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Abstract  This paper presents the formulation and application of an online adaptive recursive least squares (ARLS) 
algorithm to the nonlinear model identification of the secondary settler/clarifier and the effluent tank of an activated sludge 
wastewater treatment (AS-WWTP). The performance of the proposed ARLS algorithm is compared with the so-called 
incremental backpropagation (INCBP) which is also an online identification. These algorithms are validated by one-step 
and five-step ahead prediction methods. The performance of the two algorithms is also assessed by using the Akaike’s 
method to estimate the final prediction error (AFPE) of the regularized criterion. The validation results show the superior 
performance of the proposed ARLS algorithm in terms of much smaller prediction errors when compared to the INCBP 
algorithm. 
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1. Introduction 
Biological approach is the most widely used industrial 

technique in the wastewater treatment engineering 
community. The activated sludge process [1-5] is the most 
widely used system for biological wastewater treatment. 
Traditionally, activated sludge process (ASP) involve an 
anaerobic (anoxic) followed by an aerobic zone and a settler 
from which the major part of the biomass is recycled to the 
anoxic basin and this prevents washout of the process by 
decoupling the sludge retention time (SRT) from the 
hydraulic retention time (HRT). Activated sludge 
wastewater treatment plants (ASWWTP) are built to remove 
organic mater from wastewater where a bacterial biomass 
suspension (the activated sludge) is responsible for the 
removal of pollutants. Depending on the design and specific 
application, ASWWTP can achieve biological nitrogen 
removal, biological phosphorus removal and removal of 
organic carbon substances as well as the amount of dissolved 
oxygen [6]. Generally, an ASWWTP can generally be 
regarded as a complex system due to its highly nonlinear  
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dynamics, large uncertainty, multiple time scales in the 
internal processes as well as its multivariable structure [7-10]. 
A widely accepted biodegradation model is the activated 
sludge model no. 1 (ASM #1) which incorporate the basic 
biotransformation processes of an ASP [1, 2, 7]. 

Two of the critical points affecting classical biological 
reactors are controlling the sludge height in the secondary 
settler and the secondary settler efficiency, where the mixed 
liquor from the biological reactors is settled in order to obtain 
a clarified effluent prior to final discharge. The secondary 
settler parameters involved in the settling phase and those 
that highly affect the pollution removal process efficiency 
have been exploited by some authors [11-13]. A 
methodology to control the sludge blanket by measuring 
simple on-line (influent flow) parameters and off-line (a 
daily measured sludge volumetric index, SVI) parameters 
and manipulating the RAS recycle flow has been reported 
[14]. In the work of [14], the ability of fuzzy logic to 
integrate human knowledge was exploited to develop a fuzzy 
controller to maintain the secondary settler under stable 
conditions. 

Biological nutrient removal (BNR) systems are reliable 
and effective in removing nitrogen and phosphorus. The 
process is based upon the principle that under specific 
conditions, microorganisms will remove more phosphorus 
and nitrogen than is required for biological activity. 
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However, several research papers have been published [8, 9], 
[15-19] concerning the BNR but the performance still 
depends on the biological activity and the process employed 
and it is an open intensive research field with emphasis on 
the effluent quality and operational cost. 

The mixture of activated sludge and wastewater in the 
aeration tank together with the mixed liquor flows to a 
secondary settler and clarifier where the activated sludge is 
allowed to settle. The activated sludge is constantly growing 
and more is produced than can be returned for use in the 
aeration basin. Some of this sludge must be wasted to a 
sludge handling system for treatment and disposal (solids) or 
reuse (bio-solids). The volume of sludge returned to the 
aeration basins is normally 40 to 60% of the wastewater flow 
while the rest is wasted (solids) or reuse (bio-solids). 

A number of factors affect the performance of the 
activated sludge system [20, 21]. These include the 
following: (i) temperature, (ii) return rates, (iii) amount of 
oxygen available, (iv) amount of organic matter available, (v) 
pH, (vi) waste rates, (vii) aeration time and (viii) wastewater 
toxicity. To obtain the desired level of performance in an 
activated sludge system, a proper balance must be 
maintained between the amount of food (organic matter), 
organisms (activated sludge), and dissolved oxygen (DO). 
The majority of problems with the activated sludge process 
result from an imbalance between these three items. The 
actual operation of an activated-sludge system is regulated 
by three factors: 1) the quantity of air supplied to the aeration 
tank; 2) the rate of activated-sludge recirculation; and 3) the 
amount of excess sludge withdrawn form the system. Sludge 
wasting is an important operational practice because it 
allows the establishment of the desired concentration of 
mixed liquor soluble solids (MLSS), food to microorganisms 
ratio (F:M ratio), and the sludge age. The algorithm for 
computing these parameters are given in Appendices A, B 
and C. It should be mentioned here that air requirements in 
an activated sludge basin are governed by: 1) BOD loading 
and the desired removal effluent, 2) volatile suspended solids 
concentration in the aerator, and 3) suspended solids 
concentration of the primary effluent (see Appendices A, B 
and C for details). 

The aim of the paper is on the efficient modeling of a 
multivariable nonlinear neural network autoregressive 
moving average with exogenous input (NNARMAX) model 
that will capture the nonlinear dynamics of an AS-WWTP, 
trained with an online adaptive recursive least squares 
(ARLS) [22], for the purpose of developing an efficient 
nonlinear adaptive controller for the efficient control of the 
AS-WWTP process. Due to the multivariable nature of the 
AS-WWTP, the first paper (Part 1) considered the modeling 
of the five biological reactors including the influent tank [22] 
while the current paper (Part 2) is devoted to the modeling of 
the secondary settler and clarifier.  

The paper is organized into six sections as follows. 
Section 2 presents the AS-WWTP process description while 
Section 3 highlights the operational considerations of the 

secondary settler and clarifier of the AS-WWTP process. 
Section 4 is devoted to the formulation of the neural 
network-based adaptive recursive least squares (ARLS) for 
model identification. Section 5 presents the neural 
network-based problem formulation for the secondary settler 
and the clarifier sections of the AS-WWTP process together 
with the simulation results and their discussion. The paper 
concludes in Section 6 with highlights on some major 
contributions in this paper with subsequent and future 
directions. 

2. The AS-WWTP Process Description 
Activated sludge wastewater treatment plants (WWTPs) 

are large complex nonlinear multivariable systems, subject 
to large disturbances, where different physical and biological 
phenomena take place. Many control strategies have been 
proposed for wastewater treatment plants but their evaluation 
and comparison are difficult [1-4]. This is partly due to the 
variability of the influent, the complexity of the physical and 
biochemical phenomena, and the large range of time 
constants (from a few minutes to several days) inherent in the 
activated sludge process. Additional complication in the 
evaluation is the lack of standard evaluation criteria. 

With the tight effluent requirements defined by the 
European Union and to increase the acceptability of the 
results from wastewater treatment analysis, the generally 
accepted COST Actions 624 and 682 benchmark simulation 
model no. 1 (BSM1) model [1-4] is considered. The BSM1 
model uses eight basic different processes to describe the 
biological behaviour of the AS-WWTP processes. The 
combinations of the eight basic processes results in thirteen 
different observed conversion rates as described in [1-4], [22, 
23]. These components are classified into soluble 
components ( )S  and particulate components ( )X . The 
nomenclatures and parameter definitions used for describing 
the AS-WWTP in this work are given in Table 1. Moreover, 
four fundamental processes are considered: the growth and 
decay of biomass (heterotrophic and autotrophic), 
ammonification of organic nitrogen and the hydrolysis of 
particulate organics. 

The activated sludge wastewater treatment plant 
considered here is strictly based on the benchmark 
simulation model no. 1 (BSM #1) proposed by the European 
Working Groups of COST Action 624 and 682 in 
conjunction with the International Water Association (IWA) 
Task Group on Benchmarking of Control Strategies for 
wastewater treatment plants (WWTPs) [1-4], [22, 23]. This 
implementation of the benchmark simulation model no. 1 
(BSM #1) follows the methodology specified in [COST, 
2008] especially from the viewpoint of control performances. 
The complete description of the conventional activated 
sludge wastewater treatment plant (AS-WWTP) based on the 
benchmark simulation model no. 1 (BSM1) used in this work 
is adapted from [1, 22, 23] together with the mathematical 
model of the benchmark simulation model no. 1 (BSM1) and 
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the MATLAB/Simulink programs that implements the mathematical model of the BSM #1 from [2-4], [23]. 
 

Table 1.  The AS-WWTP Nomenclatures and Parameter Definitions 

Parameters Definition Parameters Definition 
SI* Soluble inert organic matter COD Chemical oxygen demand 
SS* Readily biodegradable substrate BOD Biochemical oxygen demand 
XI* Particulate inert organic matter IQ Influent (inf) quality 
XS* Slowly biodegradable substrate EQ Effluent (e) quality 
XBH* Active heterotrophic biomass QIN Influent flow rate 
XBA* Active autotrophic biomass F_M_R Food-to-microorganisms ratio 
XP* Particulate products arising from biomass decay Ntotal Total nitrogen 
SO* Soluble oxygen AF1,AF2,AF3 Aeration control points for the aerated reactors 
SNO* Nitrate and nitrite nitrogen Qa1 Internal recycled nitrate (IRN) flow rates 
SNH* Ammonia and ammonium nitrogen Qa2 External recycled nitrate (ERN) flow rates 
SND* Soluble biodegradable organic nitrogen Qf Feed flow rates 
XND* Particulate biodegradable organic nitrogen Qw Waste activated sludge (WAS) flow rate 
SALK* Alkalinity Qr Recycled activated sludge (RAS) flow rates 
TSS Total soluble solids Qe Effluent flow rate 
MA1, MA2 Mechanical aerators of the anaerobic and anoxic reactors Qu Sludge under flow rates 
MLVSS Mixed liquor volatile suspended solids KLa Mass transfer coefficient of the aerated reactors 
IRN Internal recycled nitrate ERN External recycled nitrate 
Zf Feed concentration Ze Effluent concentration 
Zu Settler underflow concentration Zw Waste activated sludge (WAS) concentration 
Zr Recycled activated sludge (RAS) concentration PE Pumping energy 
AE Aeration energy DO Dissolved oxygen 

Za1 Internal recycled nitrate (IRN) concentration Za2 External recycled nitrate (ERN) concentration 

Note: (i) The numerical values of 1, 2, 3, 4, and 5 in front of each parameter correspond to the parameter description in the anaerobic, anoxic and the 
three aerated reactors respectively. 

(ii) The inf and E (and sometimes e) refers to influent and effluent respectively. 
(iii) Other parameters are introduced and defined as they are needed. 
(iv) Notations with asterisk (*) are the state variables 

 

 

Figure 1.  The schematic of the AS-WWTP process 
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The schematic of a BNR-ASWWTP design with basic 
control strategies is shown in Fig.1 using the Johannesburg 
configuration [8, 9, 22] which consists of anaerobic, anoxic 
and aerobic zones as well as the secondary settler in a 
back-to-back scheme with multiple recycle streams. To 
ensure that plug flow conditions prevail in the bioreactors, 
the basins are usually partitioned such that back-mixing is 
minimized. The constructional features and nomenclature of 
the process together with the biological processes within the 
different zones of the reactors are detailed in [1-4], 
Appendices A and B of [22] as well as in Appendix C of [23]. 
The constructional features and the general characteristics of 
the secondary settler and clarifier and the criteria for 
evaluating and assessing the performances of the 
AS—WWTP control are given in Appendices A and B 
respectively. 

