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Abstract  Microphone arrays are today employed to specify the sound source locations in numerous real time 
applications such as speech processing in large rooms or acoustic echo cancellation. Signal sources may exist in the near 
field or far field with  respect to the microphones. Current Neural Networks (NNs) based source localizat ion approaches 
assume far field  narrowband sources. One of the important limitations of these NN-based approaches is making balance 
between computational complexity and the development of NNs; an architecture that is too large or too small will affect the 
performance in terms of generalization and computational cost. In the previous analysis, saliency subject has been 
employed to determine the most suitable structure, however, it is time-consuming and the performance is not robust. In this 
paper, a family of new algorithms for compression of NNs is presented based on Compressive Sampling (CS) theory. The 
proposed framework makes it possible to find a sparse structure for NNs, and then the designed neural network is 
compressed by using CS. The key  difference between our algorithm and the state-of-the-art  techniques is that the mapping 
is continuously done using the most effective features; therefore, the proposed method has a fast convergence. The 
empirical work demonstrates that the proposed algorithm is an effect ive alternative to tradit ional methods in terms of 
accuracy and computational complexity. 
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1. Introduction 
Location of a sound source is an important piece of 

informat ion in speech signal processing applications. In the 
sound source localizat ion techniques, location of the source 
has to be estimated automat ically  by calculat ing the direction 
of the received signal[1]. Most algorithms for these calculat
ions are computationally  intensive and difficult for real time 
implementation[2]. Neural network based techniques have 
been proposed to overcome the computational complexity 
problem by explo iting their massive parallelis m[3,4]. These 
techniques usually assume narrowband far field source 
signal, which is not always applicable[2]. 

In  th is paper, we des ign a system that  est imates the 
direction-of-arrival (DOA) (direction of received signal) for 
far field  and near field wide band sources. The proposed 
system uses feature extraction fo llowed by a neural network. 
Feature extraction is the process of selection of the useful 
data for estimation of DOA. The estimat ion is performed by 
the use CS. The neural network, which  performs the pattern 
recognit ion step, computes the DOA to locate the sound 
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source. The important key insight is the use of the 
instantaneous cross-power spectrum at each pair of sensors. 
Instantaneous cross-power spectrum means the cross-power 
spectrum calculated without any averaging over realizat ions. 
This step calculates the discrete Fourier transform (DFT) of 
the signals at all sensors. In the compressive sampling step K 
coefficients of this DFT transforms are selected, and then 
multip lies the DFT coefficients at these selected frequencies 
using the complex conjugate of the coefficients in the 
neighboring sensors. In comparison to the other cross-power 
spectrum estimation techniques (which mult iply each pair of 
DFT coefficients and average the results), we have reduced 
the computational complexity. After this step we have 
compressed the neural network that is designed with these 
feature vectors. We propose a family of new algorithms 
based on CS to achieve this. The main  advantage of this 
framework is that these algorithms are capable of iterat ively 
building up the sparse topology, while maintaining the 
training accuracy of the original larger architecture. 
Experimental and simulation results showed that by use of 
NNs and CS we can design a compressed neural network for 
locating the sound source with acceptable accuracy. 

The remainder of the paper is organized as follows. The 
next  section presents a review of techniques for sound source 
localization. Section III exp lains feature selection and 
discusses the training and testing procedures of our sound 
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source localization technique. Section IV describes 
traditional pruning algorithms and compressive sampling 
theory and section V contains the details of the new network 
pruning approach by describing the link between pruning 
NNs and CS and the introduction two definit ions for 
different sparse matrices. Experimental results are illustrated 
in Section VI while VII concludes the paper. 

2. Sound Source Localization 
Sound source localizat ion is performed by the use of DOA. 

The assumption of far field sources remains true while the 
distance between source and reference microphone is larger 
than [2] fig. 1. In  this equation is the min imum 

wavelength of the source signal, and D is the microphone 
array length. With this condition, incoming waves are 
approximately p lanar. So, the time delay of the received 
signal between the reference microphone and the  
microphone would be[15]: 

            (1) 

In (1)  is the distance between two microphones, Ф is 
the DOA, and is the velocity of sound in air. Therefore, t0 
is the amount of time that the signal traverses the distance 
between any two neighboring microphones, Fig. 1 and 2 
illustrates this fact. 

 
Figure 1.  Estimation of far-field source location 

 
Figure 2.  Estimation of near-field source location 

If the distances between source and microphones are not 
far enough, then time delay  of the received signal between 

the reference microphone and the  microphone would 
be[15] fig. 2: 

       (2) 

where, is the distance between source and the first 
(reference) microphone[15]. 

2. Feature Selection 
The aim of this section is to compute the feature vectors 

from the array  data and use the MLP (Multi Layer Perceptron) 
approximation property to map the feature vectors to the 
corresponding DOA, as shown in Fig. 3[6]. 

