
American Journal of Intelligent Systems 2017, 7(1): 1-18

DOI: 10.5923/j.ajis.20170701.01

Neural Network-Based Adaptive Speed Controller Design

for Electromechanical Systems (Part 2: Dynamic

Modeling Using MLMA & Closed-Loop Simulations)

Vincent A. Akpan
1,*

, Michael T. Babalola
2
, Reginald A. O. Osakwe

3

1Department of Physics Electronics, The Federal University of Technology, Akure, Nigeria
2Department of Physics Electronics, Afe Babalola University, Ado-Ekiti, Nigeria

3Department of Physics, The Federal University of Petroleum Resources, Effurun, Nigeria

Abstract The dynamic modeling of an electromechanical motor system (EMS) for different input voltages based on

different weights and the corresponding output revolutions per minute using neural networks (NN) is presented in this paper

with a view to quantify the effects of voltages based on different weights on the system output. The input–output data i.e. the

electrical input voltage and the revolution per minute (rpm) of a PORCH PPWPM432 permanent magnet direct current

(PMDC) motor as the output which is obtained from the EMS have been used for the development of a dynamic model of the

EMS. This paper presents the formulation and application of an online modified Levenberg-Marquardt algorithm (MLMA)

for the nonlinear model identification of the EMS. The performance of the proposed MLMA algorithm is compared with the

so-called error back-propagation with momentum (EBPM) algorithm which is the modified version of the standard

back-propagation algorithm for training NNs. The MLMA and the EBPM algorithms are validated by one-step and five-step

ahead prediction methods. The performances of the two algorithms are assessed by using the Akaike’s method to estimate the

final prediction error (AFPE) of the regularized criterion. The validation results show the superior performance of the

proposed MLMA algorithm in terms of much smaller prediction errors when compared to the EBPM algorithm. Furthermore,

the simulation results shows that the proposed techniques and algorithms can be adapted and deployed for modeling the

dynamics of the EMS and the prediction of future behaviour of the EMS in real life scenarios. In addition, the dynamic

modeling of the EMS in closed-loop with a discrete-time fixed parameter proportional-integral-derivative (PID) controller

has been conducted using both networks trained with EBPM and the MLMA algorithms. The simulation results demonstrate

the efficiency and reliability of the proposed dynamic modeling using MLMA and closed-loop PID control scheme. However,

despite the little poor performance of the PID controller, the accuracy of the NN model trained with the MLMA when used in

a dynamic operating environment has been confirmed.

Keywords Artificial neural network (ANN), Dynamic modeling, Electromechanical motor systems (EMS), Error

back-propagation with momentum (EBPM), Modified Levenberg-Marquardt algorithm (MLMA), Neural network

nonlinear autoregressive moving average with exogenous inputs (NNARMAX), Nonlinear model identification,

Proportional-integral-derivative (PID) control

1. Introduction

Adaptive control has been extensively investigated and

developed in both theory and application during the past few

decades and it is still a very active research field [1-15]. In

the earlier stage, most studies in adaptive control

concentrated on linear systems [15]. A remarkable

development in adaptive control theory is the resolution of

the so- called ideal problem, which is the proof that several

* Corresponding author:

vaakpan@futa.edu.ng (Vincent A. Akpan)

Published online at http://journal.sapub.org/ajis

Copyright © 2017 Scientific & Academic Publishing. All Rights Reserved

adaptive control systems are globally stable under certain

ideal conditions. Then the robustness issues of adaptive

control with respect to non ideal conditions such as external

disturbances and unmodeled dynamics were addressed

which resulted in many different robust adaptive control

algorithms [1, 2].

Adaptive control algorithms can be applied for the control

of any nonlinear dynamic system. But a model of the system

is required [3, 15] A recent approach to modeling nonlinear

dynamical systems is the use of artificial neural networks

(ANN) or simply neural networks (NN). The application of

neural networks for model identification and adaptive

control of dynamic systems have been studied extensively

[3-14]. As demonstrated in [3, 7, 8, 10, 11, 15], neural

mailto:vaakpan@futa.edu.ng

2 Vincent A. Akpan et al.: Neural Network-Based Adaptive Speed Controller Design for Electromechanical

Systems (Part 2: Dynamic Modeling Using MLMA & Closed-Loop Simulations)

networks can approximate any nonlinear function to an

arbitrary high degree of accuracy. The adjustment of the NN

parameters results in different shaped nonlinearities

achieved through a gradient descent approach on an error

function that measures the difference between the output of

the NN and the output of the true system for given input data,

output data or input-output data pairs (training data).

The Adaptive speed control of electromechanical systems

has been widely studied and performed using various

methods and components in the design and experiments

[16-18]. However, the speed control could be achieved with

either adaptive or conventional non-adaptive control

methods. In adaptive control, there exists a feedback control

with the ability of adjusting its speed in a changing

environment so as to satisfy or maintain a set or desired

speed. The actual speed is kept by speed controller to follow

reference speed command. Adaptive control algorithms can

be classified as either direct or indirect, depending on

whether they employ an explicit parameter estimation

algorithm within the overall adaptive scheme. By updating

the required modeling information, perhaps through

closed-loop identification, a direct adaptive control

algorithm can be converted to an indirect adaptive control

algorithm, which may yield greater versatility in practice.

While model reference adaptive controllers and self tuning

regulators were introduced as different approaches, the only

real difference between them is that model reference

schemes are direct adaptive control schemes whereas self

tuning regulators are indirect. The self tuning regulator first

identifies the system parameters recursively, and then uses

these estimates to update the controller parameters through

some fixed transformation. The model reference adaptive

schemes update the controller parameters directly (no

explicit estimate or identification of the system parameters

are made).

Many intelligent control techniques [19], such as artificial

neural network and adaptive fuzzy logic control (AFLC)

methods, have been developed and applied to control the

speed of permanent magnet direct current (d.c.) motor, in

order to obtain high operating performance [20]. Moreover,

the development of AFLCs can be used to cope with some

important complex control problems such as stabilization

and tracking system output signals, the presence of

nonlinearity and disturbance. Adaptive control schemes are

generally used to control systems which include unknown

and time-varying parameters [21].

The ultimate aim of this research is to develop an adaptive

speed controller that will maintain a desired reference

trajectory of 60 rpm despite disturbances and its effects on

the electromechanical system. At the center of the

electromechanical system is a permanent magnet d.c.

(PMDC) motor. Generally, d.c. motors are one of the most

widely prime movers in industries today. They play

important roles in energy conversion processes where they

convert electrical energy into mechanical energy. In

mechanical systems, speed varies with the number of tasks.

Thus, speed control is necessary to do mechanical work in a

proper way. It makes the motor to operate easily [22]. The

speed of d.c. motor is directly proportional to the supply

voltage. The d.c. motor is the obvious proving ground for

advanced control algorithms in electric drives due to the

stable and straight forward characteristics associated with it.

It is also ideally suited for trajectory control applications.

From a control system point of view, the d.c. motor can be

considered as single input single output (SISO) plant,

thereby eliminating the complications associated with a

multiple-input multiple-output (MIMO) systems [23, 24]. To

control any system, the basic understanding of the system is

required. We need to understand the input and output

behaviour of such system which will allow for the control of

the system. All the inputs of real systems are always actuated

by control signals from the controller while the system

outputs on the other hand are measured using a sensors. The

speed control and optimization of electromechanical systems

has become imperative due to its applications in real life

scenarios, any improvement made in this regard will be a

novel contribution.

Some of the more commonly occurring electromechanical

systems are presented using linear transfer functions within

each and every block defining the systems. In real designs,

nonlinear elements frequently occur. However, such

nonlinear components cannot be approximated by linear

differential equations with constant coefficients (e.g. the

Laplace solution techniques) [25]. Therefore, this work

focuses on the formulation of neural network-based

modeling algorithm that will capture the nonlinear dynamics

of the EMS where such model can be used for the

development of adaptive control algorithm for the adaptive

speed control of EMSs.

The paper is organised as follows. The description of the

EMS is presented in Section 2. An overview of the EMS

design and construction as well as information on the

technique of data acquisition from the EMS are also

presented in this section. Section 3 presents the formulation

of the neural network-based modified Levenberg-Marquardt

algorithm (MLMA) for NNARMAX model identification.

Three validation algorithms are also presented in this section.

The dynamic modeling and closed-loop simulations with a

PID controller together with the simulation results are given

in Section 4. A brief conclusion and possible directions on

future work is given in Section 5.

2. Description of the EMS

This section presents an overview of the design and

development of the EMS. The complete design and

fabrication procedure for the system can be found in [26].

The measurement procedure with the description of the EMS

input-output data that describes the system behaviour, the

considerations of the electromechanical system and the

effects of the process variables on the system are also

detailed in [26].