3. The Operational Considerations of the 
Secondary Settler and Clarifier and 
Effluent Tank of the AS-WWTP 

The activated sludge process generally requires more 
sampling and testing to maintain adequate process control 
than any of the other unit processes in the wastewater 
treatment system. During periods of operational problems, 
both the parameters tested and the frequency of testing may 
increase substantially. Process control testing may include 
the following [20, 21]: 1) settleability testing to determine 
the settled sludge volume; 2) suspended solids testing to 
determine influent and MLSS; 3) RAS solids and WAS 
concentrations; 4) determination of the volatile content of the 
mixed liquor suspended solids; 5) DO and pH of the aeration 
tank; 6) BOD and COD of the aeration tank influent and 
process effluent; and 7) microscopic evaluation of the 
activated sludge to determine the predominant organism. To 
maintain the working organisms in the activated sludge 
process, it is necessary to ensure that a suitable environment 
is maintained by being aware of the many factors influencing 
the process and by monitoring them repeatedly. Control, in 
this case, can be defined as maintaining the proper solids 
(floc mass) concentration in the aerator for the incoming 
wastewater flow by adjusting the returned and waste 
activated sludge pumping rates and regulating the oxygen 
supply to maintain a satisfactory level of DO in the process. 

Monitoring alkalinity in the aeration tank is essential to 
the control of the process. Insufficient alkalinity will reduce 
organism activity and may result in low effluent pH and, in 
some cases, extremely high chlorine demand in the 
disinfection process. However, the pH should also be 
monitored as part of the routine process control-testing 
schedule. Processes undergoing nitrification may show a 
significant decrease in effluent pH. Industrial waste 
discharges, septic wastes, or significant amounts of 
storm-water flows may produce wide variations in pH. 
Finally, because temperature directly affects the activity of 
the microorganisms, accurate monitoring of temperature can 

be helpful in identifying the causes of significant changes in 
organization populations or process performance. 

The activated sludge process is an aerobic process that 
requires some DO be present at all times. The amount of 
oxygen required is dependent on the influent food (BOD), 
the activity of the activated sludge, and the degree of 
treatment desired. The mixed liquor suspended solids 
(MLSS), mixed liquor volatile suspended solids (MLVSS), 
and mixed liquor total suspended solids (MLTSS) needs to 
be determined and monitored, by adjusting the MLSS and 
MLVSS by increasing or decreasing the waste sludge rates. 
The MLSS or MLVSS can be used to represent the activated 
sludge or microorganisms present in the process. Process 
control calculations, such as sludge age and sludge volume 
index (SVI), cannot be calculated unless the MLSS is 
determined. The MLTSS is an important activated sludge 
control parameter. To increase the MLTSS, for example, the 
operator must decrease the waste rate or increase the mean 
cell residence time (MCRT). The MCRT must be decreased 
to prevent the MLTSS from changing when the number of 
aeration tanks in service is reduced. 

The separation of solids and liquid in the secondary 
clarifier results in a blanket of solids. If solids are not 
removed from the clarifier at the same rate they enter, the 
blanket will increase in depth. If this occurs, the solids may 
carry over into the process effluent. The sludge blanket depth 
may be affected by other conditions, such as temperature 
variation, toxic wastes, or sludge bulking. The best sludge 
blanket depth is dependent upon such factors as hydraulic 
load, clarifier design, and sludge characteristics. The best 
blanket depth must be determined on an individual basis by 
experimentation. The sludge rate is also a critical control 
variable. The operator must maintain a continuous return of 
activated sludge to the aeration tank or the process will show 
a drastic decrease in performance. If the rate is too low, 
solids remain in the settling tank, resulting in solids loss and 
a septic return. If the rate is too high, the aeration tank can 
become hydraulically overloaded, causing reduced aeration 
time and poor performance. The return concentration is also 
important because it may be used to determine the return rate 
required to maintain the desired MLSS. Because the 
activated sludge contains living organisms that grow, 
reproduce, and produce waste matter, the amount of 
activated sludge is continuously increasing. If the activated 
sludge is allowed to remain in the system too long, the 
performance of the process will decrease. If too much 
activated sludge is removed from the system, the solids 
become very light and will not settle quickly enough to be 
removed in the secondary clarifier. 

The biological oxygen demand (BOD) is a measure of the 
amount of food available to the microorganisms in a 
particular waste and it is measured by the amount of 
dissolved oxygen (DO) used up during a specific period of 
time (usually 5 days, BOD5). The MLVSS is the organic 
matter in the mixed liquor suspended solids and is used to 
represent the amount of food (BOD) or COD) available per 
pound of MLVSS. 
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For the settling tank effluent, the DO levels of the 
activated sludge–settling tank must be maintained around   
2 mg.L1 as lower levels results in rising sludge. Normal pH 
in the activated sludge–settling tank must be maintained 
between 7 and 9. A decrease in pH indicates alkalinity 
deficiency and a lack of alkalinity prevents nitrification. On 
the other hand, for the settling tank effluent, an increase in 
BOD and TSS indicates decreasing treatment performance 
while a decrease indicates treatment performance is 
increasing. Moreover, an increase in Total Kjeldahl Nitrogen 
(TKN) indicates nitrification is increasing and a decrease 
indicates reduced nitrification. 

The actual control of the sludge height and effluent quality 
of the AS-WWTP depends heavily on the different flow rates. 
Hydraulic overload of aeration and settling tanks, reduced 
aeration time, reduced settling time and loss of solid over 
time is an indication that the RAS return rate is too high. On 
the other hand, too low RAS returns rate results in septic 
return, solid build–up in settling tank, reduced MLVSS in 
aeration and loss of solid over weir. Moreover, the effects 
when the WAS flow rate is too high includes: reduced 
MLVSS, decreased sludge density, increased SVI, decreased 
MCRT, and increased F:M ratio; and vice versa when the 
WAS flow rate is too high. Finally, wasted energy, increased 
operating cost, rising solids and breakup of activated sludge 
are the effects when the aeration rate is too high while septic 
aeration tank, poor treatment performance and loss of 
nitrification results when the aeration rate is too low. 

4. The Neural Network Identification 
Scheme and Validation Algorithms 

4.1. Formulation of the Neural Network Model 
Identification Problem 

The method of representing dynamical systems by vector 
difference or differential equations is well established in 
systems [24, 25] and control [26-28] theories. Assuming that 
a p-input q-output discrete-time nonlinear multivariable 
system at time k  with disturbance ( )d k  can be 
represented by the following Nonlinear AutoRegressive 
Moving Average with eXogenous inputs (NARMAX) model 
[24, 25]: 

[
]

( ) ( 1), , ( ),

( ), , ( ) ( )

Y k J Y k Y k n

U k d U k d m d k

= − − 


− − − + 







  (1) 

where ( , )J    is a nonlinear function of its  arguments, and 
[ ( ), , ( )]U k d U k d m− − −  are the past input vector, 
[ ( 1), , ( )]Y k Y k n− −  are the past output vector, ( )Y k  is 
the current output, m  and n  are the number of past inputs 
and outputs respectively that define the order of the system, 
and d  is time delay. The predictor form of (1) based on the 
information up to time 1k −  can be expressed in the 

following compact form as [24, 25]: 
ˆ( | 1, ( )) ( , ( )), ( )TY k k k J k k kθ ϕ θ θ − =     (2) 

where [( , ( )) ( 1), , ( ), ( ), ,k k Y k Y k n U k dϕ θ = − − −   

]( ), ( 1, ( )), , ( , ( )) TU k d m k k k n kε θ ε θ− − − −
 is the 

regression (state) vector, ( )kθ  is an unknown parameter 
vector which must be selected such that ˆ( | ( )) ( )Y k k Y kθ ≈ , 

( , ( ))k kε θ  is the error between (1) and (2) defined as 

ˆ( , ( )) ( ) ( | ( ))k k Y k Y k kε θ θ= −     (3) 

where 1k −  in ˆ( | 1, ( ))Y k k kθ−  of (2) is henceforth 
omitted for notational convenience. Not that ( , ( ))k kε θ  is 
the same order and dimension as ˆ( | ( ))Y k kθ . 

Now, let Θ  be a set of parameter vectors which contain a 
set of vectors such that: 

ˆ: ( ) ( )k kν
θθ θΘ ∈ ⊂ ℜ →     (4) 

where θ  is some subset of νℜ  where the search for 
ˆ( )kθ  is carried out; ν  is the dimension of ( )kθ ; ˆ( )kθ  is 

the desired vector which minimizes the error in (3) and is 
contained in the set of vectors { }1( ), , ( )k kτθ θΘ =  ; 

1( ), , ( )k kτθ θ  are distinct values of ( )kθ ; and 
1,2, ,maxiterτ =   is the number of iterations required to 

determine the ˆ( )kθ  from the vectors in Θ . 
Let a set of N  input-output data pair obtained from prior 

system operation over NT period of time be defined: 

{ }(1), (1), , ( ), ( ) , 1, 2,NZ U Y U N Y N N= =  (5) 

where T  is the sampling time of the system outputs. Then, 
the minimization of (3) can be stated as follows: 

( )

ˆ( ) arg min ( , ( , ( )), ( ))N

k
k J Z k k k

θ
θ ϕ θ θ=   (6) 

where ( , ( , ( )), ( ))NJ Z k k kϕ θ θ  is formulated as a total 
square error (TSE) type cost function which can be stated as: 

2
1

1( , ( , ( )), ( )) [ ( , ( ))]
2

NN
lJ Z k k k l k

N
ϕ θ θ ε θ== ∑ (7) 

The inclusion of ( )kθ  as an argument in ( , ( ))k kϕ θ  is 
to account for the desired model ˆ( )kθ  dependency on

( )d k . Thus, given as initial random value of ( )kθ , m , n  
and (5), the system identification problem reduces to the 
minimization of (6) to obtain ˆ( )kθ . For notational 
convenience, ( ( ))J kθ  shall henceforth be used instead of

( , ( , ( )), ( ))NJ Z k k kϕ θ θ . 

