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Abstract  This research proposed an approach for automatic extraction of buildings from digital aerial imagery and 

LiDAR data. The building patches are detected from the original image bands, normalized Digital Surface Model (nDSM) 

and some ancillary data. Support Vector Machines (SVMs) and artificial neural network (ANNs) classifiers have been 

applied individualey as member classifiers. In order to improve the obtained results, SVMs and ANNs have been combined in 

serial, parallel and hybrid forms. The results showed that hybrid system has performed the best with an overall accuracy of 

about 87.211% followed by parallel combination, serial combination, ANNs and SVMs with 84.709, 82.102, 77.605 and 

74.288% respectively. 

Keywords  Building extraction, nDSM, Hybrid system, Image classification, SVMs and ANNs 

 

1. Introduction 

Detection and reconstruction of buildings are of high 

interest in the geospatial community. Traditionally, the 

building boundaries are delineated through manual 

digitization from digital images in stereo view using the 

photogrammetric stereo plotters. However, this process is a 

tiresome and time-consuming task and requires qualified 

people and expensive equipment. Thus, building extraction 

using the automatic techniques has a great potential and 

importance. Automatic building extraction has become one 

of the most investigated research topics motivated by the 

development of high resolution image acquisition and 

machine learning. While many algorithms have been 

proposed for building extraction, none of them solve the 

problem completely. The availability of high resolution 

aerial imagery and other data sources such as LiDAR data 

can provide a high quality building extraction. One can make 

benefits from LiDAR and photogrammetric imagery as each 

of such data has particular advantages and disadvantages in 

horizontal and vertical positioning accuracy. Compared with 

photogrammetric imagery, LiDAR generally provides more 

accurate height information but less accurate edges. 

Photogrammetric imagery can provide extensive 2D 

information such as high-resolution texture and color 

information as well as 3D information from stereo images.  
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Over the last decade, many researches and development 

efforts have been put into extracting and reconstructing 

building from images. Lee et al. [1] proposed a 

classification-based approach to extract building boundaries 

from the IKONOS multispectral and panchromatic images. 

Initially the multispectral image was classified using the 

ECHO region-based classifier technique. Then, the classified 

images were vectorized to define the working windows. 

Finally, the building boundaries were delineated using a 

building squaring approach, which is based on the Hough 

transform. Jin and Davis [2] demonstrated an integrated 

strategy for identifying buildings in 1-meter resolution 

satellite imagery of urban areas. Buildings are extracted 

using structural, contextual and spectral information. Three 

building detectors are applied to a preprocessed PAN image. 

Two of these detectors are based on a differential 

morphological profile (DMP) analysis of the preprocessed 

PAN image. The first detector is mainly based on structural 

information of the building itself, where buildings 

hypotheses of relatively large scale are generated from the 

DMP. Then the hypothesized building components are 

verified through shape information of the components. The 

second detector is primarily based on contextual information 

of the buildings. Shadow hypotheses are generated from 

narrow dark structures identified in the DMP. Shadow 

components are verified using spectral characteristics and 

image collection geometry, and then shadow corners are 

generated by projection analysis. The third building detector 

is primarily based on the spectral information of building 

itself. The objective is to extract bright buildings, especially 

small ones that are ignored by the other two detectors. 

ZahraLari and Hamid Ebadi [3] proposed an automated 

system for extraction of buildings from high-resolution 
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satellite imagery that utilizes structural and spectral 

information. Using ANNs algorithms, the detection 

percentage and quality of the building extraction are greatly 

improved. In the first part, initial image processing and 

segmentation is done. In the second part, segment’s features 

are extracted. In the third part, the system decides about 

possibility of each segment’s being building based on 

features extracted using ANNs. This system works in two 

phases: i) learning phase: the neural network presented in 

third part of system trains using manually saved data to reach 

desirable accuracy criterion; and ii) application phase: the 

systems tests on new dataset. Omo-Irabor and O.O [4] 

studied the changes in the southern part of Nigeria by from 

1987 to 2002. They used the ISODATA unsupervised and 

the supervised Maximum Likelihood classifiers for detecting 

land use/land cover (LULC) classes.  

Zhu et al. [5] proposed a classification-based approach for 

building change detection from digital surface models 

(DSMs) which are generated from the images acquired by a 

multi-line digital airborne sensor ADS40. A strategy is 

proposed that allows efficient integration of a local surface 

normal angle transform (LSNAT) method and 

marker-controlled watershed segmentation (MCWS) method 

for building extraction in urban areas. The LSNAT method 

uses a hierarchical strategy to extract huge buildings and the 

MCWS method extract low heights and very small areas. 

The proposed strategy presents wonderful results for 

building extraction and acceptable results for change 

detection compared to some other change detection methods. 