 American Journal of Intelligent Systems 2017, 7(1): 1-18 3

(a)

(b)

Figure 1. The designed electromechanical motor system: (a) Schematic

drawing of the electromechanical system and (b) 3-D drawing of the

electromechanical speed control system

2.1. Design of the EMS

The actuator used in this project is a PORCHE

PPWPM432 windshield wiper motor which has a worm gear

and simple ring gear that gives the device its incredible

torque. This type of motor is called a “gearhead” or "gear

motor" and has the advantage of having lots of torque. The

system has been designed to accommodate different standard

weights which are to be loaded through the bowl fitted to the

iron sheet plate with bolts and nuts to hold it firmly as it

rotates. The sheet (46 cm diameter, 0.1 cm thickness) is

welded to the motor system with a shaft connected to the

motor through the gearing system which transfers the motion

of the motor to the bowl. Bearings were fitted to allow for

free movements or rotation of the system and balancing rods

were clamped to hold the system from falling and to maintain

balance while rotating. The light dependent resistor (LDR)

sensor is installed and aligned with the light source to receive

the incident light through the hole of 2.5 cm bored on the

sheet. The following is a list and specification of materials

used for the design of the proposed electromechanical motor

system, namely: 1). a PORCHE PPWPM432 windshield

wiper motor with 19.6 cm diameter; 2). a container bowl

with 21 cm height, 18.8 cm bottom diameter and 30 cm top

diameter; 3). an iron sheet plate of 46 cm diameter, 0.1 cm

thickness with a 2.5 cm hole for the sensor; 4). two gears 45

teeth and 35 teeth with 4.5 cm diameter and 3.5 cm diameter

respectively; and 5). an Iron shaft of 19.4 cm length and 5.1

cm diameter (please see [26] for more detail).

The sensor and bulb are installed at the bottom and top

respectively with 4.5 cm equidistant from the iron sheet plate.

A well labelled schematic diagram of the proposed

electromechanical motor system is shown in Fig. 1(a) and a

well labelled 3-D diagram of the proposed electromechanical

motor system is also shown in Fig. 1(b) for a 3D view of the

system.

Table 1. The dynamics parameters of the EMS based on experimental measurements

S/N Parameters Symbols Units Minimum Value Maximum Value

1. Input voltage to the digital potentiometer Vi V 0.25 0.38

2. Output voltage of the potentiometer Vo V 0.38 1.75

3. Voltage input to the motor Vk V 3.86 9.52

4. Applied weights Wx kg 0.5 35

5. Speed of the motor Si rpm 15 64

Table 2. Manipulated variables (MV) and the controlled variables (CV) with the EMS constraints

Motor System

Input/Output Parameters

Measurable parameters of the

motor system

Nominal

Values

Input Constraints

Minimun Value Maximum Value

Manipuated Variables

(Inputs)

Input voltage (V) 0.25 0 5

Running voltage (V) 3.86 3.86 8.67

Controlled Variables

(Outputs)

Speed (rpm) with the prescribed

input voltage
60 15 64

Speed (rpm) with the prescribed

running voltage
60 15 64

PMDC

Motor

Bow

l

LDR

(sensor)

Hole

Bulb (light

source) Iron Sheet plate

Gearing system

Sleeve

Balancing

rod

Bearings

 Shaft

Light source
Iron Sheet

plate

Gear and gearing

system

Connecting

rod

Bowl

Box

PMDC Motor

Balancing Rods

Electrical

circuits

LDR

(sensor)

4 Vincent A. Akpan et al.: Neural Network-Based Adaptive Speed Controller Design for Electromechanical

Systems (Part 2: Dynamic Modeling Using MLMA & Closed-Loop Simulations)

2.2. Experimental Input-Output Data Collection from

the Designed EMS

The dynamic parameters of the electromechanical motor

system are listed in Table 1 with their respective minimum

and maximum values. The data for the following dynamic

parameters have been collected for this work:

1). The input voltage to the digital potentiometer; Vi;

2). The output voltage of the potentiometer in response to

changes in the input; Vj;

3). The actual voltage input to the motor; Vk;

4). The input standards weights, Wx; and

5). The corresponding measured speed of the motor (in

revolution per minute) in response to the changes in

the inputs (voltage and applied weights). Si.

2.3. Description of the EMS Input-Output Data

The picture of the completely designed and constructed

EMS is shown in Fig. 2 [26]. Weights were combined to give

a range from 0.5 kg to 35 kg limited by the diameter of the

bowl on the iron plate. The input voltages and the

corresponding speed of the EMS as measured by the counter

circuit are summarized in Table 2. The input voltages were

first fixed for no load condition and the speed in rpm was

recorded. Then the experiment was repeated for each of the

applied weights keeping the voltages fixed and the respective

speed (in rpm) as displayed by the digital counter. The

minimum recorded rpm with no load is 18 rpm while with 35

kg weight the digital counter recorded 15 rpm with the

minimum input voltage of 3.86 V. The maximum speed

recorded is 64 rpm which occur at the highest supplied

voltage of 9.5 V under no load condition but 51 rpm with 35

kg weights applied [26].

Figure 2. The picture of the completely designed and constructed

electromechanical motor system

The speed of the system in revolution per minute which is

the output of the system is affected by two major parameters;

the input voltage and the applied weights. The higher the

input voltage, the faster the speed of the motor moved and

the higher the weight applied the slower the speed of the

motor.

3. Formulation of the NN-Based MLMA
and the Model Validation Algorithms
for NNARMAX Model Identification

3.1. Formulation of the Neural Network Model

Identification Problem

The method of representing dynamical systems by vector

difference or differential equations is well established in

systems and control theories [3, 15, 27, 28]. Assuming that a

p-input q-output discrete-time nonlinear multivariable

system at time k with disturbance ()d k can be

represented by the following Nonlinear AutoRegressive

Moving Average with eXogenous inputs (NARMAX)

model:

() (1), , (),

(), , (),

(1), , () ()

a

b

c

Y k J Y k Y k n

U k d U k d n

k k n d k

 (1)

where (,)J is a nonlinear function of its arguments, and

[(1), , ()]aY k Y k n are the past output vector,

[(), , ()]bU k d U k d n are the past input vector,

(1), , ()ck k n are the past noise vector,

()Y k is

the current output, an , bn and cn are the number of past

values of the system outputs, system inputs and noise inputs

respectively that defines the order of the system, and d is

the time delay. The predictor form of (1) based on the

information up to time 1k can be expressed in the

following compact form as [15]:

ˆ(| 1, ()) (, ()), ()TY k k k J k k k

 (2)

where (, ()) (1), , (), (), ,ak k Y k Y k n U k d

(), (1, ()), , (, ())
T

b cU k d n k k k n k is the

regression (state) vector, ()k is an unknown parameter

vector which must be selected such that ˆ(| ()) ()Y k k Y k ,

(, ())k k is the error between (1) and (2) defined as

ˆ(, ()) () (| ())k k Y k Y k k (3)

where 1k in ˆ(| 1, ())Y k k k of (2) is henceforth

omitted for notational convenience. Not that (, ())k k is

the same order and dimension as ˆ(| ())Y k k .

Now, let be a set of parameter vectors which contain a

set of vectors such that:

ˆ: () ()k k
 (4)

 American Journal of Intelligent Systems 2017, 7(1): 1-18 5

Figure 3. Architecture of the dynamic feedforward NN (DFNN) model

Figure 4. NNARMAX model identification based on the teacher-forcing method

where is some subset of
 where the search for

ˆ()k is carried out; is the dimension of ()k ; ˆ()k

is the desired vector which minimizes the error in (3) and is

contained in the set of vectors 1(), , ()k k ;

1(), , ()k k are distinct values of ()k ; and

1,2, ,maxiter is the number of iterations required to

determine the ˆ()k from the vectors in .

Let a set of N input-output data pair obtained from prior

system operation over NT period of time be defined:

 (1), (1), , (), () , 1,2,NZ U Y U N Y N N (5)

where T is the sampling time of the system outputs. Then,

the minimization of (3) can be stated as follows:

()

ˆ() argmin (, (, ()), ())N

k

k J Z k k k

 (6)

where (, (, ()), ())NJ Z k k k is formulated as a total

square error (TSE) type cost function which can be stated as:

2

1

1
(, (, ()), ()) [(, ())]

2

NN

l
J Z k k k l k

N

 (7)

The inclusion of ()k as an argument in (, ())k k is

to account for the desired model ˆ()k dependency on

()d k . Thus, given as initial random value of ()k , an ,

bn and (5), the system identification problem reduces to the

minimization of (6) to obtain ˆ()k . For notational

convenience, (())J k shall henceforth be used instead of

(, (, ()), ())NJ Z k k k .