4.2. Neural Network Identification Scheme 
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Figure 2.  Architecture of the dynamic feedforward NN (DFNN) model 

 

Figure 3.  NN model identification based on the teacher-forcing method 

The minimization of (6) is approached here by considering 
ˆ( )kθ  as the desired model of network and having the DFNN 

architecture shown in Fig. 2. The proposed NN model 
identification scheme based on the teacher-forcing method is 
illustrated in Fig. 3. Note that the “Neural Network Model” 
shown in Fig. 3 is the DFNN shown in Fig. 2. The inputs to 
NN of Fig. 3 are [ ]( ) ( ), , ( )

ml k U k d U k d mϕ = − − − , 

( ) [ ( 1), , ( )]
n

T
l k Y k Y k nϕ = − − and ( , ( ))
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[ ]( 1, ( )), , ( , ( )) Tk k k n kε θ ε θ− −  which are concatenated 
into ( , ( ))l k kϕ θ  as shown in Fig. 2. The output of the NN 
model of Fig. 3 in terms of the network parameters of Fig. 2 
is given as: 
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∑
∑
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   (8) 

where hn  and nϕ  are the number of hidden neurons and 
number of regressors respectively; i  is the number of 
outputs, ,j lw  and ,i jW  are the hidden and output weights 

respectively; ,0jw  and ,0iW  are the hidden and output 

biases; ( )iF b


 is a linear activation function for the output 
layer and ( )jf a  is an hyperbolic tangent activation 
function for the hidden layer defined here as: 

2
2( ) 1

1j af a
e ⋅

= −
+



      (9) 

Bias is a weight acting on the input and clamped to 1. Here, 
ˆ( )kθ  is a collection of all network weights and biases in (8) 

in term of the matrices { },0, jj lw w=w  and 

, ,0{ }i j iW W=W . Equation (8) is here referred to as NN 
NARMAX (NNARMAX) model predictor for simplicity. 

Note that ( )d k  in (1) is unknown but is estimated here as 

a covariance noise matrix, [ ( )] [ ( ) ( )].Tk d k d kθΓ = E    Using
[ ( )]kθΓ , Equation (7) can be rewritten as: 

1

1
[ , ( )] [ ( )] [ , ( )]1( ( ))

2
( ) ( )

N
T

l
T

l k k l k
J k

N
k D k

ε θ θ ε θ
θ

θ θ

−

=

 
 
 
 
 

Γ
=

+

∑  (10) 

where the second term in (10) is the regularization (weight 
decay) term [25, 27, 29] which has been introduced to reduce 
modeling errors, improve the robustness and performance of 
the two proposed training algorithms. [ ]d h oD I Iα α α= =  
is a penalty norm and also removes ill-conditioning, where 
I  is an identity matrix, hα  and oα  are the weight decay 
values for the input-to-hidden and hidden-to-output layers 
respectively. Note that both ( )ˆ [ ( )]j kθΓ  and D  are 
adjusted simultaneously during network training with ( )kθ  

and are used to update ˆ( )kθ  iteratively. The algorithm for 

estimating the covariance noise matrix and updating ˆ( )kθ  
is summarized in Table 2. Note that this algorithm is 
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implemented at each sampling instant until ( )ˆ [ ( )]j kθΓ  has 
reduced significantly as in step 7). 

Table 2.  Iterative algorithm for estimating covariance noise matrix 

1) Given initial network weights (0)( ) ( )k kθ θ=  and maxj j= . 

2) For 1k =  to Number of Samples (N), Do, 

3) Initialize 
(0)[ ( )]k IθΓ = , Do, 

4) Set 1j =  

5) Train the network for τ  iterations with a training algorithm using 

( 1)[ ( )]j kθ−Γ  to obtain ( )ˆ( ) ( ) ( )jk k kτθ θ θ←  . 

6) Estimate the covariance matrix for the noise using 

( ) ( ) ( )
1

1ˆ [ ( )] [ ( )] [ ( )]
2

Nj T j j
lk k k

N
θ ε θ ε θ=Γ = ∑  

7) If ( )ˆ [ ( )]j k espθΓ < , where esp  is a convergence criteria. 

Set 1j j← +  and Go To Step 4). 

Else, set ( )ˆ( ) ( )jk kθ θ=  and End Set j. 

8) End For k. 

Table 3.  An algorithm for placing the roots of the time-varying filter of the 
NNARMAX model predictor with the unit circle for stability 

1) Given network weights (0)( ) ( )k kθ θ= , time-varying filter 

1 (0) 1( , ) ( , )C k z C k z− −=  and regression vector ( , ( ))k kϕ θ  

2) Compute the roots of 1( , )C k z−  as 1( , )RootsC k z−  and length 

of 1( , )RootsC k z−  as CRootsl . 

3) Compute the absolute value of 

     1 1( , ) ( ( , ))Roots RootsC k z abs C k z− −=  

4) For 1i =  to CRootsl ,  

if ( ) 1( ( , )) 1i
Rootsabs C k z− >  

           ( ) 1
( ) 1

1( , )
( , )

i
Roots i

Roots

C k z
C k z

−
−

=  

End if, End for 

5) Compute the 1( , )C k z−  using the real root from Step 4). 

4.3. Formulation of the Neural Network-Based ARLS 
Algorithm 

Unlike the BP which is a steepest descent algorithm, the 
ARLS and MLMA algorithms proposed here are based on 
the Gauss-Newton method with the typical updating rule [23, 
25, 27, 28]: 

ˆ( ) ( ) ( )k k kτ τθ θ θ= + ∆     (11) 

where 

 1( ) [ ( )] [ ( )]k R k G kτ τ τθ θ θ−∆ = −     (12) 

( )kτθ  denotes the value of ( )kθ  at the current iterate ,τ  
( )kτθ∆  is the search direction, [ ( )]G kτθ  and [ ( )]R kτθ  

are the Jacobian (or gradient matrix) and the Gauss-Newton 
Hessian matrices evaluated at ( ) ( )k kτθ θ= . 

As mentioned earlier, due to the model ( )kθ  dependency 
on the regression vector ( , ( ))k kϕ θ , the NNARMAX model 
predictor depends on a posteriori error estimate using the 
feedback as shown in Fig. 2. Suppose that the derivative of 
the network outputs with respect to ( )kθ  evaluated at 

( ) ( )k kτθ θ=  is given as 

ˆ( | ( ))[ , ( )]
( )

dY k kk k
d kτ

θψ θ
θ

=     (13) 

The derivative of (13) is carried out in a BP fashion for the 
input-to-hidden layer and for the hidden-to-output layer 
respectively for the two-layer DFNN of Fig. 2. Thus, the 
derivative of the NNARMAX model predictor can be 
expressed as 

ˆ( | ( ))[ , ( )]
( )

ˆ ˆ( | ( )) ( 1 | ( ))
( 1, ( )) ( )

ˆˆ ( | ( ))( | ( ))
( , ( )) ( )

c

c

Y k kk k
k

Y k k Y k k
k k k

Y k n kY k k
k n k k

τ
θψ θ

θ

θ θ
ε θ θ

θθ
ε θ θ

∂
= ∂ 

∂ ∂ − − 
∂ − ∂ 

∂ −∂ − −
∂ − ∂ 



(14) 

Thus, Equation (14) can be expressed equivalently as 

1

ˆ( | ( ))[ , ( )] ( ) [ 1, ( )]
( )

( ) [ , ( )]n

dY k kl k C k k k
d k

C k k n k

θψ θ ψ θ
θ

ψ θ


= − − −


− − 

 (15) 

By letting 1 1
1( , ) ( ) ( ) cn

nC k z I C k z C k z−− −= + + + , then 
(15) can be reduced to the following form 

1

ˆ1 ( | ( ))[ , ( )]
( )( , )

dY k kk k
d kC k z

θψ θ
θ−

=   (16) 

As it can be seen from (16), the gradient is calculated by 
filtering the partial derivatives with the time-varying filter 

11/ ( , )C k z−  which depends on the prediction error based on 
the predicted output. Equation (16) is the only component 
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that actually impedes the implementation of the NN training 
algorithms depending on its computation. 

Due to the feedback signals, the NNARMAX model 
predictor may be unstable if the system to be identified is not 
stable since the roots of (16) may, in general, not lie within 
the unit circle. The approach proposed here to iteratively 
ensure that the predictor becomes stable is summarized in the 
algorithm of Table 3. Thus, this algorithm ensures that roots 
of 1( , )C k z−  lies within the unit circle before the weights 
are updated by the training algorithm proposed in the next 
sub-section. 

4.3.1. The Adaptive Recursive Least Squares (ARLS) 
Algorithm 

The proposed ARLS algorithm is derived from (11) with 
the assumptions that: 1) new input-output data pair is added 
to NZ  progressively in a first-in first-out fashion into a 
sliding window, 2) ˆ( )kθ  is updated after a complete sweep 

through NZ , and 3) all NZ  is repeated τ  times. Thus, 
Equation (10) can be expressed as [23], [30]: 

1

1

[ , ( )] [ ( )] [ , ( )]1( ( ))
2 ( ) ( )

N l TN

T
l

l k k l k
J k

N k D k
τ τπ ε θ θ ε θ

θ
θ θ

− −

=

 Γ
=   + 

∑ (17) 

(0,1)π ∈  is the exponential forgetting and resetting 
parameter for discarding old information as new data is 
acquired online and progressively added to the set NZ . 

Assuming that ( 1)kθ −  minimized (17) at time 1k − ; 
then using (17), the updating rule for the proposed ARLS 
algorithm can be expressed from (11) as: 

[ ] [ ]1ˆ( ) ( | 1) ( | 1) ( | 1)k k k R k k G k kτ τ τθ θ θ θ−= − − − − (18) 

where [ ( )]G kτθ  and [ ( )]R kτθ  given respectively as: 

1[ , ( 1)] [ ( )] [ , ( 1)]1[ ( )]
( 1)

l k k l kG k
N D k

τ τ
τ

τ

ψ θ θ ε θ
θ

θ

− − ⋅Γ ⋅ −
= −   + − 

 

1

[ ( )] [ , ( 1)]

[ , ( )] [ ( )] [ , ( )]1
[ , ( 1)]

T

R k R l k

l k k l k
N R l k D

τ τ

τ τ

τ

θ θ

ψ θ θ ψ θ
θ

−

= − + 


 ⋅Γ ⋅ 
  − − + 

(19) 

where [ , ( )]l kτψ θ  is computed according to (16). 
In order to avoid the inversion of [ ( )]R kτθ , Equation (19) 

is first computed as a covariance matrix estimate, ( )P k , as  

11( ) [ , ( )] , 1, 2, ,P k R l k l N
N τθ

−= =    (20) 

Then, by using the following matrix inversion lemma: 
1 1 1 1 1 1 1[ ] [ ]A BCD A A B DA B C DA− − − − − − −+ = − +  

By setting 1[ , ( )]A R l kτπ θ −= , 1B D−=  and 1C = , 
Equation (20) can also be expressed equivalently as 

2

1( ) ( 1) ( ) [ , ( 1)] ( 1)

' ( 1)

TP k P k k l k P k

I P k

τψ θ
π

β δ

= − −Λ − − 

+ − − 

 (21) 

where ( )kΛ  is the adaptation factor given by 

1

( 1) [ , ( 1)]
( )

[ ( )] [ , ( 1)] ( 1) [ , ( 1)]T

P k l k
k

k l k P k l k
τ

τ τ

α ψ θ

θ ψ θ ψ θ−

− −
Λ =

 Γ + − − −   
and I  is an identity matrix of appropriate dimension, ,α  

,β  'δ  and π  are four design parameters are selected such 
that the following conditions are satisfied [22], [23], 30]: 

2 2

0 1, 0, ' 0,

( ) 4 ' (1 )

γ α β δ

γ α βδ α

< < < > > 


− + < − 
   (22) 

where [0.1,0.5]α ∈  in ( )kΛ  adjusts the gain of the (21), 
' [0,0.01]δ ∈  is a small constant that is inversely related to 

the maximum eigenvalue of P(k), [0.9,0.99]π ∈  is the 
exponential forgetting factor which is selected such that

1 π
πγ −

  and [0,0.01]β ∈  is a small constant which is 

related to the minimum mine  and maximum maxe  
eigenvalues of (21) given respectively as [22], [23], [30], 
[31]: 

( ) ( )
( ) ( )

2
min

2
max

( ) 2 ' 1 1 4 ' ( )

2 ' 1 1 4 '

e

e

α γ δ βδ α γ

γ δ βδ γ

 = − − + + −  


  = + +    

 (23) 

The values of ,α  ,β  'δ  and π  in (22) is selected such 

that 4
max min 10e e   while the initial value of ( )P k , that 

is (0)P , is selected such that min max(0)e I P e I< <  [27]. 
Thus, the ARLS algorithm updates based on the 

exponential forgetting and resetting method is given from 
(18) as 

1

ˆ( ) ( 1)
ˆ( ) [ ( )][ ( ) ( | ( 1))]

k k

k k Y k Y k k
τ

τ

θ θ

θ θ−

= − + 


Λ Γ − − 
 (24) 

where the second term in (20) is ( )kτθ∆ . Note that after 
ˆ( )kθ  has been obtained, the algorithm of Table 2 is 

implemented the conditions in Step 7) of the Table 2 
algorithm is satisfied. 