Woosug Cho et al. [6] proposed a practical method for 

building detection using airborne laser scanning data. The 

approach begins with pseudo-grid generation, noise removal, 

segmentation and grouping for building. Followed by, 

detection, linearization and simplification of building 

boundary. At the end, buildings are extracted in 3D vector 

format.  

Jiang et al. [7] proposed an object-oriented method to 

extract building information by DSM and orthoimage. With 

object-oriented methods, not only the spectral information 

but also the shape, contextual and semantic information  

can be used to extract objects. The object-oriented   

building extraction typically includes several steps: data 

pre-processing, multi-scale image segmentation, the 

definition of features used to extract buildings, building 

extraction, post-processing and accuracy evaluation.  

Zheng Wang [8] proposed an approach for building 

extraction and reconstruction from LiDAR data. The 

approach applied terrain surface data as input data. The 

process includes edge detection, edge classification, building 

points extraction, TIN model generation, and building 

reconstruction. The objective is to extract and reconstruct 

buildings and building related information. For building 

detection, it detects edges from the surface data and classifies 

edges to distinguish building edges from other edges based 

on their geometry and shapes, including orthogonality, 

parallelism, circularity and symmetry. 

Koc San and Turker [9] proposed an approach for the 

automatic extraction of the rectangular and circular shaped 

buildings from high resolution satellite imagery using Hough 

transform. The strategy consists of two main stages: i) 

building detection and ii) building delineation by Hough 

transform. The candidate building patches are detected from 

the imagery using SVMs classification. In addition to 

original image bands, the Normalized Difference Vegetation 

Index (NDVI), and nDSM are also used in the classification. 

After detecting the building patches, their edges are detected 

by using the Canny edge detector. The edge image is then 

converted into vector form using the Hough transform. 

TxominHermosilla et al. [10] presented evaluation and 

comparison of two main approaches for automatic building 

detection and localization using high spatial resolution 

imagery and LiDAR data which are: i) thresholding-based 

and ii) object-based classification. The thresholding-based 

approach is founded on the establishment of two threshold 

values: one refers to the minimum height to be considered as 

building, defined using the LiDAR data, and the other refers 

to the presence of vegetation, which is defined according to 

the spectral response. The other approach follows the 

standard scheme of object-based image classification: 

segmentation, feature extraction and selection, and decision 

trees-based classification. The results obtained show a high 

efficiency of the proposed methods for building detection, in 

particular the thresholding-based approach, when the 

parameters are properly adjusted and adapted to the type of 

urban landscape considered. Yan Li et al. [11] proposed an 

integrated method of building extraction using transform 

from DSM to normal angles and watershed segmentation to 

the gradient of DSM by using imagery and nDSM with 1m 

spatial resolution. To remove the effect of the terrain shape 

on building detection, they generate nDSM by subtracting 

the digital terrain model (DTM) from DSM. Building 

extraction is implemented through several stages. In the first 

stage, Local Surface Normal Angle Transformation (LSNAT) 

is implemented to DSM to extract roof buildings. In the 

second stage, marker based watershed is implemented to get 

the boundaries of the objects above the ground. The result of 

marker-based buildings and LSNAT based buildings are 

merged to extract building accurately. At last, the orthogonal 

imagery is used to remove the woods according to the green 

color principle. Kazuo Oda et al. [12] presented an 

automated method for 3D city model production with 

LiDAR data and aerial photo images, which can be applied 

to production of 3D map for infrastructure. The strategy of 

the proposed algorithm consists of two parts. The first part is 

building extraction where building polygons are extracted 

from DSM and aerial photos. The second part is 3D 

modeling where 3D building model is created with these 

polygons such that each polygon has vertical wall from the 

top of building to the ground. 

PakornWatanachaturaporn et al. [13] presented three 

approaches for land cover classification technique. They use 

SVMs, decision tree, back propagation (BP) neural network 
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classifiers and radial basis function (RBF) neural network 

classifiers. SVMs classification with a 2nd order polynomial 

kernel produced an accuracy of 96.94%. The accuracies 

achieved by decision tree, BP and RBF neural network 

classifiers were 74.75%, 38.03% and 95.30% respectively. 

This clearly illustrates that the accuracy of the SVMs 

classifier is significantly higher than decision tree and BP 

neural network classifiers at 95% confidence level.  

Salah et al. [14] proposed an approach that combines 

classifiers based on Fuzzy Majority Voting (FMV). The 

individual classifiers include used Self-Organizing Map 

(SOM), Classification Trees (CTs) and SVMs to classify 

buildings, trees, roads and ground. They combined aerial 

images, the LiDAR intensity image, DSM and nDSM. The 

overall accuracy as well as commission and omission errors 

has been improved compared to the single classifier. Salah 

[15] proposed a hybrid system for the combination of 

pixel-based and object-oriented SVMs based on Bayesian 

Probability Theory (BPT) to improve land cover 

classification from one-meter IKONOS satellite image.  

