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Abstract  Modelling or identification o f industrial p lants is the first and most crucial step in their implementation proc-
ess. Artificial neural networks (ANNs) as a powerful tool for modelling have been offered in recent years. Industrial proc-
esses are often so complicated that using a single neural network (SNN) is not optimal. SNNs in dealing with complex 
processes do not perform as required. For example the process models with th is method are not accurate enough or the dy-
namic characteristics of the system are not adequately represented. SNNs are generally non-robust and they are sometimes 
over fitted. So in this paper, we use multip le neural networks (MNNs) for modelling. Bagging and boosting are two meth-
ods employed to construct MNNs. Here, we concentrate on the use of these two methods in modelling a continuous stirred 
tank reactor (CSTR) and compare the results against the SNN model. Simulation results show that the use of MNNs im-
proves the model performance. 
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1. Introduction 

In recent decades, artificial neural networks (ANNs) 
have been extensively used in numerous applications. One 
of the important applications of ANNs is finding patterns or 
tendencies in data. ANNs are well suited for predict ion and 
forecasting requirements such as: sale forecasting, indus-
trial p rocess control, oil and gas industry[1-3], hand-written 
word recognition, target marketing, pharmaceutical indus-
try[4], etc. In this paper, we use ANNs to identify an in-
dustrial process. One problem with  ANNs is their instability. 
It means that small changes in the training data used to 
construct the model may result in a very dissimilar 
model[4]. Also due to the high variance of SNNs, the model 
may  exh ibit  quite a different accuracy  facing unseen data 
(validation stage)[4]. Furthermore, in numerous cases, a 
SNN lacks precision. Breiman[5] has shown that for un-
stable predictors, combining the outputs of a number of 
models will reduce variance and give more precise predic-
tions. 

However, it is required that the indiv idual neural net-
works in aggregation should be dissimilar and there is no 
advantage in aggregation of the networks if they are all 
identical[4]. The purpose of th is paper is to identify an  
industrial plant. Because of the stated reasons, we will use 
MNNs or ensemble neural networks fo r ident ificat ion . 
Thereare several d ifferent ensemble techn iques, but the  
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most popular ones include some elaboration of bag-
ging[6-9], and boosting[10-18]. In  this work, we parallel 
the use of bagging and boosting methods in modelling a 
chemical plant (CSTR) and compare the results against the 
corresponding SNN model. 

This paper consists of the following : in sections 1 and 2 a 
detailed study of bagging and boosting is presented. In 
section 3 the desired industrial process is introduced and 
then the bagging and boosting algorithms for identification  
are applied to this process. Some results and conclusions are 
presented in sections 4 and  5. Finally, references are given  
in section 6. 

2. Bagging 
Bagging (an abbreviation of bootstrap aggregation) is 

one of the most extensively used ANN ensemble methods. 
The main  idea in bagged neural networks is to generate a 
different base model instance for each bootstrap sample, 
and the final outputs are the average of all base model 
outputs for a given input[19-21]. Some of the advantages of 
bagging algorithm are as follows: 

• Bagging reduces variance or model inconsistency over 
diverse data sets from a g iven distribution, without in-
creasing bias, which results in a reduced overall generali-
zation error and enhanced stability. 

• The other benefit of using bagging is related to the 
model selection. Since bagging transforms a group of 
over-fitted neural networks into a better-than per-
fectly-fitted network, the tedious time consuming model 
selection is no longer required. This could even offset the 
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computational overhead needed in bagging that involves 
training many neural networks. 

• Bagging is very robust to noise. 
• Parallel execution: although the boosting algorithm 

(discussed in the next section) has better generalization  
ability than the bagging algorithm, the bagging algorithm 
has the benefit of training ensembles independently, hence 
in parallel. 

Presume the training dataset T is composed of N in-
stances (𝑥𝑥1,𝑦𝑦1 ), … , (𝑥𝑥𝑁𝑁 ,𝑦𝑦𝑁𝑁 ), where x  and y  are input and 
output variables, respectively. It  is required to acquire B  
bootstrap datasets. As a first step, each instance in T is 
assigned a probability o f 1/N, and the train ing set for each  of 
the bootstrap member TB is created by sampling with re-
placement N times from the original dataset T using the 
above probabilities. Hence, each bootstrap dataset TB may  
have many instances in T repeated a number of times, while 
other instances may be omitted. Individual neural network 
models are then trained on each of TB. Therefore, for any  
given input vector, the bootstrap algorithm offers B d if-
ferent outputs. The bagging estimate is then computed by 
determining the mean  of B model predictions (see Figure 1). 