4.4. Proposed Validation Methods for the Trained 
Multivariable NNARMAX Model 

Network validations are performed to assess to what 
extend the trained network captures and represents the 
operation of the underlying system dynamics [25, 29]. 

The first test involves the comparison of the predicted 
outputs with the true training data and the evaluation of their 
corresponding one-step ahead prediction errors using (3). 

The second validation test is the Akaike’s final prediction 
error (AFPE) estimate [25, 29] based on the weight decay 
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parameter D in (10). A smaller value of the AFPE estimate 
indicates that the identified model approximately captures all 
the dynamics of the underlying system and can be presented 
with new data from the real process. Evaluating the 

ˆ( , ( ))k kε θ  portion of (3) using the trained network with 
ˆ( ) ( )k kθ θ=  and taking the expectation ˆ{ ( , ( ))}NJ Z kθE  

with respect to ( )kϕ  and ( )d k  leads to the following 
AFPE estimate [23, 30, 31]: 

ˆ ˆˆ ( ( )) ( ( ))N Na

b

N p
F Z k J Z k

N p
θ θ γ

+
≈ +

−
   (25) 

where 

{ }1 1ˆ ˆ ˆ ˆ( ( )) ( ( )) ( ( )) ( ( ))ap V k V k D V k V k Dθ θ θ θ
− −

   = + +   tr
 

and {}⋅tr  is the trace of its arguments and it is computed as 
the sum of the diagonal elements of its arguments, 

* * 1ˆ ˆ{ ( )[ ( ) (1 ) ] }bp tr V V N Dθ θ −= +  and γ  is a positive 
quantity that improves the accuracy of the estimate and can 
be computed according to the following expression: 

1 1

2

ˆ( ) ˆ ˆ ˆ ˆ[ ( )] [ ( )] [ ( )] ( )
Tk D D DR k R k R k D k

N NN
θγ θ θ θ θ

− −
   = + +   
   

 

The third method is the K-step ahead predictions [10] 
where the outputs of the trained network are compared to the 
unscaled output training data. The K-step ahead predictor 
follows directly from (8) and for ( )kϕ =  ˆ( )k Kϕ +  and

ˆ( ) ( )k kθ θ= , takes the following form: 

ˆ ˆˆ ˆ ˆ(( ) | , ) ( , ( ), ( ))NY k K k J Z k K kθ ϕ θ+ = +   (26) 

where 
ˆ ˆˆ( ) [ (( 1) | ), , (( ) | ),k K U k K U k K mϕ θ θ+ = + − + −   

ˆ ˆˆ ˆ(( 1) | ), , (( 1 min( , )) | ),Y k K Y k K k nθ θ+ − + + −

ˆ ˆ(( 1) | ), , (( max( ,0) | )]TY k K Y k K n kθ θ+ − + − −  
The mean value of the K-step ahead prediction error 

(MVPE) between the predicted output and the actual training 
data set is computed as follows: 

ˆˆ( ) (( ) | , ) 100%
( )

N

k m K

Y k Y k K kMVPE mean
Y k

θ

+=

 − +
= ×  

 
∑ (27) 

where ( )Y k  corresponds to the unscaled output training 

data and ˆˆ(( ) | , )Y k K k θ+  the K-step ahead predictor 
output. 

5. Integration and Formulation of the 
NN-Based AS-WWTP Problem  

5.1. Selection of the Manipulated Inputs and Controlled 
Outputs of the AS-WWTP Process 

This section concentrates on the nonlinear model 
identification, predictions and control of the sludge height in 

the secondary settler and clarifier as well as the quality of the 
discharged effluent. The proposed scheme for the 
ANN-based nonlinear model identification and prediction, 
fuzzy rule-based decision system and intelligent adaptive 
control strategy for the for the sludge height in the secondary 
settler and clarifier as well the quality of the discharged 
effluent in the effluent tank of the AS-WWTP process is 
illustrated in Fig. 4. 

Case I: Nonlinear Model Identification and Prediction of 
the Sludge Height in the Secondary Settler and 
Clarifier 
The objectives here is to maintain the quality and 
regulate the quantity of the disposed and recycled 
sludge by manipulating the feed flow rate (QF2 = 
36892 m3.d-1) depending on the feed flow decision 
system, the RAS recycled flow rates (QR2 = 18446 
m3.d-1 and QR3 = 18446 m3.d-1), and the WAS flow 
rate (QW = 385 m3.d-1) using TSS2, TSS3, TSS4, 
TSS5, TSS6, TSS7, TSS8, TSS9, and TSS10 as 
inputs with the following additional as inputs 
parameters: depending on the feed flow decision 
system using SI_s, SND_s, SNH_s, SNO_s, 
XND_s, XI_s, XBH_s, XBA_s, XP_s, SS_s, XS_s, 
SN_s, SALK_s, TSS_s as inputs. 

Case II: Nonlinear Model Identification and Prediction of 
the Effluent Quality in the Effluent Tank 
The objectives here is to maintain the quality and 
regulate the quantity of the discharged effluent by 
manipulating the effluent flow rate (QE = 18061 
m3.d-1) and the feed flow rate (QF3 = 36892 m3.d-1) 
depending on the feed flow decision system using 
SI_e, SND_e, SNH_e, SNO_e, XND_e, XI_e, 
XBH_e, XBA_e, XP_e, SS_e, XS_e, SN_e, 
SALK_e, TSS_e as inputs. 
The European Union regulations and the COST 
624 restrictions on effluent quality (EQ) stipulates 
that SNH_e = 4 gm-3, Ntotal_e = 17 gm-3, TSSE = 30 
gm-3, BOD5_e = 2 gm-3, CODtotal,5_e = 48.2 gm-3, 
and EQ = 7550 kgd-1. These sixe parameters: 
SNH_e, Ntotal_e, TSSe, BOD5_e, CODtotal,5_e, and 
EQ have also been chosen as the constraint 
decision variables in this work. 

 
The ANN identification and prediction #1 block accepts 

its inputs from the effluent tank to generate the NN model 
and compute the predicted values of all the inputs. The 
constrained multi-objective optimization and decision block 
(Fig. 4) uses the predicted values to compute: SNH_e, 
Ntotal_e, TSSE, BOD5_e, CODtotal,5_e, and EQ. Based on the 
restricted effluent quality, genetic algorithm is used to 
perform the multi-objective optimization problem to 
determine the optimal values of the five constraint decision 
variables which forms the reference (set-point) values for the 
controlling and regulating the effluent quality and flow rate 
by the ANN identification, prediction and control #2 block 
(Fig. 4). This block also gives the final predicted values of 
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the six parameters describing the effluent quality (SNH_e, 
Ntotal_e, TSSE, BOD5_e, CODtotal,5_e, and EQ) which would 
be used in future work to the compute the control signals to 

manipulate the following flow rates: Qinf, QE, QA1, QA2, QF1, 
QF2, QR1, QR2, QR3, and QW as well as QF12 and QR13. 

 
Figure 4.  The proposed scheme for the multivariable neural network-based NNARMAX model identification and prediction, fuzzy rule-based decision 
system and intelligent adaptive control strategy for the sludge height in the secondary settler and clarifier as well the quality of the discharged effluent in the 
effluent tank of the AS-WWTP process 

5.2. Formulation of the AS-WWTP Model Identification Problem 

5.2.1. Statement of the AS-WWTP Neural Network Model Identification Problem 
The activated sludge wastewater treatment plant model defined by the benchmark simulation model no. 1 (BSM1) is 

described by eight coupled nonlinear differential equations given in Appendix A. The BSM1 model consist of thirteen states 
defined in Table 1 but they are redefined here for the effluent tank (with E and subscript e and pe for inputs and outputs 
respectively) as follows: _SI eE , _SS eE , _XI eE , _XS eE , _XBH eE , _XBA eE , _XP eE , _SO eE , _SNO eE , _SNH eE , _SND eE , 

_XND eE , _SALK eE  and for the secondary settler (with SS and subscript s and ps for inputs and outputs respectively) as 

follows _SI pSS , _SS pSS , _XI pSS , _XS eSS , _XBH pSS , _XBA pSS , _XP pSS , _SO pSS , _SNO pSS , _SNH pSS , _SND pSS , 

_XND pSS , _SALK pSS . Out of thirteen states, only four states are measurable namely: _SS eE , _SS pSS  (readily 

biodegradable substrate), _XBH eE , _XBH pSS  (active heterotrophic biomass), _SO eE , _SO pSS  (oxygen) and _SNO eE , 
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_SNO pSS  (nitrate and nitrite nitrogen). An additional important parameter _TSS eE  and _TSS pSS  are used to assess the 
amount of soluble solids in the effluent tank and secondary settler/clarifier respectively. 

As highlighted above, the main objective here is on the efficient neural network model identification to obtain a 
multivariable NNARMAX model equivalent of the secondary settler/clarifier and the effluent tank of the activated sludge 
wastewater treatment plant (AS-WWTP) with a view in using the obtained model together with those from [22] to design a 
multivariable intelligent adaptive predictive control for the AS-WWTP process in our future work. Thus, from the 
discussions so far, the measured inputs that influence the behaviour of the AS-WWTP shown in Fig. 4 and Fig. 5 are: 
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(28) 

Furthermore, based on the discussions thus far, the output parameters that capture the behaviour of the AS-WWTP are 
defined here as: 
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Figure 5.  The neural network model identification scheme for AS-WWTP based on NNARMAX model 
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Although, the multivariable system is formulated as 23–input 19–output control problem, but the neural network model 
identification is a much more complicated multiple–input multiple–output (MIMO) problem since all the 14 states of the 
secondary settler and the effluent tank must be predicted at each sampling instant in order to obtain a reasonable approximate 
model that describes and captures the system’s dynamics at each time instant; thus, making the total inputs 37 and total 
outputs 41. Additional complexity arises from the number of past inputs and outputs in the regression matrix that defines the 
system. The neural network identification scheme used here is shown in Fig. 5 and is based on the NNARMAX model 
predictor discussed in Section 4. The input vector to the neural network (NN) consists of the regression vectors which are 
concatenated into ( , ( ))NNARMAX k kϕ θ  for the NNARMAX models predictors discussed in Section 4 and defined here as 
Equation (30), (31), (32) and (33) below. 

