑖 = 0 0 90 60 72 126 60 81 90 76 51 105 72 69 

1 90 0 96 186 72 117 84 95 129 136 24 105 153 

2 60 96 0 90 87 39 33 150 147 114 88 24 104 

3 72 186 90 0 171 57 120 154 107 49 159 74 21 

4 126 72 87 171 0 123 42 162 186 174 19 101 185 

5 60 117 39 57 123 0 69 162 141 96 124 37 75 

6 81 84 33 120 42 69 0 156 156 135 60 48 135 

7 90 95 150 154 162 162 156 0 67 117 129 170 152 

8 76 129 147 107 186 141 165 67 0 48 183 159 86 

9 51 136 114 49 174 96 135 117 48 0 174 119 33 

10 105 24 88 159 19 124 60 129 183 174 0 108 173 

11 72 105 24 74 101 37 48 170 159 119 108 0 101 

12 69 153 104 21 185 75 135 152 86 33 173 101 0 

Unit of measurement for 𝑤𝑖 ,𝑗 : min. 

Table 5.   Suppliers demand during the periods [9] 

Suppliers/ Periods 1 2 3 4 5 6 7 8 9 10 11 12 

1 22 19 20 13 21 23 22 24 13 26 24 24 

2 26 14 20 17 25 26 24 21 20 23 12 19 

3 30 16 12 11 24 30 16 24 18 15 21 23 

4 21 17 19 21 23 21 16 9 28 11 18 16 

5 21 17 19 21 23 21 16 9 31 21 18 16 

6 22 13 20 28 13 22 12 11 29 22 27 11 

Table 6.  Best solution obtained using GA [9] 

Period Vehicle Vehicle Routing and Loading Size Total Cost ($) 

1 

1 

2 

3 

4 

5 

Depot → Supplier 2 (19) → Supplier 5 (21) → Depot 

Depot → Supplier 6 (23) → Supplier 11 (24) → Depot 

Depot → Supplier 7 (22) → Supplier 8 (24) → Depot 

Depot → Supplier 10 (26) → Supplier 4 (13) → Supplier 3 (20) → Depot 

Depot → Supplier 1 (22) → Supplier 12 (24) → Supplier 9 (13) → Depot 

3,834.2 

2 

1 

2 

3 

4 

5 

Depot → Supplier 3 (20) → Supplier 12 (19) → Depot 

Depot → Supplier 8 (21) → Supplier 9 (20) → Depot 

Depot → Supplier 1 (26) → Supplier 7 (24) → Depot 

Depot → Supplier 4 (17) → Supplier 6 (26) → Supplier 2 (14) → Depot 

Depot → Supplier 5 (25) → Supplier 11 (12) → Supplier 10 (23) → 

Depot 

3,639.1 

3 

1 

2 

3 

4 

5 

Depot → Supplier 2 (16) → Supplier 11 (21) → Depot 

Depot → Supplier 1 (30) → Supplier 10 (15) → Depot 

Depot → Supplier 4 (11) → Supplier 6 (30) → Depot 

Depot → Supplier 5 (24) → Supplier 3 (12) → Supplier 12 (23) → Depot 

Depot → Supplier 9 (18) → Supplier 8 (24) → Supplier 7 (16) → Depot 

3,642.1 

4 

1 

2 

3 

4 

5 

Depot → Supplier 2 (17) → Supplier 5 (23) → Depot 

Depot → Supplier 3 (19) → Supplier 12 (16) → Depot 

Depot → Supplier 1 (21) → Supplier 10 (11) → Depot 

Depot → Supplier 4 (21) → Supplier 6 (21) → Supplier 11 (18) → Depot 

Depot → Supplier 7 (16) → Supplier 8 (9) → Supplier 9 (28) → Depot 

3,470.1 

5 

1 

2 

3 

4 

5 

Depot → Supplier 2 (17) → Supplier 5 (23) → Depot 

Depot → Supplier 3 (19) → Supplier 12 (16) → Depot 

Depot → Supplier 8 (9) → Supplier 9 (31) → Depot 

Depot → Supplier 4 (21) → Supplier 6 (21) → Supplier 11 (18) → Depot 

Depot → Supplier 10 (21) → Supplier 1 (21) → Supplier 7 (16)→ Depot 

3,456.4 
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Period Vehicle Vehicle Routing and Loading Size Total Cost ($) 