 
Figure 1.  Bagging neural network 

The bagging algorithm can be summarized as: 
1) Let B be the ult imate number of predictors required  

(obtained by trial and error). 
2) Take a train ing set𝑇𝑇 = {(𝑥𝑥1,𝑡𝑡1), … , (𝑥𝑥𝑁𝑁 ,𝑡𝑡𝑁𝑁)}. 
3) For i = 1 to B do: 

3.1) Make a new training set TB  by sampling N  items 
evenly at random with rep lacement from the data 
set T. 

3.2) Train an estimator𝑓𝑓𝑖𝑖  with the set TB and add it to 
the ensemble. 

4) For any new testing pattern, the bagged ensemble 
output is given by the equation: 

𝑓𝑓𝑏𝑏𝑏𝑏𝑏𝑏 (𝑥𝑥) = 1
𝐵𝐵
∑ 𝐹𝐹𝑖𝑖 (𝑥𝑥)𝐵𝐵
𝑖𝑖=1            (1) 

3. Boosting 

Contrary to bagging, boosting dynamically tries to gen-
erate complementary learners by training the next learner 
on the inaccuracies of the learner in the preceding iteration. 
At each iteration of the algorithm the sampling d istribution 
depends upon the performance of the learner in the pre-
ceding iteration[22]. In spite of bagging algorithm which  
operates in parallel,boosting algorithm is executed sequen-
tially. In boosting, instead of a random sample of the 
training data, a weighted sample is used to emphasis 
learning on the most difficult examples. 

There are numerous different versions of the boosting 
algorithm in the literature. The original boosting approach 
is boosting by filtering and is explained by Schapire[23]. It  
requires a large number of train ing data, which is not prac-
ticable in many cases. This restriction can be overcome by 
using another boosting algorithm known as the 
AdaBoost[10]. Init ially the boosting algorithm was devel-
oped for binary classification problems. Then boosting 
algorithmssuch as AdaBoosl.M1 and AdaBoost.M2[22] 
were developed for multi-class cases. In order to solve 
regression problems, Freund and Schapire[24]extended 
AdaBoost.M2 and called it AdaBoost.R. It solves regres-
sion problems by converting them to classification ones.  

In this paper, we use AdaBoost.R2 fo r identificat ion. 
This method is a modification ofAdaBoost.R and is de-
scribed in[25,26]. A description of this algorithm (shown in  
Figure 2) is as follows: g iven that the training dataset T 
consists of N instances(𝑥𝑥1,𝑦𝑦1 ), … , (𝑥𝑥𝑁𝑁 ,𝑦𝑦𝑁𝑁 ), where x and y 
are input and output variables, respectively. Initially each  
value in the dataset is allocated the same probability value 
so that each instance in the in itial dataset has an equal like-
lihood of being sampled in the first training  set; that is, 
sampling distribution, 𝑤𝑤𝑖𝑖𝑡𝑡  at step𝑡𝑡 =  1, is equal to 1/𝑁𝑁 
over all i, where 𝑖𝑖 = 1 to N. 

 
Figure 2. Boosting neural network 

The boosting algorithm can be summarized as: 
1) Input the labelled target data set T of theextent N, the 

maximum number of the iteration B, and a base algorithm 
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learner. Unless otherwise stated, set the initial weight vector 
𝑤𝑤1such that 𝑤𝑤𝑖𝑖1 = 1

𝑁𝑁�  for 1 ≤ 𝑖𝑖 ≤ 𝑁𝑁. 
2) For = 1, … , 𝐵𝐵 : (B  can be determined by a trial and  

error method). 
2.1) Fill the new train ing set with the distribution𝑤𝑤𝑡𝑡 , 

and obtain a hypothesis ℎ(𝑡𝑡) ∶ 𝑋𝑋 → 𝑅𝑅. 
2.2) Compute the adjusted error 𝑒𝑒𝑖𝑖𝑡𝑡  for each instance: 

𝑒𝑒𝑖𝑖𝑡𝑡 = |𝑦𝑦𝑖𝑖 − ℎ𝑡𝑡(𝑥𝑥𝑖𝑖)| / 𝐷𝐷𝑡𝑡 ,           (2) 
where 𝐷𝐷𝑡𝑡 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑗𝑗=1

𝑁𝑁 |𝑦𝑦𝑗𝑗 − ℎ𝑡𝑡�𝑥𝑥𝑗𝑗 �|.       (3) 
2.3) Compute the adjusted error ofℎ𝑡𝑡 : 𝜀𝜀𝑡𝑡 = ∑ 𝑒𝑒𝑖𝑖𝑡𝑡𝑤𝑤𝑖𝑖𝑡𝑡𝑁𝑁

𝑖𝑖=1 ; 
if 𝜀𝜀𝑡𝑡 ≥ 0.5, stop and set 𝐵𝐵 = 𝑡𝑡 − 1. 