3.2. Neural Network Identification Scheme

The minimization of (6) is approached here by considering

ˆ()k as the desired model of network and having the

DFNN architecture shown in Fig. 3. The proposed NN model

identification scheme based on the teacher-forcing method is

illustrated in Fig. 4. Note that the “Neural Network Model”

shown in Fig. 4 is actually the DFNN shown in Fig. 3 via

 ,0jw

 ,i jW

Hidden layer

1

1

()iF b ()jf a

Output layer

b a

 ˆ()Y k

 (,(())NNARMAX k k

,j lw

,0iW

()l k

with Network

of l-TDL

 Training

Algorithm

Neural

Network

Model

bn TDL

an TDL

EMS

 (, ())k k

 ˆ()Y k

 ()Y k ()U k

 ()
bn k

 ()
an k

cn TDL

(, ())
cn k k

 ()d k

 (, ())k k

6 Vincent A. Akpan et al.: Neural Network-Based Adaptive Speed Controller Design for Electromechanical

Systems (Part 2: Dynamic Modeling Using MLMA & Closed-Loop Simulations)

tapped delay lines (TDL). The inputs to NN of Fig. 4 are

 () (), , () ,
bn bk U k d U k d n () [(1),

an k Y k

, ()]TaY k n

and (, ()) (1, ()), ,

cn k k k k

(, ())
T

ck n k which are concatenated into

(, ())NNARMAX k k or simply (, ())k k as shown in

Fig. 3. The output of the NN model of Fig. 4 in terms of the

network parameters of Fig. 3 is given as:

 , ,01

, ,01

ˆˆ(| ()) ()

(, ())

hn
i i j j ij

n
j l jl

Y k k F W f a W

a w k k w

 (8)

where hn and n are the number of hidden neurons and

number of regressors respectively; i is the number of

outputs, ,j lw and ,i jW are the hidden and output weights

respectively; ,0jw and ,0iW are the hidden and output

biases; ()iF b is a linear activation function for the output

layer and ()jf a is an hyperbolic tangent activation

function for the hidden layer defined here as:

2

2
() 1

1
j a

f a
e

 (9)

Bias is a weight acting on the input and clamped to 1. Here,

ˆ()k is a collection of all network weights and biases in (8)

in terms of the matrices , ,0{ }j l jw ww and

, ,0{ }i j iW WW . Equation (8) is here referred to as NN

NARMAX (NNARMAX) model predictor for simplicity.

Note that ()d k in (1) is unknown but is estimated here as

a covariance noise matrix, [()] [() ()].Tk d k d k E

Using [()]k , Equation (7) can be rewritten as [3], [15],

[27]:

1

1

[, ()] [()] [, ()]1
(())

2

() ()

N
T

l

T

l k k l k
J k

N

k D k

 (10)

where the second term in (10) is the regularization (weight

decay) term which has been introduced to reduce modeling

errors, improve the robustness and performance of the

proposed training algorithms [3, 15, 27]. The term

[]d h oD I I is a penalty norm and also removes

ill-conditioning, where I is an identity matrix, h and

o are the weight decay parameters for the input-to-hidden

and hidden-to-output layers respectively. Note that both
()ˆ [()]j k and D are adjusted simultaneously during

network training with ()k and are used to update ˆ()k

iteratively. The algorithm for estimating the covariance noise

matrix and updating ˆ()k is summarized in Table 3. Note

that this algorithm is implemented at each sampling instant

until
()ˆ [()]j k has reduced significantly as in step 7).

Table 3. Iterative algorithm for estimating the covariance noise matrix

1) Given initial network weights
(0)() ()k k and

maxj j .

2) For 1k to Number of Samples (N), Do,

3) Initialize

(0)[()]k I , Do,

4) Set 1j

5) Train the network for iterations with a training algorithm using

(1)[()]j k to obtain
()ˆ() () ()jk k k .

6) Estimate the covariance matrix for the noise using

() () ()

1

1ˆ [()] [()] [()]
2

Nj T j j

l
k k k

N

7) If
()ˆ [()]j k esp , where esp is a convergence criteria.

Set 1j j and Go To Step 4).

Else, set
()ˆ() ()jk k and End Set j.

8) End For k.

3.3. Formulation of the NN-Based MLMA

Unlike the standard back-propagation (BP) algorithm

which is a steepest descent algorithm, the MLMA algorithm

proposed here is based on the Gauss-Newton method with

the typical updating rule given from [3, 15, 27] as:

ˆ() () ()k k k (11)

where 1() [()] [()]k R k G k (12)

()k denotes the value of ()k at the current iterate

, ()k is the search direction, [()]G k and

[()]R k are the Jacobian (or gradient matrix) and the

Gauss-Newton Hessian matrices evaluated at () ()k k .

As mentioned earlier, due to the model ()k dependency

on the regression vector (, ())k k , the NNARMAX model

predictor depends on a posteriori error estimate using the

feedback as shown in Fig. 4. Suppose that the derivative of

the network outputs with respect to ()k evaluated at

() ()k k is given as [15]:

ˆ(| ())
[, ()]

()

dY k k
k k

d k

 (13)

The derivative of (13) is carried out in a BP fashion for the

input-to-hidden layer and for the hidden-to-output layer

respectively for the two-layer DFNN of Fig. 3. Thus, the

derivative of the NNARMAX model predictor can be

 American Journal of Intelligent Systems 2017, 7(1): 1-18 7

expressed as [15]:

ˆ(| ())
[, ()]

()

ˆ ˆ(| ()) (1| ())

(1, ()) ()

ˆˆ (| ())(| ())

(, ()) ()

c

c

Y k k
k k

k

Y k k Y k k

k k k

Y k n kY k k

k n k k

(14)

Thus, Equation (14) can be expressed equivalently as

1

ˆ(| ())
[, ()] () [1, ()]

()

() [, ()]n

dY k k
l k C k k k

d k

C k k n k

 (15)

By letting
1 1

1(,) () () cn
nC k z I C k z C k z

 ,

then (15) can be reduced to the following form [15]

1

ˆ1 (| ())
[, ()]

()(,)

dY k k
k k

d kC k z

 (16)

As it can be seen from (16), the gradient is calculated by

filtering the partial derivatives with the time-varying filter
11/ (,)C k z which depends on the prediction errors based

on the predicted outputs. Equation (16) is the only

component that actually impedes the implementation of the

NN training algorithms depending on its computation.

Table 4. An algorithm for placing the roots of the time-varying filter of the
NNARMAX model predictor within the unit circle for stability

1) Given network weights
(0)

() ()k k , time-varying filter

1 (0) 1
(,) (,)C k z C k z

and regression vector (, ())k k

2) Compute the roots of
1(,)C k z as

1
(,)RootsC k z

 and

length of
1

(,)RootsC k z

 as CRootsl .

3) Compute the absolute value of

1 1
(,) ((,))Roots RootsC k z abs C k z

4) For 1i to CRootsl ,

if
() 1

((,)) 1
i

Rootsabs C k z

() 1

() 1

1
(,)

(,)

i
Roots i

Roots

C k z
C k z

End if, End for

5) Compute the
1(,)C k z using the real root from Step 4).

Due to the feedback signals, the NNARMAX model

predictor may be unstable if the system to be identified is not

stable since the roots of (16) may, in general, not lie within

the unit circle. The approach proposed here to iteratively

ensure that the predictor becomes stable is summarized in the

algorithm of Table 4. Thus, this algorithm ensures that roots

of
1(,)C k z lies within the unit circle before the weights

are updated by the training algorithm proposed in the next

sub-section.

3.3.1. The Proposed Modified Levenberg-Marquardt

Algorithm (MLMA)

The Levenberg-Marquardt [28-30] modification to (12) is

the inclusion of a non-negative parameter to the

diagonal of [()]R k with a new iterative updating rule as

follows:

ˆ() () ()k k k (17)

 1
() [()] [()]k R k I G k

 (18)

where I is a diagonal matrix, [()]G k and [()]R k are:

1

1

1 [, ()] [()] [, ()]
[()]

()

N

l

l k k l k
G k

N D k

 (19)

1

1

1
[()] [, ()] [()] [, ()]

N
T

l

R k l k k l k D
N

 (20)

and [, ()]l k the derivative of the network outputs with

respect to ()k evaluated at () ()k k and is

computed according to (16).

The parameter characterizes a hybrid of searching

directions and has several effects [7, 29-32]: 1) for large

values of (18) becomes steepest descent algorithm (with

step 1) which requires a descend search method; and 2)

for small values of (18) reduces to the Gauss-Newton

method and 1
[()]R k I

 may become non-positive

definite matrix.

Despite the fact that (10) is a weighted criterion, the

convergence of the Levenberg-Marquardt algorithm (LMA)

may be slow since ()k contains many parameters of

different magnitudes, especially if these magnitudes are

large as in most cases [8, 10, 28]. This is the major reason for

not using the LMA in online training of the NNs.

This problem can be alleviated by adding a scaling matrix

S sI (where s is the scaling parameter and I is an

identity matrix) which is adjusted simultaneously with

()k and instead of checking 1
[()]R k I

in (18)

for positive definiteness, the check is expressed as

1
[()] [()] () ()

T
V k R k S S

 (21)

This will ensure that (21) is always positive definite with

fast convergence if a suitable value for
is chosen.

Different from other methods [28, 32-34] the method

proposed here uses the Cholesky factorization algorithm and

then iteratively selects to guarantee positive

8 Vincent A. Akpan et al.: Neural Network-Based Adaptive Speed Controller Design for Electromechanical

Systems (Part 2: Dynamic Modeling Using MLMA & Closed-Loop Simulations)

definiteness of (21) for online application. First, (21) is

computed and the check is performed. If (21) is positive

definite, the algorithm is terminated, otherwise is

increased iteratively until this is achieved. The method is

summarized in Table 5. The key parameter in the algorithm

is . Next, the Cholesky factor , (())b aL k given by (T.2)

in Table 5 is reused to compute the search direction from (18)

in two-stage forward and backward substitution given

respectively as:

Table 5. Iterative Algorithm for Selecting

Initialize [0.5,] [0.5,1,2,4,6,8]km of length kl .