The outputs of the neural network for the secondary settler with the clarifier and the effluent tank are the predicted values 
of the 13 states each together with the amount of total soluble solids (TSS), thus resulting in fourteen states; which together 
with the outputs of blocks #1 and #2 in Fig. 4 gives 41 outputs to be predicted at each sampling time instant as given in (34) 
below. 
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Since disturbances play an important role in the evaluation of controller performances, three influent disturbance data are 
defined for different weather conditions, namely: dry-weather data, rain weather data, and storm weather data. The data for 
these three influent disturbances are provided by the European COST Actions for evaluating controller performances [2-4]. In 
this study, the dry weather influent data is used in order to measure how well the trained neural network mimic the dynamics 
of the AS-WWTP process to meet the control requirement specified above. The dry weather data contains two weeks of 
influent data at 15 minutes sampling interval. Although, disturbances ( )d k  affecting the AS-WWTP are incorporated into 
dry-weather data provided by the COST Action Group, additional sinusoidal disturbances with non-smooth nonlinearities are 
introduced for closed-loop performances evaluation based on an updated neural network model at each sampling time 
instants. 

 

Figure 6.  Open-loop steady-state benchmark simulation model No.1 (BSM1) with constant influent 

5.2.2. Experiment with the BSM1 for AS-WWTP Process 
Neural Network Training Data Acquisition 

For the efficient control of the activated sludge wastewater 
treatment plant (AS-WWTP) using neural network, a neural 
network (NN) model of the AS-WWTP process is needed 
which requires that the NN be trained with dynamic data 
obtained from the AS-WWTP process. In other to obtain 
dynamic data for the NN training, the validated and generally 
accepted COST Actions 624 benchmark simulation model 
no. 1 (BSM1) is implemented and simulated using 
MATLAB and Simulink as shown in Fig. 6. The BSM1 
process model for the AS-WWTP process is given in 
Appendix A. 

A two-step simulation procedure defined in the simulation 

benchmark [2]–[4], [23] is used in this study. The first step is 
the steady state simulation using the constant influent flow 
(CONSTINFLUENT) for 150 days as shown and 
implemented in Fig. 6. Note that each simulation sample 
period indicated by the “Clock” of the AS-WWTP Simulink 
model in Fig. 6 corresponds to one day. In the second step, 
starting from the steady state solution obtained with the 
CONSTINFLUENT data and using the dry-weather influent 
weather data (DRYINFLUENT) as inputs, the AS-WWTP 
process is then simulated for 14 days using the same 
Simulink model of Fig. 6 but by replacing the 
CONSTINFLUENT influent data with the DRYINFLUENT 
influent data. This second simulation generates 1345 
dynamic data in which is used for NN training while the 130 
first day dry-weather data samples provided by the COST 
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Actions 624 and 682 is used for the trained NN validation. 

5.2.3. The Incremental or Online Back-Propagation (INCBP) 
Algorithm 

In order to investigate the performance of the ARLS, the 
so-called incremental (or online) back-propagation (INCBP) 
algorithm is used for this purpose. The incremental or online 
back-propagation (INCBP) algorithm was originally 
proposed by [32] which has been modified in [23] is used in 
this paper. The incremental back-propagation (INCBP) 
algorithm is easily derived by setting the covariance matrix 

( )P k Iµ=  on the left hand side of (20) in Section 4.3.1 
under the formulation of the ARLS algorithm; that is:  

1

1

1 [ , ( )]
k

I R k
kτ τ
ι

µ ι θ −

=
= ∑     (35) 

where µ  is the step size and I  is an identity matrix of 
appropriate dimension. Next, the basic back-propagation 
given from [27] as: 

( ) ( )

[ ( )]ˆ( ) ( )
( ) k k

dJ kk k
d k

τ

τ τ
θ θ

θθ θ µ
θ =

= −   (36) 

is used to update the algorithm in (35). Finally, all that is 
required is to specify a suitable step size µ  and carry out 
the recursive computation of the gradient given by (36). 

5.2.4. Scaling the Training Data and Rescaling the Trained 
Network that Models the AS-WWTP Process 

Due to the fact the input and outputs of a process may, in 
general, have different physical units and magnitudes; the 
scaling of all signals to the same variance is necessary to 
prevent signals of largest magnitudes from dominating the 
identified model. Moreover, scaling improves the numerical 
robustness of the training algorithm, leads to faster 
convergence and gives better models. The training data are 
scaled to unit variance using their mean values and standard 
deviations according to the following equations: 

( )

( )

( ) ( )( )s

U k

U k U kU k
σ
−

=  and ( )

( )

( ) ( )( )S

Y k

Y k Y kY k
σ
−

=  (37)  

where ( ),U k  ( )Y k  and ( )U kσ , ( )Y kσ  are the mean and 
standard deviation of the input and output training data pair; 
and ( ) ( )SU k  and ( ) ( )SY k  are the scaled inputs and outputs 
respectively. Also, after the network training, the joint 
weights are rescaled according to the expression 

( )
ˆ ˆˆ ˆ( , ( )) ( , ( )) ( )Y kY k k Y k k Y kθ θ σ= +       (38) 

so that the trained network can work with other unscaled 
validation data and test data not used for training. However, 
for notational convenience, ( )( ) ( )SU k U k=  and 

( )( ) ( )SY k Y k=  shall be used. 

5.2.5. Training the Neural Network that Models the 
Secondary Settler/Clarifier and Effluent Tank 

The NN input vector to the neural network (NN) is the 
NNARMAX model regression vector ( , ( ))NNARMAX k kϕ θ  
defined by (33). The input ( , ( ))

cn k kϕ θ , that is the initial 

error estimates ( , ( ))k kε θ  given by (32), is not known in 
advance and it is initialized to small positive random matrix 
of dimension cn  by cn . The outputs of the NN are the 

predicted values of ˆ( )Y k  given by (34). 
For assessing the convergence performance, the  network 

was trained for τ  = 100 epochs (number of iterations) with 
the following selected parameters: 37p = , 41q = , 

2an = , 2bn = , 2cn = , 238nϕ =  (NNARMAX), 5hn = , 
41on = , 1 6h eα = −  and 1 5o eα = − . The details of these 

parameters are discussed in Section 3; where p  and q  are 
the number of inputs and outputs of the system, ,a bn n  and 

cn  are the orders of the regressors in terms of the past values, 
nϕ  is the total number of regressors (that is, the total number 
of inputs to the network), hn  and on  are the number of 
hidden and output layers neurons, and hα  and oα  are the 
hidden and output layers weight decay terms. The four 
design parameters for adaptive recursive least squares 
(ARLS) algorithm defined in (22) are selected to be: α=0.5, 
β=5e-3, 'δ =1e-5 and π=0.99 resulting to γ=0.0101. The 
initial values for ēmin and ēmax in (23) are equal to 0.0102 and 
1.0106e+3 respectively and were evaluated using (23). Thus, 
the ratio of ēmin/ēmax from (23) is 9.9018e+4 which imply that 
the parameters are well selected. Also, 1 3eµ = −  is 
selected to initialize the INCBP algorithm given in (36). 

The 1345 dry-weather training data is first scaled using 
equation (37) and the network is trained for 100τ =  epochs 
using the proposed adaptive recursive least squares (ARLS) 
and the incremental back-propagation (INCBP) algorithms 
proposed in Sections 4.3 and 5.2.3. After network training, 
the trained network is again rescaled respectively according 
to (38), so that the resulting network can work or be used 
with unscaled AS-WWTP data. Although, the convergence 
curves of the INCBP and the ARLS algorithms for 100 
epochs each are not shown but the minimum performance 
indexes for both algorithms are given in the third rows of 
Tables 4 and 5 for the secondary settler/clarifier and effluent 
tank. As one can observe from these Tables, the ARLS has 
smaller performance index when compared to the INCBP 
which is an indication of good convergence property of the 
ARLS at the expense of higher computation time when 
compared the small computation time used by the INCBP for 
100 epochs as evident in the first rows of Tables 4 and 5. 

The total square error (TSE) discussed in subsection 4.1, 
for the network trained with the INCBP and the ARLS 
algorithms are given in the second rows of Tables 4 and 5. 
Again, the ARLS algorithm also has smaller mean square 
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errors and minimum performance indices when compared to 
the INCBP algorithm. The small values of the total square 
error (TSE) and the minimum performance indices indicate 
that ARLS performs better than the INCBP for the same 
number of iterations (epochs). These small errors suggest 
that the ARLS model approximates better the secondary 
settler/clarifier and effluent tank of the AS-WWTP process 
giving smaller errors than the INCBP model. 

5.3. Validation of the Trained NNARMAX Model of the 
AS-WWTP Process 

According to the discussion on network validation in 
Section 4.4, a trained network can be used to model a process 
once it is validated and accepted, that is, the network 
demonstrates its ability to predict correctly both the data that 
were used for its training and other data that were not used 
during training. The network trained by the INCBP and the 
proposed ARLS algorithms has been validated with three 
different methods by the use of scaled and unscaled training 
data as well as with the 130 dry-weather data reserved for the 
validation of the trained network for the secondary 
settler/clarifier and effluent tank of the AS-WWTP process. 

The plots shown in (a) to (c) of Fig. 7, Fig. 8 and Fig. 9 
corresponds to results obtained for the secondary settler and 
clarifier while those shown in (d) and (e) of Fig. 7, Fig. 8 and 
Fig. 9 are the results obtained for the effluent tank. The 
output parameters obtained in each of (a) to (e) were 
previously defined in Section 5.2.1 during the problem 
formulation but they are redefined here again as they appear 
in the next few figures (Fig. 7, Fig. 8 and Fig. 9) as follows: 

(a) is from the secondary settler and clarifier for QF2, QW, 
QR2 and QF3; 

(b) is from the secondary settler and clarifier for QE_ps, 
EQ_ps, Ntotal_ps and TSS_ps; 

(c) is from the secondary settler and clarifier for COD_ps, 
BOD_ps, SNO_ps and SNH_ps; 

(d) is from the effluent tank for TSS_pe, BOD_pe, 
COD_pe and Ntotal_pe; 

(e) is from the effluent tank for EQ_pe, SNO_pe and 
SNH_pe. 

The secondary settler and the clarifier depends on the 
following input parameters TSS2_s, TSS3_s, TSS4_s, 
TSS5_s, TSS6_s, TSS7_s, TSS8_s, TSS9_s, and TSS10_s 
together with the additional input parameter SI_s, SND_s, 
SNH_s, SNO_s, XND_s, XI_s, XBH_s, XBA_s, XP_s, SS_s, 
XS_s, SN_s, SALK_s, TSS_s as inputs to compute the 
outputs parameters given in (a), (b) and (c) above. 