 
Figure 3.  Multilayer Perceptron neural network for sound source 
localization 

Feature vector must: 
1. be ab le to be mapped to the desired output (DOA). 
2. be independent in phase, frequency, bandwidth, and 

amplitude of the source. 
3. be ab le to be calculated computationally efficient. 
Assume that  is the signal received at  the 

microphone and is the reference microphone . 
We can write the signal at the  microphone in terms 
of the signal at the first microphone signal as follow: 

      (3) 
Then the cross-power spectrum between sensor  and 
sensor like below: 

 (4) 
The normalized version is: 

       (5) 
This equation suggests that there exists a projection from 

and Фn,n+1 and Ωi to tn (for n = 1,2,…N) and thus to the DOA. 
Therefore our aim is to use an MLP neural network to 
approximate this mapping. 

We summarized our algorithm for computing a 
real-valued feature vector of length(2(M – 1)+1)K, for K 
dominant frequencies and M sensors below: 

Preprocessing algorithm for computing a real-valued 
feature vector: 
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1. Calculate the N -point FFT of the signal at each 
sensor. 

2. For m = 1,2,…,M - 1  
2.1. Find  the K FFT coefficients in  absolute value for 

sensor m with compressive sampling. 
2.2. Mult iply  the K FFT coefficient  for sensor m 

with the conjugate of the FFT coefficient at the 
same indices for sensor m +1 to calculate the 
instantaneous estimate o f the cross-power 
spectrum. 

2.3. Normalize all the estimates by dividing there 
absolute values. 

3. Construct a feature vector that contains the real and 
imaginary part of cross-power spectrum coefficient and their 
corresponding FFT indices. 

We utilized two-layer Perceptron neural network and 
trained it according to fast back propagation training 
algorithm[7]. For train ing network we use a simulated 
dataset of received signals. We modeled received signal as a 
sum of cosines with random frequencies and phases. We 
write received sampled signal at sensor n as below: 

∑
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where N is the number o f cosines (we assumed N = 10), fk 
is the frequency of the k – th cosine, φk is the initial phase of 
the k – th cosine, tn is the time delay between the reference 
microphone (m – 1) and the k – th microphone, e[p] is white 
Gaussian noise, and fk is uniformly d istributed 
over[200Hz,2000Hz] and φk is uniformly distributed over[0, 
2π]. We generate 100 independent sets of 128 sampled 
vector, and then calculate feature vectors. A total of 3600 
input-output pairs are used to train the MLP. 

In train ing step, after making learning dataset and 
calculating feature vectors, we use compressive sampling 
algorithm to decrease feature vectors dimension. In testing 
step for a new received sampled signal, we calculate feature 
vectors and estimate DOA of sound source. Our experiments 
show that errors in  classificat ion and in  approximation have 
direct relation with number of h idden neurons. Fig.4 shows 
these relations for far field and near field sources. 

 
Figure 4.  Relation between number of hidden neurons and error 

3. Traditional Pruning Algorithms and 
CS Theory 

Generally speaking, network pruning is often casted as 
three sub-procedures: (i) define and quantify the saliency for 
each element in the network; (ii) eliminate the least 
significant elements; (iii) re-adjust the remain ing topology. 
By this knowledge, the following questions may  appear in 
mind: 

1) What is the best criterion to describe the saliency, or 
significance of elements? 

2) How to eliminate those unimportant elements with 
minimal increase in error? 

3) How to make the method converge as fast as possible?  
Methods for compressing NNs can be classified into two 

categories: 1) weight pruning, e.g.: Optimal Brain Damage 
(OBD)[10], Opt imal Brain Surgeon (OBS)[4], and Magnitu
de-based pruning (MAG)[12]. And 2) h idden neuron pruning, 
e.g.: Skeletonizat ion (SKEL)[8], non-contributing units 
(NC)[10] and Extended Fourier Amplitude Sensitivity Test 
(EFAST)[2]. 

A new theory known as Compressed Sensing (CS) has 
recently emerged that can also be categorized as a type of 
dimensionality reduction. Like manifold learn ing, CS is 
strongly model-based (rely ing on sparsity in particular). This 
theory states that for a given degree of residual error ε , CS 
guarantees the success of recovering the given signal under 
some conditions from a small number of samples[14].  

According to the number of measurement vectors, the CS 
problem can be sorted into Sing le-Measurement Vector 
(SMV) or Multiple-Measurement Vector (MMV). The SMV 
problem is expressed as follows. Given a measurement 
sample mRy∈  and a dictionary nmRD *∈  (the columns of 
D are referred to as the atoms), we seek a vector solution x 
satisfying: 

Dxytsx =..min
0

            (7) 

In above equation 
0

x  (known as l0 norm), is the 
number of non-zero coefficient of x. 

Several iterative algorithms have been proposed to solve 
this min imization problem (Greedy Algorithms such as 
Orthogonal Matching Pursuit (OMP) or Matching Pursuit 
(MP) and Non-convex local optimizat ion like FOCUSS 
algorithm[16]. 