Let [,] ([()])sm sn size V k . Set , () 1a aL k .

Evaluate (29).

for 1i to sm

while iter kl

for 1kn to kl

for 1a to sn

1 2
, , ,1

(()) [()] (())
a

a a a a a jj
L k V k L k

 (T.1)

end for a.

if , () 0a aL k , * (1,)km kn and

recomputed (29)

Set 1a a , recomputed (T.1)

else, for 1b a to sn

1

, , ,

1

,
,

[()] (()) (())

(())
(())

a

b a a j a j

j

b a
a a

V k L k L k

L k
L k

(T.2)

end for b, end if , ()a aL k , end for kn.

1iter iter

if iter kl and , () 0a aL k , break, end.

Set and recomputed (29) using .

end while iter ,

end for sn .

, [(()] () [()]b aL k k G k (22)

1

,() [(()] [()]
T

b ak L k G k

 (23)

The convergence of the LMA using (17) to (23) may again

be slowed if the initial guess
(0) ()k is too far from the

optimum value ˆ()k . Thus, the LMA is sometimes

combined with the trust region method [35] so that the search

for ˆ()k is constrained around a trusted region . The

problem can be defined as [3, 15]:

()

() arg min (())
k

k J k

 (24)

Subject to (() ())S k k (25)

where (())J k is the second-order Gauss-Newton

approximate of (10) which can be expressed as:

2

1

[, ()] [()1
(())

2 ()] [, ()]

N

T
l

l k k
J k

N k l k

 (26)

which is expected to be valid only in a neighborhood around

the current iterate ()k . Thus, with this combined method

and using the result from (23), Equation (17) can be rewritten

as

Table 6. The modified Levenberg-Marquardt algorithm (MLMA)

incorporating trust-region algorithm for updating ˆ()k *

1) Specify ,
 max , D,

3
max [1, 10] ,

2
[0.1, 10]s

 ,

m and n for (, ()),k k

3 4
[0.1, 10], [0.1, 10]

2) Initialize the weights
0

() ()k k and the time-varying filter

1 0 1
(,) (,)C k z C k z

 with appropriate dimensions.

3) While 1,

Do.

4) Evaluate (())J k using (10) for the a priori estimate.

5) Ensure that the roots of
1

(,)C k z

 in (16) are within unit circle

using the algorithm of Table 4 using (, ())k k .

6) Compute [()]G k using (19) and [()]R k using (28).

7) Evaluate [()]V k in (21) using the algorithm of Table 5 and

determine the searching direction (())k

using (23).

8) Evaluate (())J k using (10) for the posteriori estimate.

9) Evaluate (26) and (24) subject to (25).

10) Evaluate the ratio in (28).

11) Update according to the following conditions on :

If 0.75 , then 0.5 * and Go To 12).

If 0.25 , then 2 * and Go To 12).

12) If (() ())S k k , max and

0ared .

Accept (())k in (23), Set () () (())k k k

and Go To 13).

Else 1 , 1 , 1() ()k k and

Go To 3).

13) Accept ˆ() ()k k in (27).

*This algorithm is implemented in step 5) in algorithm of Tabe1.

 American Journal of Intelligent Systems 2017, 7(1): 1-18 9

ˆ() () ()k k k (27)

The choice of selecting and/or adjusting and has

led to the coding of several algorithms [7, 28-34]. In stead of

adjusting directly, this paper develops on the indirect

approach proposed in [35] but reuses computed in Table

5 to update the weighted criterion (10). Here, is adjusted

according to the ratio between the actual reduction

()ared of (10) and theoretical predicted decrease ()pdec

of (10) using (26). The ratio can be defined as:

(()) (() ())

ˆ(()) (() ())

J k J k kared

pdec J k J k k

 (28)

where (()) (, (), ())
N

J k J Z k k in (10) for

convenience and (() ())J k k is the Gauss-Newton

estimate of (10) using (26).

The complete modified Levenberg-Marquardt algorithm

(MLMA) for updating ˆ()k is summarized in Table 6.

Note that after ˆ()k is obtained using the algorithm of

Table 6, the algorithm of Table 3 is implemented until the

conditions set out in Step 7) of the algorithm are satisfied.

3.4. Proposed Validation Methods for the Trained

NNARMAX Model

Network validations are performed to assess to what

extend the trained network has approximated and capture the

operation of the underlying dynamics of a system and as

measure of how well the model being investigated will

perform when deployed for the actual process [3, 15, 27].

The first test involves the comparison of the predicted

outputs with the true training data and the evaluation of their

corresponding errors using (3).

The second validation test is the Akaike’s final prediction

error (AFPE) estimate [3, 15, 17, 28, 34] based on the weight

decay parameter D in (10). A smaller value of the AFPE

estimate indicates that the identified model approximately

captures all the dynamics of the underlying system and can

be presented with new data from the real process. Evaluating

the ˆ(, ())k k portion of (3) using the trained network with

ˆ() ()k k and taking the expectation ˆ{ (, ())}
N

J Z kE

with respect to ˆ(, ())k k and ()d k leads to the following

AFPE estimate [3], [15], [27]:

ˆ ˆˆ (()) (())N Na

b

N p
F Z k J Z k

N p

 (29)

where 1 1ˆ ˆ ˆ ˆ(()) (()) (()) (())ap V k V k D V k V k D

 tr

and {}tr is the trace of its arguments and it is computed as

the sum of the diagonal elements of its arguments,
* * 1ˆ ˆ{ ()[() (1)] }bp tr V V N D and γ is a positive

quantity that improves the accuracy of the estimate and can

be computed according to the following expression:

1 1

2

ˆ() ˆ ˆ ˆ ˆ[()] [()] [()] ()

T
k D D D

R k R k R k D k
N NN

The third method is the K-step ahead predictions [10]

where the outputs of the trained network are compared to the

unscaled output training data. The K-step ahead predictor

follows directly from (8) and for ˆ(, ())k k

ˆˆ(, ())k K k and ˆ() ()k k , takes the following form:

ˆ ˆˆ ˆ ˆ(() | , ()) (, (), ())NY k K k k J Z k K k (30)

where

ˆ ˆˆ(, ()) [((1) | ()), ,

ˆ(() | ()),b

k K k U k K k

U k K n k

ˆ ˆˆ ˆ((1) | ()), , ((1 min(,)) | ()),aY k K k Y k K k n k

ˆ ˆ((1) | (k)), , ((max(,0) | ())]
T

aY k K Y k K n k k

The mean value of the K-step ahead prediction error

(MVPE) between the predicted output and the actual training

data set is computed as follows:

ˆˆ() (() | , ())
100%

()

N

k m K

Y k Y k K k k
MVPE mean

Y k

 (31)

where ()Y k corresponds to the unscaled output training

data and ˆˆ(() | , ())Y k K k k the K-step ahead predictor

output.

4. Dynamic Modeling and Adaptive
Closed-Loop Simulations of the EMS
Using Discrete-Time PID Controller

4.1. Selection of the Manipulated Inputs and Controlled

Outputs for the Dynamic EMS Modeling Problem

The manipulated variable (MV) is the variable chosen to

affect control over an output variable. As the output is being

controlled it is normally referred to as the controlled variable

(CV). The objective of a control system is to keep the CV at

their desired values (or setpoints). This is achieved by

manipulating the MV using a control algorithm [36]. The

manipulated variables with the nominal values and

constraints as well as the controlled variable with the

nominal values and the constraints are as shown in Table 2.

The manipulated variable is the input voltage to the digital

potentiometer and the running voltage of the motor with

nominal values of 0.25 V and 3.86 V respectively (see Tables

1 and 2). The controlled variable is the desired output rpm of

the motor with nominal value of 60 rpm.

Disturbances are variables that fluctuate and cause the

10 Vincent A. Akpan et al.: Neural Network-Based Adaptive Speed Controller Design for Electromechanical

Systems (Part 2: Dynamic Modeling Using MLMA & Closed-Loop Simulations)

process output to move from the desired operating value

(setpoint). A disturbance could be a change in flow or

temperature of the surroundings or pressure etc. Disturbance

variables can normally be further classified in terms of

measured or unmeasured signals. The different random

weights applied to the EMS serves as the disturbance

introduced to the system for the study and it ranges from 0.5

kg to 35 kg. More weights could be accommodated for

further studies but the diameter of the bowl would need to be

increased and the complete design of the EMS would require

total adjustments.