The effluent tank depends on the following input 
parameters SI_e, SND_e, SNH_e, SNO_e, XND_e, XI_e, 
XBH_e, XBA_e, XP_e, SS_e, XS_e, SN_e, SALK_e, 
TSS_e as inputs to compute the outputs parameters given 
respectively in steps (d) and (e) above. 

In addition to the outputs given in (a) to (e) above, the 
following outputs parameters: SI_ps, SND_ps, SNH_ps, 
SNO_ps, XND_ps, XI_ps, XBH_ps, XBA_ps, XP_ps, 
SS_ps, XS_ps, SN_ps, SALK_ps, TSS_ps for the secondary 
settler and clarifier as well as SI_pe, SND_pe, SNH_pe, 
SNO_pe, XND_pe, XI_pe, XBH_pe, XBA_pe, XP_pe, 
SS_pe, XS_pe, SN_pe, SALK_pe, TSS_pe for the effluent 
tank are also predicted that are all used to compute the 
respective constraint parameters for the flow rates decision 
variables in order manipulating the pumps. The results for 
these additional outputs are not shown here for space 
economy rather only the results for the actual outputs are 
shown. 

Table 4(a).  Secondary settler and clarifier with the flow rates parameters predictions 

 
QF2 QW QR2 

INCBP ARLS INCBP ARLS INCBP ARLS 

Computation time for model identification (sec) 4.7268e+00 1.2418e+01 4.1808e+00 1.3494e+01 4.3680e+00 1.3042e+01 

Total square error (TSE) 3.7785e+03 1.3846e-02 8.4725e+01 1.3300e-01 8.9394e-01 1.0859e-02 

Minimum performance index 1.1111e-01 1.3642e-04 2.7379e-01 2.7277e-05 4.9970e-01 2.4429e-05 

Mean error of one step ahead prediction of training data 2.3598e+01 2.2086e-01 4.8445e+01 6.4563e-02 1.2542e-01 1.4129e-03 

Mean error of one step prediction of test data 3.0642e-02 4.8566e-04 3.0274e-01 7.4624e-05 2.4421e-01 2.9394e-05 

Mean value of 5-step ahead prediction error 2.0799e-02 1.0294e-03 4.2539e+00 5.3471e-01 8.1505e-04 3.7579e-05 

Akaike’s final prediction error (AFPE) estimate 7.5675e+06 8.0059e+03 3.4868e+03 3.4542e-01 2.7653e-01 1.3230e-05 

Table 4(b).  Secondary settler and clarifier with the flow rates parameters predictions 

 
QR3 QE EQ_ps 

INCBP ARLS INCBP ARLS INCBP ARLS 

Computation time for model identification (sec) 4.4460e+00 2.8361e+01 4.4616e+00 1.2745e+01 4.4928e+00 1.2542e+01 

Total square error (TSE) 2.0723e-01 1.3010e-02 6.1591e+03 1.4480e-02 2.4746e+03 1.2639e-03 

Minimum performance index 2.3132e-01 2.2653e-05 5.7763e-01 9.3172e-05 3.2264e-01 3.4483e-03 

Mean error of one step ahead prediction of training data 3.2182e-01 1.0311e-03 9.6652e+02 1.3650e-01 1.0871e+03 6.9857e-01 

Mean error of one step prediction of test data 4.9750e-01 1.1728e-05 2.9026e-01 5.3270e-04 2.2114e-01 7.8258e-04 

Mean value of 5-step ahead prediction error 2.5628e-03 2.4933e-05 3.5867e+00 5.1073e-00 3.0270e+01 4.8898e-01 

Akaike’s final prediction error (AFPE) estimate 1.3640e-01 1.3078e-05 4.0143e+07 6.3631e-03 3.7055e+06 3.9143e-04 
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Table 4(c).  Secondary settler and clarifier with the flow rates parameters predictions 

 
Ntotal_ps TSS_ps COD_ps 

INCBP ARLS INCBP ARLS INCBP ARLS 

Computation time for model identification (sec) 4.4772e+00 1.2776e+01 4.2276e+00 1.2652e+01 4.3212e+00 1.3010e+01 

Total square error (TSE) 1.0855e+00 9.1302e-02 1.6997e+00 1.0189e-02 1.4965e+00 9.4150e-01 

Minimum performance index 5.5744e-01 4.8806e-04 5.5744e-01 3.4972e-03 5.7086e-01 1.3648e-03 

Mean error of one step ahead prediction of training data 2.6441e-01 7.0259e-03 2.7052e+00 1.2117e-01 4.1079e+00 4.0013e-02 

Mean error of one step prediction of test data 1.8333e-02 1.8520e-04 4.9481e-01 4.5158e-03 3.4363e-01 7.1299e-04 

Mean value of 5-step ahead prediction error 1.5775e+00 6.1830e-01 1.1093e+01 1.4722e-01 4.7815e+00 6.3471e-01 

Akaike’s final prediction error (AFPE) estimate 2.2534e+00 3.0280e-03 9.6502e+00 5.8161e-02 2.6921e+01 6.2357e-02 

Table 4(d).  Secondary settler and clarifier with the flow rates parameters predictions 

 
BOD_ps SNO_ps SNH_ps 

INCBP ARLS INCBP ARLS INCBP ARLS 

Computation time for model identification (sec) 4.3212e+00 1.2823e+01 4.2900e+00 1.2901e+01 4.3056e+00 1.2558e+01 

Total square error (TSE) 6.6523e-02 6.1962e-03 9.2767e-01 8.6691e-02 3.4690e+00 8.9834e-02 

Minimum performance index 7.1825e-02 7.9210e-04 1.9957e-02 2.8498e-04 2.3132e-01 2.2653e-05 

Mean error of one step ahead prediction of training data 6.2113e-03 1.7525e-04 2.3800e-01 9.3384e-03 1.3259e+00 2.3595e-04 

Mean error of one step prediction of test data 5.8925e-02 5.2515e-04 7.3932e-02 3.2977e-05 2.4330e-01 5.2090e-05 

Mean value of 5-step ahead prediction error 1.0057e+00 6.1215e-01 6.2721e+00 9.9042e-01 1.7461e+01 1.3057e+01 

Akaike’s final prediction error (AFPE) estimate 1.4761e-03 1.6177e-05 1.7277e-01 2.6034e-03 3.7425e+00 2.2511e-03 

Table 5(a).  Effluent tank and the effluent constrained parameters predictions 

 
TSS_pe BOD_pe COD_pe Ntotal_pe 

INCBP ARLS INCBP ARLS INCBP ARLS INCBP ARLS 

Computation time for 
model identification (sec) 4.2900e+00 1.2714e+01 4.3992e+00 1.2730e+01 4.4148e+00 1.2511e+01 4.5084e+00 2.8829e+01 

Total square error (TSE) 1.4828e+00 8.0397e-02 1.2636e-01 6.4199e-03 2.2213e-01 1.0684e-01 1.8858e+00 3.4063e-02 

Minimum performance 
index 1.0197e-01 1.7543e-04 2.1038e-01 1.9652e-04 4.6426e-01 4.1338e-04 4.4253e-01 8.0309e-05 

Mean error of one step 
ahead prediction of 
training data 

7.1218e-01 2.9174e-02 9.9223e-02 2.9070e-05 2.1703e+00 1.5154e-02 6.1978e-01 1.0336e-02 

Mean error of one step 
prediction of test data 3.0642e-02 4.8566e-04 3.0274e-01 7.4624e-05 3.0642e-02 4.8566e-04 3.0274e-01 7.4624e-05 

Mean value of 5-step 
ahead prediction error 3.7343e-01 1.9528e+00 1.3726e+01 6.3707e-01 6.5585e+00 3.9099e-01 6.9951e+00 4.0417e-01 

Akaike’s final prediction 
error (AFPE) estimate 3.5342e+00 5.6495e-03 4.7602e-03 4.3409e-06 2.6288e+01 2.1616e-02 3.2223e+00 5.8032e-04 

Table 5(b).  Effluent tank and the effluent constrained parameters predictions 

 
EQ_pe SNO_pe SNH_pe 

INCBP ARLS INCBP ARLS INCBP ARLS 

Computation time for model identification (sec) 4.4148e+00 1.2730e+01 4.4460e+00 1.2636e+01 4.4616e+00 1.2948e+01 

Total square error (TSE) 1.1869e+03 5.1786e+02 1.7746e+00 1.8578e-02 3.4100e+00 5.6248e-02 

Minimum performance index 4.3682e-01 2.2938e-03 2.9654e-01 4.2429e-05 2.2740e-01 6.5602e-05 

Mean error of one step ahead prediction of training 
data 7.7791e+02 1.2262e+01 2.5907e+00 2.2112e-03 1.0252e+00 7.4323e-03 

Mean error of one step prediction of test data 3.0642e-02 4.8566e-04 3.0274e-01 7.4624e-05 2.0392e-01 2.5707e-04 

Mean value of 5-step ahead prediction error 1.0844e+01 5.5355e+00 4.7470e+00 9.5292e-01 5.2291e+01 2.6106e+01 

Akaike’s final prediction error (AFPE) estimate 8.3834e+06 4.2942e+04 2.7096e+00 3.8483e-04 3.3786e+00 9.6484e-04 
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5.3.1. Validation by the One-Step Ahead Predictions 
Simulation 

In the one-step ahead prediction method, the errors 
obtained from one-step ahead output predictions of the 
trained network are assessed. In Fig. 7(a)–(e) the graphs for 
the one-step ahead predictions of the scaled training data 
(blue-) against the trained network output predictions (red 
--*) using the neural network models trained by INCBP and 
ARLS algorithms respectively are shown for 100 epochs. 

The mean value of the one-step ahead prediction errors are 
given in the fourth rows of Tables 4 and 5 respectively. It can 
be seen in the figures that the network predictions of the 
training data closely match the original training data. 
Although, the scaled training data prediction errors by both 
algorithms are small, the ARLS algorithm appears to have a 
much smaller error when compared to the INCBP algorithm 
as shown in the fourth rows of Tables 4 and 5. These small 
one-step ahead prediction errors are indications that the 
networks trained using the ARLS captures and approximate 
the nonlinear dynamics of the secondary settler/clarifier and 
effluent tank of the AS-WWTP process to a high degree of 
accuracy. This is further justified by the small mean values 
of the TSE obtained for the networks trained using the 
proposed ARLS algorithms for the process as shown in the 
second rows of Tables 4 and 5. 

Furthermore, the suitability of the INCBP and the 
proposed ARLS algorithms for neural network model 
identification for use in the real AS-WWTP industrial 
environment is investigated by validating the trained 
network with the 130 unscaled dynamic data obtained for 
dry-weather as provided by the COST Action Group. Graphs 
of the trained network predictions (red --*) of the validation 
(test) data with the actual validation data (blue -) using the 
INCBP and the proposed ARLS algorithms are shown in Fig. 
8(a)–(e) for the secondary settler/clarifier and effluent tank 
of the AS-WWTP process based on the selected process 
parameters. 