5. Problem Formulation and 
Methodology 

Before we formulate the problem of network pruning as a 
compressive sampling problem we introduce some 
definit ions[11, 10]: 

1. If fo r all columns of a matrix, norml −0  was smaller 
than S, then this matrix called a sparseS −1  matrix. 

2. If the number of rows that contain nonzero elements in a 
matrix was smaller than S then this matrix is called a 
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sparseS −2  matrix.  
We assume that the training input patterns are stored in a 

matrix I, and the desired output patterns are stored in a matrix 
O, then the mathematical model for train ing of the neural 
network can be ext racted in the fo rm of the following 
expansion: 
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where On is the output matrix of neural network, Oh is the 
output matrix o f h idden layer w1,w2, are weight matrix o f two 
layers and b1,b2 are bias terms. 

In conclusion, our purpose is to design a neural network 
with  least number of hidden neurons (or weights) that has the 
minimum increase in error given by nOO − . When we 
minimize a weight matrix (w1 or w2), the behavior acts like 
setting, in mathematical viewpoint, the relating elements in 
w1 or w2 to zero. Deduction from above shows that the goal of 
finding the smallest number of weights in NNs within a 
range of accuracy can  consider to be equal to finding an 

sparseS −1  Matrix w1 or w2. So we can write problem as 
below: 
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This problem is equivalent to finding w2 which most of its 
rows are zeros. So with defin ition of S2 – spare matrix we 
can rewrite the problem as below: 
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In matrix form equation (9) and (10) can be written as: 
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In which 
*

hO  is input matrix of the hidden layer for the 
compressed neural network. Comparing  these equations with 
(7) we can conclude that these min imization problems  can be 
written as CS problems. In these CS equations T

hO )(
* , 

T
hO )(  and T

nO )(  was used as the dictionary matrixes and 
Tw )( 1  and Tw )( 2  are playing the role of the signal matrix. 

The process of compressing NNs can be regarded as finding 
different sparse solutions for weight matrix Tw )( 1  or 

Tw )( 2 .  

6. Results and Discussion 
As mentioned before, assuming that the received speech 

signals are modeled  with 10 dominant frequencies, we have 
trained a two layer Perceptron neural network with 128 
neurons in hidden layer and trained it with feature vectors 
that are obtained with  CS from the cross-power spectrum of 
the received microphone signals. After computing network 

weights we tried to compress network with our algorithms. 
In order to compare our results with the previous 

algorithms we have use SNNS (SNNS is a simulator for NNs 
which is available at[19]). All of the traditional algorithms, 
such as Optimal Brain  Damage (OBD)[16], Optimal Brain 
Surgeon (OBS)[17], and Magnitude-based pruning (MAG)[
18], Skeletonization (SKEL)[6], non-contributing units 
(NC)[7] and Extended Fourier Amplitude Sensitiv ity Test 
(EFAST)[13], are available in SNNS (CSS1 is name of 
algorithm that uses SMV for sparse representation and CSS2 
is another technique that uses MMV for sparserepresentatio
n). 

Table I and II demonstrate the results of the simulations. 
Observing these results, in table I we compare algorithms on 
classification problem and in table II we compare algorithms 
on approximat ion problem. For classificat ion problem we 
compare sum of hidden neurons weights in different 
algorithms with similar stopping rule in training neural 
networks. Another thing that we compared in this table was 
classification error and time of training epochs. In table II we 
compare number o f hidden neurons and error in approximat
ion and time of training epochs, where we have stopping rule 
in training neural networks. With these outputs we can infer 
that CS algorithms are faster than other algorithms and have 
smaller error in compare with other algorithms. In 
comparison to other algorithms CSS1 is faster than CSS2 
and would achieve smaller computational complexity. This 
means that, According to the number of Measurement 
vectors, the algorithm that uses single-measurement vector 
(SMV) is faster than another algorithm that uses 
multip le-measurement vector (MMV) but its achieve error is 
not smaller. 

Table 1.  Comparison for Different Algorithms (Classification) 

Training 
epochs=50 

MAG OBS OBD CSS1 

Sum of neurons 
weights  

3261 3109 2401 780 

classification 
error(s) 

0.0537 0.0591 0.046 0.0043 

Training epochs 
time(s) 

0.62 25.64 23.09 0.41 

Table 2.  Comparison for Different Algorithms (Approximation) 

Training epochs=50 NC SKETL EFAST CSS2 
Hidden neurons 127 128 7 6 
Approximation 

error(s) 
0.094 0.081 0.016 0.0023 

Training epochs 
Time(s) 

27.87 7.86 9.97 14.87 

7. Conclusions 
In this paper, compressive sampling is utilized to 

designing NNs. Particularly , using the pursuit and greedy 
methods in CS, a compressing methods for NNs has been 
presented. The key  difference between our algorithm and 
previous techniques is that we focus on the remaining 
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elements of neural networks; our method has a quick 
convergence. The simulation results, demonstrates that our 
algorithm is an effective alternative to tradit ional methods in 
terms of accuracy and computational complexity. Results 
revealed this fact that the proposed algorithm could decrease 
the computational complexity while the performance is 
increased. 
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