4.2. Formulation of the EMS NNARMAX Model

Identification and Prediction Problem

4.2.1. Statement of the EMS Neural Network-Based Model

Identification Problem

The development of accurate system models from

first-principles or analytically for dynamical systems could

be difficult and/or frustrating if not practically impossible [3,

15]. The modeling task becomes even more challenging for

systems with relatively short sampling time such as the EMS

considered in this study with an approximate sampling time

of 16 milliseconds. However, the emergence of NNs

simplified the process of capturing relatively accurate

dynamic discrete-time models of dynamical systems based

on the availability of either only input, only output or

input-output data [1-15]. This sub-section develops on

Sections 2 and 3.

Thus, from the discussions so far, the only measured input

that influence the behaviour of the EMS is the input voltage

(Vi) given by:

_() ()
T

i inU k V k (32)

Furthermore, based on the discussions thus far, the output

parameter that can be used to determine the behaviour of the

EMS is the speed (Si in rpm) given by:

_out() ()
T

iY k S k (33)

Although, the EMS is formulated as a SISO problem, the

NN architecture is also a simplified SISO system. The

series-parallel NN model identification scheme used here is

shown in Fig. 4 and is based on the NNARMAX model

predictor discussed in Section 3. The input vector to the

neural network (NN) consists of the regression vectors which

are concatenated into (, ())NNARMAX k k for the

NNARMAX model predictor discussed in Section 3 and

defined here as follows:

_out() ()
a

T

n i ak S k n

 (34)

_() ()
b

T

n i in ak V k n

 (35)

_out() (, ())
c

T

n Si ck k n k

 (36)

(, ()) () () (, ())
a b cNNARMAX n n nk k k k k k

(37)

Again, the output of the NN for the EMS is the predicted

value of the speed (Si_out in rpm) at each sampling instant

given by:

_out
ˆ ˆ() ()

T

SiY k y k (38)

4.2.2. Experiment with EMS for Neural Network Training

Data Acquisition

Based on previous discussions, the PMDC–based EMS

can be considered as a SISO system, thereby eliminating the

complications associated with a MIMO systems [41]. The

input to the electromechanical system is an electrical voltage

sent to the PMDC motor while the output is the rpm of the

PMDC motor measured by an opto-sensor. The input-output

measurements (data) obtained from the electromechanical

system was used for the development of dynamic models

which was used for the adaptive controllers design, since the

dynamic model of the system will ensure stability in

situations where the system operates outside the normal

operating conditions.

For the purpose of neural network modeling of the system,

a total of 476 data samples were obtained from the

experiments performed on the designed and constructed

EMS developed in [26]. Of the 476 experimental data

acquired from the EMS, 381 data (representing 80%) is for

the NN training while the remaining 95 data (representing

20%) have been reserved for the trained NN model

validation. The entire simulation of the EMS is achieved

using MATLAB and Simulink® software from The

MathWorks [42].

4.2.3. Formulation of the Error Back-Propagation with

Momentum (EBPM) Algorithm

In order to investigate the performance of the proposed

MLMA, the so-called error back-propagation with

momentum (EBPM) algorithm is used for this purpose. The

EBPM algorithm is a variation of the standard

back-propagation algorithm originally proposed by [37]

which has been modified in [15] for use in this paper. The

EBPM algorithm is summarized from [15] as follows:

1). The weight of a connection is adjusted by an amount

proportional to the product of an error signal , on the unit

k receiving the input and the output of the unit j sending

the signal along the connection as follows:

,
ˆ ()

p p
j l j jw Y k (39)

2). If the unit is an output unit, the error signal is given by:

'ˆ() () ()
p p p p

o o o j oY k Y k f a

 (40)

For the logistic sigmoidal activation function ()jf

defined in (9), the output ˆ ()
p

Y k can be expressed as:

 American Journal of Intelligent Systems 2017, 7(1): 1-18 11

1ˆ () ()

1
p

p p

a
Y k f a

e

 (41)

so that the derivative of (41) can be expressed as:

 2

1 1
'()

1 1

ˆ ˆ() 1 ()

p

p
p

p a

p a
a

p p

f a e
a e e

Y k Y k

 (42)

and such that the error signal for an output unit can be

expressed as:

ˆ ˆ ˆ() () () 1 ()p p p p p
o o o o oY k Y k Y k Y k

 (43)

3). The error signal for a hidden unit is determined

recursively in terms of error signals of the units to which it is

directly connected and the weights of those connections.

Thus, for the sigmoid activation function, we have:

1

1

'()

ˆ ˆ1 ()

o

o

N
p p p

o hoh h

o

N
p p p

o hoh h

o

f a w

Y Y k w

 (44)

4). From (39), the learning procedure requires that the

change in weight be proportional to
p

E w expressed as:

,
,

()
p

j l
j l

E k
w

w

 (45)

The true gradient descent method requires that

infinitesimal steps are taken. For practical purpose, the

learning rate in (39) and (45) is chosen as large as

possible without leading to oscillation. To avoid oscillation

at large , the change in weight is made to be dependent on

past weight change by adding a momentum term as follows:

, ,
ˆ(1) () ()

p p
j l j j j lw k Y k w k (46)

where j indexes the presentation number and is a

constant which determines the effects of the previous weight

change. When no momentum term is used, it can take a long

time before the minimum is reached with a low learning rate,

whereas for high learning rates the minimum is never

reached because of the oscillations. When a momentum term

is added, the minimum is reached faster [38-40].

4.2.4. Scaling the Training Data and Rescaling the Trained

Network that Models the EMS

Due to the fact the input and outputs of a process may, in

general, have different physical units and magnitudes; the

scaling of all signals to the same variance is necessary to

prevent signals of largest magnitudes from dominating the

identified model. Moreover, scaling improves the numerical

robustness of the training algorithm, leads to faster

convergence and gives better models. The training data are

scaled to unit variance using their mean values and standard

deviations according to the following equations [3, 15, 27]:

()

()

()

()

() ()
()

() ()
()

s

U k

S

Y k

U k U k
U k

Y k Y k
Y k

 (47)

where (),U k ()Y k and ()U k , ()Y k are the mean and

standard deviation of the input and output training data pair;

and
() ()SU k and

() ()SY k are the scaled inputs and

outputs respectively. Also, after the network training, the

joint weights are rescaled according to the expression

()
ˆ ˆˆ ˆ(, ()) (, ()) ()Y kY k k Y k k Y k (48)

so that the trained network can work with other unscaled

validation data and test data not used for training. However,

for notational convenience,
()

() ()
S

U k U k and

()() ()SY k Y k shall be used in the discussion of results.

4.2.5. Training the Neural Network that Models the EMS

The NN input vector to the neural network (NN) is the

NNARMAX model regression vector (, ())NNARMAX k k

defined by (37). The input (, ())
cn k k , that is the initial

error estimates (, ())k k given by (3), is not known in

advance and it is initialized to small positive random matrix

of dimension cn by cn . The outputs of the NN are the

predicted values of ˆ()Y k given by (8).

For assessing the convergence performance, the network

was trained for = 20 epochs (number of iterations) with

the following selected parameters: 1p , 1q , 2an ,

2bn , 2cn , 6n (NNARMAX), 5hn , 1on ,

1 6h e and 1 5o e . The details of these

parameters are discussed in Section 3; where p and q are

the number of inputs and outputs of the system, ,a bn n

and cn are the orders of the regressors in terms of the past

values, n is the total number of regressors (that is, the

total number of inputs to the neural network), hn and on

are the number of hidden and output layers neurons, and h

and o are the hidden and output layers weight decay

terms. The two design parameters
310
 and

0.05s were selected to initialize the MLMA algorithm.

The maximum number of times the algorithm of Table 3 is

implemented is 6 in all the simulations; that is max 6j .

12 Vincent A. Akpan et al.: Neural Network-Based Adaptive Speed Controller Design for Electromechanical

Systems (Part 2: Dynamic Modeling Using MLMA & Closed-Loop Simulations)

For the EBPM, the two design parameters are selected as

1 and 0.5 .

The 381 training data is first scaled using equation (47)

and the network is trained for τ = 20 epochs using the

proposed MLMA and the EBPM algorithm proposed in

Sections 3.3 and 4.2.3 respectively.

4.3. Validation of the Trained NNARMAX Model for the

Modeling and Prediction of the EMS Dynamics

According to the discussion on network validation in

Section 3.4, a trained network can be used to model a

process once it is validated and accepted, that is, the network

demonstrates its ability to predict correctly both the data that

were used for its training and other data that were not used

during training. The networks trained with the EBPM and the

proposed MLMA algorithms needs to be validated with

proposed three different methods by the use of scaled and

unscaled 381 training data as well as with the 95 data

reserved for the validation of the trained network for the

EMS.

The three different validation techniques used to evaluate

the performances of the two trained networks are: 1).

one-step ahead prediction of the scaled training data; 2).

one-step ahead prediction of the unscaled validation data; 3).

K-step ahead prediction of the unscaled training data; and 4).

Akaike’s final prediction error (AFPE) estimate.

4.3.1. Network Training of the EMS Using EBPM and the

Proposed MLMA Algorithms

The two training algorithms used here are the EBPM and

the proposed MLMA algorithms discussed in Sections 4.2.3

and 3.3 respectively. The training data is first scaled

according to equation (47) and the network is trained using

the two algorithms.