The almost identical prediction of these data proves the 
effectiveness of the proposed approaches. The prediction 
accuracies of the unscaled test data by the networks trained 
using the INCBP and the proposed ARLS algorithm 
evaluated by the computed mean prediction errors shown in 
the fifth rows of Tables 4 and 5. Again, one can observe that 
although the validation data prediction errors obtained by 
both algorithms are small, the validation data predictions 
errors obtained with the model trained by the proposed 
ARLS algorithm appears much smaller when compared to 
those obtained by the model trained using the INCBP 
algorithm. These predictions of the unscaled validation data 
given in Fig. 8(a)–(e) as well as the mean value of the one 
step ahead validation (test) prediction errors in the fifth rows 
of Tables 4 and 5 verifies the neural network ability to model 
accurately the dynamics for the secondary settler/clarifier 
and effluent tank of the AS-WWTP process based on the 
dry-weather influent data using the proposed ARLS training 
algorithm. 

 

Figure 7(a).  One-step ahead prediction of scaled QF2, QW, QR2 and QF3 
training data 
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Figure 7(b).  One-step ahead prediction of scaled QE_ps, EQ_ps, Ntotal_ps 
and TSS_ps training data 

 

Figure 7(c).  One-step ahead prediction of scaled COD_ps, BOD_ps, 
SNO_ps and SNH_ps training data 
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Figure 7(d).  One-step ahead prediction of scaled TSS_pe, BOD_pe, 
COD_pe and Ntotal_pe training data 

 
Figure 7(e).  One-step ahead prediction of scaled EQ_pe, SNO_pe and 
SNH_pe training data 
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Figure 8(a).  One-step ahead prediction of unscaled QF2, QW, QR2 and QF3 
validation data 

 
Figure 8(b).  One-step ahead prediction of unscaled QE_ps, EQ_ps, 
Ntotal_ps and TSS_ps validation data 
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Figure 8(c).  One-step ahead prediction of unscaled COD_ps, BOD_ps, 
SNO_ps and SNH_ps validation data 

 
Figure 8(d).  One-step ahead prediction of unscaled TSS_pe, BOD_pe, 
COD_pe and Ntotal_pe validation data 
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Figure 8(e).  One-step ahead prediction of unscaled EQ_pe, SNO_pe and 
SNH_pe validation data 

 
Figure 9(a).  Five-step ahead prediction of unscaled QF2, QW, QR2 and QF3 
training data 
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Figure 9(b).  Five-step ahead prediction of unscaled QE_ps, EQ_ps, 
Ntotal_ps and TSS_ps training data 

 
Figure 9(c).  Five-step ahead prediction of unscaled COD_ps, BOD_ps, 
SNO_ps and SNH_ps training data 
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Figure 9(d).  Five-step ahead prediction of unscaled TSS_pe, BOD_pe, 
COD_pe and Ntotal_pe training data 

 
Figure 9(e).  Five-step ahead prediction of unscaled EQ_pe, SNO_pe and 
SNH_pe training data 
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is chosen since it is a typical value used in most model 
predictive control (MPC) applications. The comparison of 
the 5-step ahead output predictions performance by the 
network trained using the INCBP and the proposed ARLS 
algorithms indicate the superiority of the proposed ARLS 
over the so-called INCBP algorithm. 

The computation of the mean value of the K-step ahead 
prediction error (MVPE) using (27) is given in the sixth rows 
of Tables 4 and 5 by the network trained using INCBP and 
the proposed ARLS algorithms respectively. The small mean 
values of the 5-step ahead prediction error (MVPE) are 
indications that the trained network approximates the 
dynamics for the secondary settler/clarifier and effluent tank 
of the AS-WWTP process to a high degree of accuracy with 
the networks of both algorithms but with the network based 
on the ARLS algorithm giving much smaller distant 
prediction errors. 

5.3.3. Akaike’s Final Prediction Error (AFPE) Estimates 

The implementation of the AFPE algorithm discussed in 
Section 4.4 and defined by (25) for the regularized criterion 
for the network trained using the INCBP and the proposed 
ARLS algorithms with multiple weight decay gives their 
respective AFPE estimates which are defined in the seventh 
rows of Tables 4 and 5 respectively. These relatively small 
values of the AFPE estimate indicate that the trained 
networks capture the underlying dynamics for the secondary 
settler/clarifier and effluent tank of the AS-WWTP and that 
the network is not over-trained [29]. This in turn implies that 
optimal network parameters have been selected including the 
weight decay parameters. Again, the results of the AFPE 
estimates computed for the networks trained using the 
proposed ARLS algorithm are much smaller when compared 
to those obtained using INCBP algorithm. 

6. Conclusions 
This paper presents the formulation of an advanced online 

nonlinear adaptive recursive least squares (ARLS) model 
identification algorithm based on artificial neural networks 
for the nonlinear model identification of a AS-ASWWTP 
process. The mathematical model of the process obtained 
from COST Actions 632 and 624 has been simulated in 
open-loop to generate the training data while the First Day 
dry–weather data, also provided by the COST Actions group, 
is used as the validation (test) data. In order to investigate the 
performance of the proposed ARLS algorithm, the 
incremental backpropagation (INCBP), which is also an 
online algorithm, is implemented and its performance 
compared with proposed ARLS. The results from the 
application of these algorithms to the modeling of the 
secondary settler and the clarifier units of the AS-WWTP 
biological reactors as well as the validation results show that 
the neural network-based ARLS outperforms the INCBP 
algorithm with much smaller predictions error and good 
tracking abilities with high degree of accuracy and that the 

proposed ARLS model identification algorithm can be used 
for the AS-ASWWTP process in an industrial environment. 

The next aspect of the work is on the development of an 
adaptive fuzzy rule-based logic decision system which 
would produce the set points that can be used for the 
development of an intelligent multivariable nonlinear 
adaptive model-based predictive control algorithm for the 
efficient control of the complete AS-WWTP by 
manipulating the pumps based on the decision parameters 
discussed in this work. 

Appendix 
Appendix A: Computation of the Decision Parameters 
and Food-to-Microorganism Ratio 

% Compute the influent Quality Index 

% Beta factor specification 

BTSS = 2; BCOD = 1; BNK_j = 20; BNO = 20;  BBOD = 2; 

% Compute the decision functions 

SNO_inf  = SNO_inf_tr; 

TKN_inf = SNH_inf_tr + SND_inf_tr + XND_inf_tr + 

i_XB*(XBH_inf_tr + XBA_inf_tr) + 

i_XP*(XP_inf_tr + XI_inf_tr); 

TSS_inf = 0.75*(XS_inf_tr + XI_inf_tr + XBH_inf_tr + 

XBA_inf_tr + XP_inf_tr); 

BOD_inf = 0.65*(SS_inf_tr + XS_inf_tr + 

0.94*(XBH_inf_tr + XBA_inf_tr)); 

COD_inf = SS_inf_tr + SI_inf_tr + XS_inf_tr + XI_inf_tr 

+ XBH_inf_tr + XBA_inf_tr + XP_inf_tr; 

Q_inf   = Qin_tr; 

% Compute total nitrogen 

Ntotal_inf = TKN_inf + SNO_inf; 

% Compute influent quality 

inf_qua = (BNK_j*TKN_inf + BTSS*TSS_inf + 

BCOD*COD_inf + BBOD*BOD_inf + 

BNO*SNO_inf).*Q_inf/1000; 

% Compute the total sludge 

tot_slu = TSS_r1_tr*VOL1 + TSS_r2_tr*VOL2 + 

TSS_r3_tr*VOL3 + TSS_r4_tr*VOL4 + 

TSS_r5_tr*VOL5; 

% Compute food-to-microorganisms ratio 

F_to_M  = Qin_tr.*BOD_inf./tot_slu; 

% Compute the amount of microorganisms (MLVSS) 

MLVSS   = BOD_inf./F_to_M; 

%============================================ 

Startindex  = max(find(t <= starttime)); 

stopindex   = min(find(t >= stoptime)); 

time         = t(startindex:stopindex); 

feedx        = feed(startindex:stopindex,:); 

recx         = rec(startindex:stopindex,:); 

settlerx    = settler(startindex:stopindex,:); 

inx          = in(startindex:stopindex,:); 

[n,m]       = size(reac1); 

BODinfluent= 0.65.*(inx(n,2) + inx(n,4) + 

0.92.*(inx(n,5) + inx(n,6))); 
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sludge      = reac1(n,14)*VOL1 + reac2(n,14)*VOL2 + 

reac3(n,14)*VOL3 + reac4(n,14)*VOL4 + 

reac5(n,14)*VOL5;  

F_to_M      = inx(n,15).*BODinfluent/sludge 

 

Appendix B: General Characteristics of the Secondary 
Settler and Clarifier 

Appendix B.1: Constructional Features 

Table B.1.  The double-exponential settling velocity function parameters 
with their definition, units and values 

Parameters 
Description 

Parameters 
Symbol Value Units 

Maximum settling 
velocity 

'
0v  250.0 m.(day)-1 

Maximum Vesilind 
settling velocity 0v  474 m.(day)-1 

Hindered zone 
settling parameter hr  0.000576 m3.(g SS)-1 

Flocculant zone 
settling parameter pr  0.00286 m3.(g SS)-1 

Non-settleable 
fraction nsf  0.00228 Dimensionless 

The secondary settler and clarifier is modelled as a ten 
layers non-reactive unit, that is, no biological reactions takes 
place in the secondary settler. The 6th layer, counting from 
the top, is the feed layer as can be seen in Fig. 1. The settler 
has an area (A) of 21,500 m . The height ( )mz  of each 
layer ( )m  is 0.4m , for a total height of 4m . Therefore, the 

settler has total volume equal to 36,000 m . 
The solid flux due to gravity is 

( )s sJ v X X=               (B.1) 

where X  is the total sludge concentration and ( )sv X  is a 
double-exponential settling velocity function defined as: 

( ) ( )min min'
0 0

( )

max 0,min , ph

s

r X X r X X

v X

v v e e− −   
      

=

−
(B.2) 

where min ns fX f X= . The parameter values for the 
non-exponential settling velocity function (B.2) are given in 
Table B.1. Thus, the mass balances for the sludge are 
expressed as: 

For the feed layer ( 6)m = : 

( ) ( ), , 1, 1 min ,

m

f f
up m s m s mclar m dn

m

dX
dt

Q X
J v v X J J

A
z

−+

=

+ − − −
(B.3) 

For the intermediate layers below the feed layer ( 2)m =  
to ( 5)m = : 

( ) ( ) ( ), ,1 , 1 , 1min , min ,

m

m s m s mm s m s mdn

m

dX
dt
v X X J J J J

z
+ + −− + −

=
(B.4) 

For the bottom layer ( 1)m = : 

( ) ( )2 1 ,2 ,11

1

min ,s sdnv X X J JdX
dt z

− +
=     (B.5) 

For the intermediate clarification layers above the feed 
layer ( 7)m =  to ( 9)m = : 

( )

( )

1 , 1 ,

1, , 1 1
,

1,

min , ,

,

up mm clar m clar mm

m

tjs j j s j j
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tjs j j

v X X J JdX
dt z

if X Xv X v X
J

if X Xv X

− +

−− −

−


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− + −
=

>
=

≤

(B.6) 

For the top layer ( 10)m = : 

( )

( )

9 10 ,1010

10

,10 10 ,9 9 9
,10

9,10 10

min , ,

,

up clar

s s t
clar

ts

v X X JdX
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  (B.7) 

The threshold concentration 33,000 .tX g m−= . 
For the soluble components (including dissolved oxygen), 

each layer represents a completely mixed volume and the 
concentrations of soluble components are given accordingly 
as: 

For the feed layer ( 6)m = : 

( )f f
up mdnm

m

Q X
v v ZdZ A

dt z

− +
=      (B.8) 

For the intermediate layers below the feed layer ( 1)m =  
to ( 5)m = : 

( )1 mmdnm

m

v Z ZdZ
dt z

+ −
=           (B.9) 

For the intermediate layers above the feed layer ( 7)m =  
to ( 10)m = : 

( )1up mmm

m

v Z XdZ
dt z

− −
=         (B.10) 

where  

u r w e
updn

Q Q Q Qv and v
A A A

+= = =   (B.11) 
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The concentrations in the recycle and waste flow are equal 
to those of the first layer ( 1)m = , that is, 1uZ Z= . 