2.4) Let 𝛽𝛽𝑡𝑡 = 𝜀𝜀𝑡𝑡/(1 − 𝜀𝜀𝑡𝑡). 
2.5) Bring up to date the weight vector according to 

the equation: 
𝑤𝑤𝑖𝑖𝑡𝑡+1 = 𝑤𝑤𝑖𝑖𝑡𝑡𝛽𝛽𝑡𝑡

1−𝑒𝑒𝑖𝑖
𝑡𝑡
/𝑍𝑍𝑡𝑡,           (4) 

(𝑍𝑍𝑡𝑡is a normalizing constant). 
3) Output the hypothesis: ℎ𝑓𝑓 (𝑥𝑥) = the weighted median  

of  ℎ𝑓𝑓 (𝑥𝑥) for 1 ≤ 𝑡𝑡 ≤ 𝐵𝐵, using 𝑙𝑙𝑙𝑙(1/𝛽𝛽𝑡𝑡) as the weight for 
the hypothesisℎ𝑡𝑡 . 

4. Process Modelling Using Bagging and 
Boosting 

In this section, the bagging and boosting (Adaboost.R2)  
algorithms are used to identify a CSTR. Since, this paper is  
aimed at  a black box model of the process, we need to col-
lect data directly from the process or generate it by using 
simulation. For this purpose, data is taken from the Daisy 
website[27] which is an identification database. 

The process is a  CSTR where the react ion is exothermic  
and the concentration is controlled by adjusting the coolant. 
The input variab le is the coolant flow rate (lit/min) and the 
output variable is the product concentration (mol/lit). 
Sampling time is 0.1 minutes and the number of samples is  
7500. Th is data is in the form of a (3 × 7500) matrix. The 
first column of this matrix consists of time-steps, the second 
and third columns are input (coolant flow rate) and output 
(concentration) variables, respectively[27]. The input and 
output variables are shown in Figures 3 and 4. As shown in 
Figure 3, the input is constantly changing. So, the system is  
operated in dynamic mode. 

In this paper, the bootstrap method is used to form sub-
systems in the bagging algorithm. The bootstrap procedure 
involves choosing random samples with replacement from a 
data set and analysing each sample the same way. 

For the bagging algorithm, we use ten independent net-
works (B=10) and weights of each network are initiated  
randomly. Each network is composed of one hidden layer 
and the activation function of output layer is linear (purelin). 
However, the number of hidden neurons, their activation 
functions and learning algorithms are d ifferent. These 
specifications are listed in Table 1. For the h idden layer 
hyperbolic tangent sigmoid  (tansig) and log sigmod (logsig) 
transfer functions are employed. For thenetwork training, 
Levenberg-Marquardt backpropagation (trainlm) and Bey-

sian regulation backpropagation (trainbr) are used. Each  
individual network is trained for 10 iterat ions. 

 
Figure 3.  Input variable (coolant flow rate) 

 
Figure 4.  Output variable (concentration) 

As mentioned before, the system is in  dynamic mode, so  
the previous inputs and outputs affectthe output 𝑦𝑦(𝑡𝑡) in the 
present time. In this case, the inputs to the network are the 
inputs in the present time 𝑢𝑢(𝑡𝑡) , the previous input 𝑢𝑢(𝑡𝑡 −
1, and the previous output 𝑦𝑦(𝑡𝑡−1). So, the neural network 
consists of three inputs  (𝑢𝑢(𝑡𝑡)  , 𝑢𝑢(𝑡𝑡 − 1) 𝑎𝑎𝑎𝑎𝑎𝑎  𝑦𝑦(𝑡𝑡 − 1)) , 
and one output 𝑦𝑦(𝑡𝑡). 

To determine the final predicted output of the trained  
ensemble, an  average is taken over the predictions from 
individual networks.The results and conclusions are given 
in the following sections. 

For system identificat ion using the Adaboost.R2 algo-
rithm, the number of iterations B should be determined. We 
select B to be equal to 20. A ll sequential networks are 
trained using the Levenberg-Marquardtback-propagational
gorithm. Each network consists of two layers. Activation 
functions in the output layer are “purelin” and in the hidden 
layer are “tansig”or “logsig”. The stopping goal for the 
single and every individual network is the mean squared 
error (mse = 0.000001). As described in the previous sec-
tion, the lag space is equal to one; therefore, the number of 
sampled data points employed for modelling is 7499. So, 
the input-output data points are in  the form of [(𝑢𝑢(𝑡𝑡) , 𝑢𝑢(𝑡𝑡 −
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1), 𝑦𝑦(𝑡𝑡 − 1); 𝑦𝑦(𝑡𝑡))]. At the first iteration, all of the data 
points have equal chance to be selected. So, the probability  
of each data point to be elected is equal to1

𝑁𝑁� = 1
7499� =

1.333 × 10^(−4). Using the Adaboost.R2 algorithm de-
scribed in the previous section, we will see that the value of 
𝜀𝜀𝑡𝑡  prior to the final iteration is less than the threshold value 
of 0.5, however at the final iterat ion 𝜀𝜀𝑡𝑡 >  0.5. Hence, at 
this point the algorithm stops. 