After network training, the trained network is again

rescaled according to (48) so that the resulting network can

work with unscaled EMS real-time data. The performances

of the EBPM and the MLMA algorithms are shown in Fig. 5

through Fig. 7 while the Table 7 presents the summary of the

training and validation results for quick comparison.

The computation time for training the networks using each

of the algorithms are shown in the first row of Table 7.

Although, the convergence curves of the EBPM and the

MLMA algorithms for 20 epoch are not shown but the MPI

for both algorithms are given in the third row of Table 7. As

one can observe from Table 7, the MLMA has smaller MPI

when compared to that of EBPM which is an indication of

good convergence property of the MLMA at the expense of

higher computation time when compared the small

computation time used by the EBPM for 20 epochs as

evident in the first row of Table 7.

The total square error (TSE) discussed in sub-section 3.1,

for the network trained with the EBPM and the MLMA

algorithms are given in the second row of Table 7. Again, the

MLMA algorithm also has smaller TSE and minimum

performance indices when compared to that of the EBPM

algorithm. These small values of the TSE and the MPI

indicate that MLMA performs better than the EBPM for the

same number of iterations (epoch). These small errors

suggest that the MLMA model approximates the EMS better

due to the smaller errors when compared to those of the

EBPM.

These small errors suggest that the network trained with

the proposed MLMA algorithm approximates the dynamics

of the EMS with better accuracy compared to that obtained

by the network trained with the EBPM algorithm.

4.3.2. One-Step Ahead Predictions Simulation for the EMS

In the one-step ahead prediction method given by (8), the

scaled training data are compared with the one-step ahead

output predictions of the trained network and an assessment

of their corresponding errors is made. The comparison of the

one-step ahead predictions of the scaled training data (target

output, blue ––) against the trained network output

predictions (red --*) by the networks trained for 20 epochs

using the EBPM and the MLMA algorithms are shown in Fig.

5.

Table 7. Summary of the training results for the designed electromechanical motor system based on EBPM and MLMA

S/N Performance Parameters
Training Algorithms

EBPM MLMA

1. Computation time for model identification (sec) 1.0614e+00 3.9228e+00

2. Total square error (TSE) 1.6482e+01 2.9554e-03

3. Minimum performance index (MPI) 2.6193e-01 5.8183e-05

4. Mean value of one-step ahead prediction error of the scaled training data 5.3969e+01 5.4315e-04

5.
Mean value of one-step ahead prediction error of the unscaled validation

(test) data
6.1027e-02 1.9426e-03

6. Mean value of 5-step ahead prediction error of the unscaled training data 5.3905e+01 3.4321e-02

7. Akaike’s final prediction error (AFPE) estimate 3.9218e+01 9.2187e-03

 American Journal of Intelligent Systems 2017, 7(1): 1-18 13

The mean value of the one-step ahead prediction errors for

the prediction of the scaled training data by the network

trained using the EBPM and the MLMA algorithms are

given in the fourth row of Table 7. It can be seen in Fig. 5, the

network predictions of the training data based on the network

trained using the MLMA algorithm closely match the

original training data used whereas there are much prediction

mismatch obtained with the network trained using the EBPM

algorithm. Also, the smaller one-step ahead prediction error

obtained using the network trained by the MLMA when

compared to that by EBPM algorithm are also evident in the

fourth row of Table 7. This error is an indication that the

trained networks using the MLMA algorithm captures and

approximates the nonlinear dynamics of the EMS accurately.

This is further justified by the small mean value of the TSE

obtained using MLMA algorithms given in the second row

of Table 7.

Figure 5. One-step ahead output prediction of scaled training data

Figure 6. One-step ahead output prediction of unscaled validation (test) data

Number of training data samples

0 50 100 150 200 250 300 350 400
-2

-1

0

1

2

3

S
p
e
e
d
 (

rp
m

)

 - Scaled training data; --* One-step ahead output predictions using EBPA

0 50 100 150 200 250 300 350 400
-2

-1

0

1

2

3

S
p
e
e
d
 (

rp
m

)

 - Scaled training data; --* One-step ahead output predictions using MLMA

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

-1

-0.5

0

0.5

1

1.5
x 10

33

F
rg

c
 (

1
b
/s

)

 - Scaled training data; --* One-step ahead output predictions using MLMA

Target output

EBPM

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

-2

-1

0

1

2

F
rg

c
 (

1
b
/s

)

 - Scaled training data; --* One-step ahead output predictions using MLMA

Target output

MLMA

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

-1

-0.5

0

0.5

1

1.5
x 10

33

F
rg

c
 (

1
b
/s

)

 - Scaled training data; --* One-step ahead output predictions using MLMA

Target output

EBPM

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

-2

-1

0

1

2

F
rg

c
 (

1
b
/s

)

 - Scaled training data; --* One-step ahead output predictions using MLMA

Target output

MLMA

0 10 20 30 40 50 60 70 80 90 100
30

40

50

60

70

80

90

S
p
e
e
d
 (

rp
m

)

 - Unscaled validation data; --* One-step output predictions using EBPA

0 10 20 30 40 50 60 70 80 90 100
30

40

50

60

70

80

90

S
p
e
e
d
 (

rp
m

)

 - Unscaled validation data; --* One-step output predictions using MLMA

0 5000 10000 15000
-4

-2

0

2

4

6
x 10

38

F
rg

c
 (

1
b
/s

)

 - Unscaled validation data; --* One-step output predictions using MLMA

Validation Data

EBPM

0 5000 10000 15000
0

2

4

6

8

10

12

14
x 10

5

F
rg

c
 (

1
b
/s

)

 - Unscaled validation data; --* One-step output predictions using MLMA

Validation Data

MLMA

0 5000 10000 15000
-4

-2

0

2

4

6
x 10

38

F
rg

c
 (

1
b
/s

)

 - Unscaled validation data; --* One-step output predictions using MLMA

Validation Data

EBPM

0 5000 10000 15000
0

2

4

6

8

10

12

14
x 10

5

F
rg

c
 (

1
b
/s

)

 - Unscaled validation data; --* One-step output predictions using MLMA

Validation Data

MLMA

Number of validation data samples

14 Vincent A. Akpan et al.: Neural Network-Based Adaptive Speed Controller Design for Electromechanical

Systems (Part 2: Dynamic Modeling Using MLMA & Closed-Loop Simulations)

Figure 7. Five-step ahead output prediction of unscaled training data

Furthermore, the suitability of the EBPM and proposed

MLMA algorithms for NN model identification for use in the

EMS is investigated by validating the trained network with

95 unscaled test data. The comparison of the trained network

predictions (red --*) of the test data with the actual test data

(test data, blue ––) for 20 epoch are shown in Fig. 6 for the

EBPM and the MLMA algorithms. It is evident that the

unscaled test data predictions by network trained using the

MLMA algorithm match the true test data to a high accuracy

when compared to that obtained by the network trained using

EBPM. The superior performance of the proposed MLMA

algorithm over the EBPM algorithm proves the effectiveness

of the proposed MLMA approach.

The one-step ahead prediction accuracies of the unscaled

test data by the networks trained using the EBPM and the

MLMA algorithms is evaluated by the computed mean

prediction errors shown in the fifth row of Table 7. It can be

seen that the one-step ahead test data prediction errors by the

network trained using MLMA algorithm are much smaller

than those obtained from the network trained using the

EBPM algorithm.

This one-step ahead unscaled validation data prediction

results given by Fig. 6 as well as the mean value of the

one-step ahead prediction error of the validation data shown

in the fifth row of Table 7 justify that the network trained

using the MLMA algorithm mimic the dynamics of the

electromechanical system and that the resulting network can

be used to model the actual EMS in an industrial

environments and/or in real life scenarios.

4.3.3. K–Step Ahead Prediction Simulations for the EMS

The results of the K-step ahead output predictions (red --*)

using the K-step ahead prediction validation method for

5-step ahead output predictions (K = 5) compared with the

unscaled training data (target output) are shown in Fig. 7 for

the network trained using the EBPM and MLMA algorithms.

The value K = 5 is chosen since it is a typical value used in

most model predictive control (MPC) applications. The

comparison of the 5-step ahead output predictions

performance by the network trained using EBPM and the

MLMA algorithms shows the superior performance of the

MLMA algorithm over the EBPM algorithms for use in

distant or multi-step ahead predictions.

The computation of the mean value of the K-step ahead

prediction error (MVPE) using equation (31) gives

5.3905×10+01 and 3.4321×10-02 respectively by the network

trained using the EBPM and MLMA algorithms as shown in

the sixth row of Table 7. The relatively smaller MVPE

obtained by the network trained with the MLMA algorithm

is indications that the trained network approximates the

dynamics of the EMS to a high degree of accuracy.

4.3.4. Akaike’s Final Prediction Error (AFPE) Estimates for

the EMS

The implementation of AFPE algorithm discussed in

chapter four and defined by equation (29) for the regularized

criterion for the network trained with the EBPM and the

MLMA algorithms with multiple weight decay gives the

respective AFPE estimates of the two algorithms as shown in

the seventh row of Table 7.