The sludge concentration from the concentrations in Unit 
5 of Fig .1 can be computed from: 

( )

( )
,5 ,5 ,5 , ,5 , ,5

,5 ,5 ,5 , ,5 , ,5

1

0.75

f S P I B H B A
COD SS

S P I B H B A

X X X X X X
fr

X X X X X
−

= + + + + 

= + + + + 

(B.12) 

Since 4 / 3 0.75COD SSfr − = = . The same calculation is 
applied for uX  in the settler underflow and eX  at the plant 
exit. 

To calculate the distribution of particulate concentrations 
in the recycled and waste flows, their ratios with respect to 
the total solid concentration are assumed to remain constant 
across the settler: 

,5 ,S S u

uf

X X
X X

=  and  
,5

,
S

uS u
f

X
X X

X
=     (B.13) 

Equation (B.13) is also true for ,P uX , ,I uX , , ,B H uX , 

, ,B A uX  and ,ND uX . The assumption made here means that 
the dynamics of the fractions of particulate concentrations in 
the inlet of the settler will be directly propagated to the settler 
underflow, without taking into account the normal retention 
time in the settler [1-4]. 
Appendix B.2: Sludge Age 
Appendix B.2.1: Sludge Age Based on Total Amount of 
Biomass 

In the steady-state case, the sludge age calculation is based 
on the total amount of biomass present in the system that is in 
the reactor and settler: 

a s
Age

e w

TX TXSludge
φ φ

+=
+

       (B.14) 

where aTX  is the total amount of biomass present in the 
reactor and it is expressed as: 

( ), , , ,
1

, 5
n

a iB H i B A i
i

TX X X V n
=

= + =∑   (B.15) 

sTX  is the total amount of biomass present in the effluent 
and it is expressed as: 

( ), , , ,
1

, 10
m

s jB H i B A i
j

TX X X z A m
=

= + =∑
  

(B.16) 

eφ  is the loss rate of biomass in the effluent and it is 
expressed as: 

( ), , , , , 10e eB H m B A mX X Q mφ = + =    (B.17) 

wφ  is the loss rate of biomass in the waste flow and it is 
expressed as: 

( ), , , ,w wB H u B A uX X Qφ = +        (B.18) 

Appendix B.2.2 Sludge Age Based on Total Amount of 
Solids 

In an actual AS-WWTP, the sludge age is measured based 
on the total amount of solid present in the system. Thus, 

fa fs
Age

fe fw

TX TX
Sludge

φ φ
+

=
+

          (B.19) 

where faTX  is the total amount of solids present in the 
reactor and can be expressed as: 

,
1

, 5
n

ifa f i
i

TX X V n
=

= =∑        (B.20) 

where  

( ), , , ,, , ,,
1

P i I i B H iS i B A if i
COD SS

X X X X X X
fr −

= + + + + (B.21) 

fsTX  is the total amount of solids present in the settler and 
can be expressed as: 

,
1

, 10
m

jfs f i
j

TX X z A m
=

= =∑   (B.22) 

where  

( ), , , ,, , ,,
1

P j I j B H jS j B A jf j
COD SS

X X X X X X
fr −

= + + + + (B.23) 

feφ  is the loss rate of solids in the effluent and can be 
expressed as: 

, , 10efe f mX Q mφ = =      (B.24) 

where  

, ,,
,

, , , ,
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f m
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(B.25) 

wφ  is the loss rate of solids in the waste flow and can be 
expressed as: 

, wfw f uX Qφ =              (B.26) 

where , ,,
,

, , , ,

1 P u I uS u
f u

B H u B A uCOD SS

X X X
X

X Xfr −

 
  
 

+ +
=

+ +
 

Appendix C: Criteria for Evaluating and Assessing the 
Performances of the AS-WWTP Control 

Appendix C.1: Influent Quality (IQ) 
As a check on the IQ calculation, an influent quality index 

(IQ) can be calculated by applying the above equations to the 
influent file but the BOD coefficient must be changed from 
0.25 to 0.65. It is defined as: 
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where the composition variables are calculated as follows: 
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( )0 ,0 ,0 , ,0 , ,0 ,00.75 S I B H B A PSS X X X X X= ⋅ + + + +  

( )0 ,0 ,0 , ,0 , ,00.65 (1 ) ( )S S P B H B ABOD S X f X X= ⋅ + + − ⋅ +
 

 
Appendix C.2: Effluent Quality and Constraints 
Appendix C.2.1: Effluent Quality (EQ) 

The effluent quality (EQ), in kg pollution unit/d, is 
averaged over the period of observation ( )T d  (i.e. the 
second week or 7 last days for each weather file) based on a 
weighting of the effluent loads of compounds that have a 
major influence on the quality of the receiving water and that 
are usually included in regional legislation. It is defined as 
[2]–[4]: 
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where the composition variables are calculated according to 
the following equations: 

, , , , , , , ,
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XP P e I e
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( ), , , ,, , ,0.75e I e B H e P eS e B A eTSS X X X X X= ⋅ + + + +  

( ), ,, , , ,0.25 (1 ) ( )e P B H eS e S e B A eBOD S X f X X= ⋅ + + − ⋅ +  

, , , , ,, , , ,e I e I e B H e P eS e S e B A eCOD S S X X X X X= + + + + + +  

, ,e NKj e NO eNtotal S S= +  

where iB  are weighting factors for the different types of 

pollution to convert them into pollution units ( 3/g m ) and 
were chosen to reflect these calculated fractions as follows:

2,TSSB =  1,CODB =  20,NKjB =  20NOB =  and

5 2.BODB =   
The major operating cost in biological nutrient removal 

process as well as nitrogen removing ASPs is blower energy 
consumption. If the DO set-point is reduced by a control 
strategy, significant energy saving can be achieved. 
Operational issues are considered through three items: 
sludge production, pumping energy and aeration energy 
(integrations performed on the final 7 days of weather 

simulations (i.e. from day 22 to day 28 of weather file 
simulations, 7T days= ). 

Appendix C.2.2: Constraints on the Effluent Quality 
The flow average values of the effluent concentrations 

over the three test periods (dry, rain and storm weather: 7 
days for each) should be constrained for the five effluent 
components within the following limit: total nitrogen 

3
, ,( 18 ),total NO e NKj eN S S g m−= + < ⋅ total COD 

3( 100 ),eCOD g m−< ⋅ ammonia 3
,( 4 ),NH eS g m−< ⋅

suspended solids 3( 30 )eTSS g m−< ⋅  and 5BOD  
3( 10 ).eBOD g m−< ⋅  

Appendix C.3: The Sludge production to be disposed
( / )kg d  

This is the sludge production, ,sludgeP  is calculated from 
the total solid flow from wastage and solid accumulated in 
the system over the period of time considered ( 7ft =  for 
each weather file). The amount of solids in the system at time 
t is given by:  

( )( ) ( )( ) ( )( )system reactor ssttlerM TSS t M TSS t M TSS t= +  (C.3) 

where ( )( )reactorM TSS t  is the amount of solids in the 
reactor given by: 
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( )( )settlerM TSS t  is the amount of solids in the settler given 
by: 
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( )systemM TSS∆  the change in system sludge mass from the 
end of day 7 to the end of day 14 given by: 

14 7( ) ( ) ( )system system systemdays daysM TSS M TSS M TSS∆ = −  

and ( )( )watseM TSS t the amount of waste sludge is given by: 

14
, , ,,
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I w B H wS w
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So that the total sludge to be disposed becomes: 

( )1 ( )( ) ( )( )system watsesludgeP M TSS t M TSS t
T

= ∆ +  (C.7) 

Appendix C.4: The Total Sludge production ( /kg d ) 

The total sludge production takes into account the sludge 
to be disposed and the sludge lost to the weir and is 
calculated as follows: 

_ ( )etotal sludge sludgeP P M TSS= +        (C.8) 

0 ,0 ,0 ,0 ,0 , ,0 , ,0 ,0S I S I B A B A PCOD S S X X X X X= + + + + + +
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Appendix C.5: The Pumping Energy (PE) 

The pumping energy in /kWh d  is calculated as follows: 

( )
14

7

0.04 ( ) ( ) ( )
t days

a r w
t days

PE Q t Q t Q t dt
T

=

=
= + + ⋅∫   (C.9) 

where ( )aQ t  is internal recycle flow rate at time 
3 1( ) ,t m d −  ( )rQ t  is the return sludge recycle flow rate at 

time 3 1( ) ,t m d −  and ( )wQ t  is the waste sludge flow rare at 

time 3 1( ).t m d −  

Appendix C.6: The Aeration Energy (AE) 
The aeration energy (AE) in /kWh d  takes into account 

the plant peculiarities (type of diffuser, bubble size, depth of 
submersion, etc,) and is calculated from the lk a  in the three 
aerated tanks according to the following relation, valid for 
Degrémont DP230 porous disks at an immersion depth of 
4m: 

( )
( )

214 5

37

0.403224
7.4408

t days i l i

it days l i

k a
AE dt

T k a

=  =
 
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= ⋅
+

∑∫   (C.10) 

where lk a  is in 1h−  and where i is the compartment 
number. 

The increase in capacity which could be obtained using 
the proposed control strategy should be evaluated. This 
factor is relative to investment costs if the plant would 
simply be extended to deal with increased load. This is 
expressed by the relative increase in the influent flow rate, 

,a  which can be applied while maintaining the reference 
effluent quality index ( )refEQ  for the three weather 

conditions ( 7T =  days for each). refEQ  is calculated from 

the above equation in open loop. 0, 0,( ) * ( )i iQ t a Q t=  with 
1i =  for dry weather, 2i =  for storm weather and 3i =  

for rain weather. Operation variables such as ,w rQ Q  and 

Lk a  in compartments 3 and 4 remains unchanged. 
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