Table 1.  Specifications of the networks used in this work 

network Number 
ofneurons 

Activation 
function in HL 

Training 
algorithm 

1 5 tansig trainlm 
2 6 tansig trainbr 
3 5 logsig trainlm 
4 6 logsig trainbr 
5 5 tansig trainlm 
6 6 tansig trainbr 
7 5 logsig trainlm 
8 6 logsig trainbr 
9 5 tansig trainlm 

10 6 tansig trainbr 

5. Results 

Table 2.  Performance measures of the SNNs and MNN (thebagging 
neural network) 

Individual 
network 

Standard 
Deviation 

Sum Absolute 
Errors R-Squared 

1 0.000747 0.320194 0.99855 
2 0.000817 0.333045 0.99829 
3 0.000850 0.509012 0.99837 
4 0.000806 0.354326 0.99849 
5 0.000767 0.364739 0.99858 
6 0.000996 0.430697 0.99791 
7 0.000800 0.330078 0.99839 
8 0.000794 0.410069 0.99859 
9 0.000915 0.413668 0.99790 

10 0.000923 0.404273 0.99783 
SNN 0.001040 0.411622 0.99732 
MNN 0.000783 0.387010 0.99853 

Table 3.  Comparison between single neural network and multiple neur-
al networks (theboosting neural network) 

Iteration Standard 
Deviation 

Sum Abso-
lute Errors R-Squared Epsilon 

1 0.000929 5.154209 0.99846 0.100205 
2 0.000732 3.130475 0.00857 0.084706 
3 0.000806 3.463874 0.99825 0.149771 
4 0.000926 4.784363 0.99773 0.117025 
5 0.001108 4.464097 0.99670 0.041901 
6 0.000953 5.117671 0.99763 0.223891 
7 0.001034 6.263647 0.99723 0.247154 
8 0.001025 6.281662 0.99732 0.305718 
9 0.001224 7.318611 0.99650 0.412131 

10 0.001069 6.890501 0.99713 0.428246 
11 - - - 0.7356287 

SNN 0.000929 5.154209 0.99846 - 
MNN 0.000597 3.696289 0.99841 - 

1) The performance measuresof the SNN (the complete 
data set is used to train the SNN) and ten indiv idual neural 

networks used to construct the bagged neural network and  
the final MNN are shown in Table 2. As shown in this table, 
the accuracy of the MNN is comparable to the accuracy  of 
the SNN. However, the variance of error in the MNN, 
compared to the SNN, has been significantly reduced. So, 
we can conclude that the bagging algorithm is successful in  
reducing the variance of error. In addition, thevalues tabu-
lated for the square of the correlation coeffi-
cients(R-Squared) indicate that the regression in the MNN 
is better than the SNN. 

2) The performance measures of the SNN and  eleven  
sequential neural networks for constructing the boosted 
neural network or the final MNN are shown in Table 3. 
Using the Adaboost.R2 algorithm, we see that the value of 
𝜀𝜀𝑡𝑡  prior to the eleventh iteration is less than the threshold 
value of 0.5, however at the eleventh iteration 𝜀𝜀𝑡𝑡 =
0.7356287 . Hence, at this point the algorithm stops. De-
tails of all the steps and the final results are shown in this 
table. The second column of the table shows that using the 
boosting algorithm leads to reductions of both of the error 
variance and modeling error in the MNN when compared  
against the SNN. It is clear from this table that regression of 
the MNN is better than the SNN (R-Squared closer to 1). 

6. Conclusions 
In this paper, identification of an industrial p lant (CSTR)  

was performed using the SNN and MNN techniques. In-
dustrial processes can be very complex and may have 
highly nonlinear properties. Hence, a single neural network 
cannot identify industrial processes with sufficient accuracy. 
We used multip le neural networks instead of a single neural 
network. We performed modelling by employing the bag-
ging and boosting algorithms. As shown in this work, the 
MNNs generated by these two algorithms outperformed the 
performance of the single neural network. When bagging is 
employed, the accuracy of the MNN is comparable to the 
accuracy of the SNN. However, the variance of error in the 
MNN, compared to the SNN, has been significantly re-
duced. The boosting algorithm leads to the reductions of 
both of the error variance and b ias of the MNN when  
compared against the SNN.Although the boosting algo-
rithm ensures better generalizat ion capability than the bag-
ging algorithm, the latter algorithm has the benefit of 
training the ensembles individualistically, hence in parallel. 
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