These small values of the AFPE estimate indicate that the

trained networks capture the underlying dynamics of the

EMS and that the network is not over-trained [3, 15, 27].

This implies that optimal network parameters have been

0 50 100 150 200 250 300 350 400
30

40

50

60

70

80

90

S
p
e
e
d
 (

rp
m

)
 - Unscaled training data; --* 5-Step ahead output predictions by MLMA

0 50 100 150 200 250 300 350 400
30

40

50

60

70

80

90

S
p
e
e
d
 (

rp
m

)

 - Unscaled training data; --* 5-Step ahead output predictions by MLMA

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

-1

-0.5

0

0.5

1

1.5
x 10

33

F
rg

c
 (

1
b
/s

)

 - Scaled training data; --* One-step ahead output predictions using MLMA

Target output

EBPM

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

-2

-1

0

1

2

F
rg

c
 (

1
b
/s

)

 - Scaled training data; --* One-step ahead output predictions using MLMA

Target output

MLMA

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

-1

-0.5

0

0.5

1

1.5
x 10

33

F
rg

c
 (

1
b
/s

)

 - Scaled training data; --* One-step ahead output predictions using MLMA

Target output

EBPM

0 0.5 1 1.5 2 2.5 3 3.5

x 10
4

-2

-1

0

1

2

F
rg

c
 (

1
b
/s

)

 - Scaled training data; --* One-step ahead output predictions using MLMA

Target output

MLMA

Number of training data samples

 American Journal of Intelligent Systems 2017, 7(1): 1-18 15

selected including the weight decay parameters. Again, the

results of the AFPE estimates obtained with the networks

trained using the MLMA algorithm are by far smaller when

compared to that obtained using EBPM algorithm.

4.4. Dynamic Model Validation and Closed-Loop

Simulations of the EMS Using PID Controller

Besides the training of the NN model with static data taken

from plant tests, it would be of interest to validate the

prediction accuracy of a trained network under the same

dynamic conditions in which the system is operating in the

presence of a disturbance ()d k .

Disturbances are variables that fluctuate and cause the

process outputs to move from the desired operating values

(set-points or desired trajectories). The prescribed desired

speed trajectory specified for the EMS is 60 rpm which must

be maintained irrespective of the applied weight(s). A

disturbance could be a change in flow or temperature of the

surroundings or pressure etc. Disturbance variables can

normally be further classified in terms of measured or

unmeasured signals. The different weights (in kg) applied in

this research serves as the disturbances introduced randomly

to the EMS and it ranges from 0.5 kg to 35 kg.

Figure 8. The Discrete-time PID control scheme

In the simplest case, the EMS affected by the above

disturbance is controlled by a discrete-time fixed parameter

PID controller used in a closed-loop configuration as

illustrated in Fig. 8. This operation is imitated by placing the

network trained by each one of the two algorithms in a

control loop as it happens in real plants. The mathematical

relationships implemented for the PID controller that

computes the EMS control inputs () [V _ ()]iU k inD k is:

1

() () (1) ()
2

() (1)

N

P I

k

D

T
U k K E k K E k E k

E k E k
K

T

 (49)

where ,P IK K and DK are the proportional, integral

and derivative gains respectively, T is the sampling time

and ˆ() () ()E k R k Y k is the error between the desired

reference ()R k and predicted output _
ˆ() [S]i outY k and

N is the number of samples. The minimum and maximum

constraints imposed on the PID controller to penalize

changes on the EMS control inputs ()U k and outputs

()Y k are given as:

min max

min max

()

()

U U k U

Y Y k Y

 (50)

A major problem with PID controllers is the “wind up” of

the integrator resulting in the saturation of the integral term

for control signal of large magnitude. However, rich

literatures exist on anti-wind up techniques which addresses

this problem [43, 44]. According to this technique, the

integrator is switched off when the actuator output exceeds a

predefined limit subject to input constraints imposed on the

control inputs defined in (50) for the EMS.

The dynamic modeling and the closed-loop control with

the PID controller shown in Fig 8 is simulated in MATLAB

for 300 simulation samples with the disturbances discussed

above. The PID controller parameters in (49) were selected

to be 25PK , 32IK and 87DK for Si_out (in rpm).

The constraints imposed on the EMS defined in (50) are

summarized in Table 8 together with the initial control inputs

and outputs.

Table 8. Input and Output Constraints for the PID Control of the EMS

EMS Control Parameters
Constraints

EBPM MLMA

Initial control input, ()U k -20 -10

Initial control output, ()Y k 0 0

Minimum control input, min ()U k 0 0

Maximum control input, max ()U k 8.67 8.67

Minimum predicted output, min ()Y k 0 0

Maximum predicted output, max ()Y k 60 60

Desired reference signal, ()R k 60 60

The results for the Si_out output predictions (in rpm) is

shown in Fig. 9(a) while the manipulated inputs, the Vi_in (in

Volt, V) is shown in Fig. 9(b) using the models trained with

EBPM and MLMA algorithms for 20 epochs. It can be

observed that the model based on EBPM exhibits oscillatory

behaviour in Si_out predictions as in Fig. 9(a). This behaviour

is not unusual because of the strong nonlinearity associated

with the EMS especially at the initial application of the

start-up voltage to initiate rotation.

Comparing the EMS discrete-time PID control

performance of Fig. 9 based on the models obtained using

EBPM and proposed MLMA algorithms, it is evident that the

control result based on the model trained with the proposed

MLMA gives good control performances even with the fixed

parameter PID controller under disturbances.

With the dynamic feedforward neural network (DFNN)

based on the teacher-forcing method and the MLMA training

algorithm proposed in this work, changes on the process

dynamics seem to be captured adequately.

E()k)(ku
Y()k

Discrete-Time

Fixed Parameter

PID Controller
_ +

R

NN Model of the

Electromechanical

Motor System (EMS)

U()k R()k

d()k

16 Vincent A. Akpan et al.: Neural Network-Based Adaptive Speed Controller Design for Electromechanical

Systems (Part 2: Dynamic Modeling Using MLMA & Closed-Loop Simulations)

(a)

(b)

Figure 9. Closed-loop PID control performance of the EMS using NN

model trained with EBPM and MLMA algorithms: (a) output speed

predictions and (b) control signals

Furthermore, this study has shown that the control

performance based on the NN model trained using the

MLMA in tracking the desired trajectory with small

overshoot outperforms that based on the EBPM method with

large overshoot as evident especially in Fig. 9(a) with

reduced control effort as can be seen in Fig. 9(b).

5. Conclusions and Future Directions

This paper presents a novel technique for the dynamic

modeling of an electromechanical motor system (EMS)

and the closed-loop prediction of EMS behaviour in the

presence of disturbances using an advanced online nonlinear

model identification algorithm called the modified

Levenberg-Marquardt algorithm (MLMA) based on artificial

neural networks for the nonlinear model identification of an

EMS. The paper also presents the complete formulation of

the proposed MLMA.

In order to investigate the performance of the proposed

MLMA algorithm, the error back-propagation with

momentum (EBPM) algorithm is implemented and its

performance compared with proposed MLMA. The

simulation results from the application of these algorithms to

the dynamic modeling of the EMS as well as the validation

results show that the neural network-based MLMA

outperforms the EBPM algorithm with much smaller

predictions error and good tracking abilities with high degree

of accuracy.

The simulation results from the dynamic modeling in

closed-loop with a discrete-time fixed parameter PID control

shows that the proposed MLMA model identification

algorithm can be used for the EMS in real life scenarios

and/or in industrial environments.

Although, it is evident the performance of the PID

controller is not satisfactory due to poor tracking of the

desired trajectory with to oscillations below the desired

trajectory. Thus, the next aspect of the work could be on the

development of efficient adaptive control algorithms to

replace the fixed-parameter PID controller for the EMS so as

to obtain an adaptive electromechanical speed control

system.

REFERENCES

[1] M. Lazar and O. A. Pastravanu, “Neural predictive controller
for non-linear systems”, Technical University “Gh. Asachi”
of Iasi Department of Automatic Control and Industrial Blvd.
Mangeron 53A, 6600 Iasi, Romania Informatics, vol. 60, no
(3-5), pp. 315 – 324, 2000.

[2] G. Feng and R. Lozano, “Adaptive control systems”,
Newness, Oxford, 1999.

[3] V. A. Akpan and G. D. Hassapis, “Nonlinear model
identification and adaptive model predictive control using
neural networks”, ISA Transactions, vol. 50, pp. 177 – 194,
2011.

[4] Y. Jin and C. Su, “Adaptive model predictive control using
diagonal recurrent neural network”, Fourth Int’l. Conf. on
Natural Computation, Jinan, pp. 276 – 280, 2008.

[5] F. S. Mjalli, “Adaptive and predictive control of liquid-liquid
extractors using neural-based instantaneous linearization
technique”. Chem. Eng. Technol., vol. 29, no. 5, pp. 539 – 549,
2006.

[6] K. S. Narendra and K. Parthasarathy, “Identification and
control of dynamical systems using neural networks”, IEEE
Trans. Neural Networks, vol. 1, no. 1, 4 – 27, 1990.