6 

1 

2 

3 

4 

5 

Depot → Supplier 3 (20) → Supplier 12 (11) → Depot 

Depot → Supplier 8 (21) → Supplier 9 (29) → Depot 

Depot → Supplier 4 (28) → Supplier 6 (22) → Depot 

Depot → Supplier 2 (13) → Supplier 11 (27) → Supplier 5 (13) → Depot 

Depot → Supplier 10 (22) → Supplier 1 (22) → Supplier 7 (12) → Depot 

3,456.4 

Table 7.  Best solution obtained using our proposed hybrid GA /aco 

Period Vehicle Vehicle Routing and Loading Size Total Cost ($) 

1 

1 

2 

3 

4 

5 

Depot → Supplier 2 (19) → Supplier 5 (21) → Depot 

Depot → Supplier 12 (24) → Supplier 3 (20) → Depot 

Depot → Supplier 1 (22) → Supplier 10 (26) → Depot 

Depot → Supplier 4 (13) → Supplier 6 (23) → Supplier 11 (24) → Depot 

Depot → Supplier 9 (13) → Supplier 8 (24) → Supplier 7 (22) → Depot 

3,470.1 

2 

1 

2 

3 

4 

5 

Depot → Supplier 2 (14) → Supplier 6 (26) → Depot 

Depot → Supplier 4 (17) → Supplier 10 (23) → Depot 

Depot → Supplier 1 (26) → Supplier 7 (24) → Depot 

Depot → Supplier 12 (19) → Supplier 9 (20) → Supplier 8 (21) → Depot 

Depot → Supplier 11 (12) →Supplier 5 (25) → Supplier 3 (20) → Depot 

3,586.3 

3 

1 

2 

3 

4 

5 

Depot → Supplier 3 (12) → Supplier 12 (23) → Depot 

Depot → Supplier 11 (21) → Supplier 5 (24) → Depot 

Depot → Supplier 2 (16) → Supplier 6 (30) → Depot 

Depot → Supplier 1 (30) → Supplier 10 (15) → Supplier 4 (11) → Depot 

Depot → Supplier 7 (16) → Supplier 8 (24) → Supplier 9 (18) → Depot 

3,357.8 

4 

1 

2 

3 

4 

5 

Depot → Supplier 12 (16) → Supplier 3 (19) → Depot 

Depot → Supplier 1 (21) → Supplier 7 (16) → Supplier 8 (9) →Depot 

Depot → Supplier 9 (28) → Depot 

Depot → Supplier 6 (21) → Supplier 4 (21) → Supplier 10 (11) → Depot 

Depot → Supplier 2 (17) →Supplier 11 (18) → Supplier 5 (23) →Depot 

3,343.3 

5 

1 

2 

3 

4 

5 

Depot → Supplier 12 (16) → Supplier 3 (19) → Depot 

Depot → Supplier 10 (21) → Supplier 1 (21) → Depot 

Depot → Supplier 6 (21) → Supplier 4 (21) → Depot 

Depot → Supplier 7 (16) → Supplier 8 (9) → Supplier 9 (31) → Depot 

Depot → Supplier 5 (23) → Supplier 11 (18) → Supplier 2 (17) → Depot 

3,422.7 

6 

1 

2 

3 

4 

5 

Depot → Supplier 12 (11) → Supplier 3 (20) → Depot 

Depot → Supplier 10 (22) → Supplier 1 (22) → Depot 

Depot → Supplier 6 (22) → Supplier 4 (28) → Depot 

Depot → Supplier 7 (12) → Supplier 8 (21) → Supplier 9 (29) → Depot 

Depot → Supplier 5 (13) → Supplier 11 (27) → Supplier 2 (13) → Depot 

3,422.7 

 

This comparison proves that our proposed GA/ACO can 

achieve the necessary balance between exploration and 

exploitation leading to better realizing of the objective 

function by reducing the cost. 
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