[7] M. Nørgaard, O. Ravn, N. K.Poulsen and L. K. Hansen,
“Neural networks for modelling and control of dynamic
systems: A practitioner’s handbook”, London:
Springer-Verlag, 2000.

[8] O. M. Omidvar and D. L. Elliott, “Neural systems for
control”, Academic Press, San Diego, 1997.

[9] K. Salahshoor, E. Safari. and M. F. Samadi, M. F., “Adaptive
model predictive control of a hybrid motorboat using
self-organizing GAP-RBF neural network and GA algorithm”,

0 50 100 150 200 250 300
0

10

20

30

40

50

60

70

Number of samples

S
p
e
e
d
 o

u
tp

u
t

p
re

d
ic

ti
o
n
s
 (

re
v
/m

in
)

Desired Speed with disturbances

EBPM Model predictions

MLMA Model predictions

Desired Speed = 60 (rev/min)

0 50 100 150 200 250 300
0

5

10

15

20

25

30

Number of samples

P
ID

 c
o
n
tr

o
l
s
ig

n
a
ls

 (
V

o
lt
s
,

V
)

EBPM Model control signal

MLMA Model control signal

 American Journal of Intelligent Systems 2017, 7(1): 1-18 17

2nd IEEE Int’l Conf. on Adv. Computer Control, Shenyang,
China, vol. 27, no. 29, pp. 588 – 592, 2010.

[10] J. Sarangapani, “Neural network control of discrete-time
systems”, Boca Raton: CRC Press Abingdon, 2006.

[11] J. T. Spooner, M. Maggiore, R. Ordóñez. and K. M. Passino,
“Stable Adaptive Control and Estimation for Nonlinear
Systems: Neural and Fuzzy Approximator Techniques”,
Wiley & Sons Inc., USA, 2002.

[12] C. Su and Y. Wu, “Adaptive neural network predictive
control based on PSO algorithm” Chinese Control and
Decision Conference, Guilin, China, vol. 17, no. 19, pp.
5829 – 5833, 2009.

[13] G. I. Suárez, O. A. Ortiz, P. M. Aballay and N. H. Aros,
“Adaptive neural model predictive control for the grape juice
concentration process”, 2010 IEEE Int’l Conf. on Industrial
Tech., Vi a del, vol. 14, no. 17, pp. 57 – 63, 2010.

[14] D. W. Yu and D. L. Yu, D. L. “Multi-rate model predictive
control of a chemical reactor based on three neural models”
Biochemical Engineering Journal, vol. 37, pp. 86 – 97, 2007.

[15] V. A. Akpan “Development of new model adaptive predictive
control algorithms and their implementation on real-time
embedded systems”, Ph.D. Dissertation, Department of
Electrical and Computer Engineering, School of Engineering,
Aristotle University of Thessaloniki, Greece, 517 pages, July,
2011. [Online] Available:
http://invenio.lib.auth.gr/record/127274/files/GRI-2011-7292
.pdf.

[16] J. R. Cowan and W. N. Myers, “Design of high power
electromechanical actuator for thrust vector control”, AIAA
27th Joint Propulsion Conference (AIAA’91), Sacramento,
CA, U.S.A, pp. 1849, 1991.

[17] R. A. Weir and J. R. Cowan, “Development and test of
electromechanical actuators for thrust vector control”, 29th
Joint Propulsion Conference/Monterey, CA, U.S.A, pp. 349 –
366, 1993.

[18] G. Zhong. and G. L. Jiang, “Design of the closed loop speed
control system for DC motor”, CCSE computer and
information science, vol. 2, no. 1, pp. 95 – 103, 2009.

[19] S. Weerasooriya and M. A. El-Sharkawi, “Identification and
control of a DC motor using back-propagation neural
networks”, IEEE Trans. Energy Conversion, vol. 6, pp. 663 –
669, 1991.

[20] M. Ristanovic, Z. Cojbasic and D. Lazic, “Intelligent control
of DC motor driven electromechanical fin actuator”, Control
Eng Pract., vol. 20, no. 6, pp. 610 – 617, 2012.

[21] J. Mendes, J. R. Arau, P. Sousa, S. F. Apo and L. Alves, “An
architecture for adaptive fuzzy control in industrial
environments”, Computer in Industry, vol. 62, pp. 364 – 373,
2011.

[22] D. Anurag, “Speed control of DC shunt motor with field and
armature rheostat control simultaneously” Advances in
Electronic and Electric Engineering, vol. 3, no. 1, pp. 77 – 80,
2013.

[23] B. A. A. Omar, A. Y. M. Haikal and F. F. G. Areed, “Design
adaptive neuro-fuzzy speed controller for an
electro-mechanical system”, Ain Shams Engineering Journal,
vol. 2, pp. 99 – 107, 2011.

[24] R. G. Madhusudhana and R. B. V. Sanker, “A neural network
based speed control for DC motor”, Int’l J. Recent Trends
Eng., vol. 2, no. 6, pp. 121 – 124, 2009.

[25] E. F. Fuchs and M. A. S. Masoum, “Power conversion of
renewable Energy systems”, Springer; XIII, Hardcover,
2011.

[26] M. T. Babalola, V. A. Akpan and C. O. Ajayi, “Neural
Network-Based Adaptive Speed Controller Design for
Electromechanical Systems (Part 1: System Design &
Instrumentation)’, American Journal of Intelligent Systems,
vol. 6, no. 3, pp. 1 – 11, 2016. (Accepted).

[27] V. A. Akpan and G. D. Hassapis, “Training dynamic
feedforward neural networks for online nonlinear model
identification and control applications”, International
Reviews of Automatic Control: Theory & Applications, vol. 4,
no. 3, pp. 335 – 350, 2011.

[28] L. Ljung, “System identification: theory for the user”, 2nd ed.,
Upper Saddle River, NJ: Prentice-Hall, 1999.

[29] S. Haykin, “Neural networks: A comprehensive foundation”,
2nd ed., Upper Saddle River, NJ: Prentice-Hall, 1999.

[30] M. T. Hagan and M. B. Menhaj, “Training feedforward
network with the Marquardt algorithm”. IEEE Trans. Neural
Netw, vol. 5, no. 6, pp. 989 – 993, 1994.

[31] R. Chiong, “Intelligent systems for automated learning and
adaptation: emerging trends and applications”, International
Journal Information and decision Science, vol. 2, no. 4, pp.
427 – 430, 2010.

[32] J. Wu, “Multilayer potts perceptrons with
Levenberg-Marquardt learning”, IEEE Trans. on Neural
Netw, vol. 19, no. 12, pp. 2032 – 2043, 2008.

[33] D. Mirikitani and N. Nikolaev, Recursive Bayesian
Levenberg-Marquardt training of recurrent neural networks.
In. Proc. of Int’l Joint Conf. on Neural Netwk., Florida, USA,
12 – 17 August, 2007, pp. 282 – 287.

[34] J. Sjöberg and L. Ljung, “Overtraining, regularization, and
searching for minimum in neural networks”, Int’l J. of
Control., vol. 62: 1391 – 1408, 1995.

[35] R. Fletcher, “Practical Methods of Optimization”, 2nd ed.,
Wiley & Sons, 1987.

[36] M. J. Willis, (1999) “Some conventional process control
schemes”, Department of Chemical and Process Engineering
University of Newcastle upon Tyne, vol. 138, no. 3, pp. 256 –
266, 1999.

[37] P. J. Werbos, “Backpropagation through time: What it does
and how to do it”. In Proc. IEEE, vol. 78, no. 10, pp. 1550 –
1560, 1990.

[38] V. V. Phansalkar and P. S. Sastry, “Analysis of the
Back-Propagation Algorithm with Momentum”. IEEE
Transactions on Neural Networks, vol. 5, no. 3, pp. 505 – 506,
1994.

[39] X. G. Wang, Z. Tang, H. Tamura, M., Ishii and W. D. Sun,
“An improved backpropagation algorithm to avoid the local
minima problem”. Neurocomputing, vol. 56, pp. 455 – 460,
2004.

[40] Yu, X., Loh, N. K. and Miller, W. C. (1993). “A new

18 Vincent A. Akpan et al.: Neural Network-Based Adaptive Speed Controller Design for Electromechanical

Systems (Part 2: Dynamic Modeling Using MLMA & Closed-Loop Simulations)

acceleration technique for the back propagation algorithm”.
In Proc. Int’l Conf. on Neu. Netw., San Francisco, 28th March
-1st April, pp. 1157 – 1161.

[41] R. Grepl, “Modelling and control of electromechanical servo
system with high nonlinearity”, Mechatronic System
Simulation, Modelling and Control, vol. 26, no. 2, pp. 307 –
319, 2010.

[42] The MathWorks Inc., MATLAB & Simulink R2009b, Natick,
USA. www.mathworks.com.

[43] A. Visioli, Practical PID Control (Springer-Verlag Ltd.,
2006).

[44] P. Hippe, Windup in Control, (Springer-Verlag Ltd., 2006).