Four different SVMs kernels were compared and tested.  

The kernels used include: linear, polynomial, radial basis 

function (RBF), and sigmoid. BPT was then used for 

combining the class memberships from the pixel-based and 

object-oriented classifiers. The results demonstrate that the 

object-oriented method has achieved the best overall 

accuracy. 

2. Study Area and Data Used 

The proposed building detection procedure was 

implemented in a region surrounding the University of New 

South Wales campus, Sydney, Australia, covering 

approximately 500 m x 500 m. It is a largely urban area that 

contains residential buildings, large Campus buildings, a 

network of main roads as well as minor roads, trees, open 

areas and green areas. The color imagery was captured by 

film camera at a scale of 1:6000. The film was scanned in 

three color bands (red, green and blue) in TIFF format with 

15μm pixel size (GSD of 0.09m) and radiometric resolution 

of 16-bit as shown in Figure 1. The sensor characteristics 

were used in this study as summarized in Table 1 and Table 

2. 

 

Figure 1.  The study area located in the University of New South Wales 

campus, Sydney, Australia 

Table 1.  Characteristics of image datasets 

Size(Km) 0.5 x 0.5 

bands RGB 

pixel size (cm) 9 

Camera LMK1000 

Look Angle(deg.) along track &across track =±30 

Table 2.  Characteristics of LiDAR datasets 

Optech ALTM 1225 

Spacing (m) 1.15 

Vertical accuracy (m) 0.10 

Horizontal accuracy (m) 0.5 

Density (Points/m2) 1 

Sampling intensity (mHz) 11 

Wavelength (μm) 1.047 

Average altitude(m) 1100 

Laser swath width (m) 800 

3. Methodology 

To detect building patches, a DTM and a DSM are 

generated from LiDAR data. After that, nDSM is calculated 

by subtracting DTM from DSM and then 3D objects are 

separated by applying a 3m threshold to nDSM. An 

orthoimage is then generated from the high resolution 

image using the DSM. The orthorectification of the image is 

necessary to accurately overlay the image with the reference 

building database. To detect the candidate building patches, 

the orthorectified high resolution image is classified 

utilizing the nDSM and additional bands. 

3.1. Image Preparation  

 

Figure 2.  (a) DSM generated from the original LiDAR point cloud, (b) 

DTM generated by filtering of LiDAR data, (c) nDSM generated by 

subtracting the DTM from the DSM and (d) NDVI 

Image preparation includes the generation of nDSM, the 

normalized difference vegetation index (NDVI), training 

data set and reference data. The nDSM was generated by 

subtracting the DTM from the DSM as shown in Figure 2(a), 

(b) and (c). The nDSM represents the absolute heights of 

non-ground objects, such as buildings and trees, above the 

ground. Finally, a height threshold of 3m was applied to the 

nDSM to eliminating other objects such as cars to ensure that 

they are not included in the final classified image. After 

detection of the objects with high elevation, buildings 

should be separated from trees. The NDVI is the most 

useful factor to extract trees.The NDVI values were 
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generated by using the red image and the LiDAR 

reflectance values, since the radiation emitted by the 

LiDARs is in the IR wavelengthsas shown in Figure 2 (d). 

The objective of training datasets is to assemble a set of 

statistics that describe the spectral response patterns for 

each land cover type to be classified in the image [16]. The 

positions of the polygons were selected carefully to be 

representative and to capture changes in the spectral 

variability of each class. Each sample was then converted 

into a vector representing the attributes or features. The 

training data for their region consists of 7153, 2371, 1508 

and 519 training pixels for buildings, trees areas, roads and 

grass respectively for each band of the input data. Samples 

of these signatures are shown in Figure 3 (a), (b), (c) and (d). 

 

Figure 3.  Sample of signature (a) buildings signatures, (b) trees signatures, 

(c) roads signatures and (d) grass signatures 

The training datasets along with the orthophoto (red, 

green and blue bands), the NDVI, DSM, DTM, nDSM and 

intensity image have been applied as input data for SVMs 

and ANNs classifier.  

Reference data were generated by digitizing buildings, 

trees, roads and grass in the orthophotos. All recognizable 

features independent of their size were digitizedas shown in 

Figure 4. 

 

Figure 4.  Reference Data. The red, green, black and white color indicate 

for buildings, trees, roads and Grass, respectively 

3.2. Image Classification 

Two classification techniques have been applied for 

classifications which include: SVMs and ANNs. The results 

were then combined using serial, parallel and hybrid 

combination systems. 

3.2.1. SVMs 

SVMs are binary classifier delineate two classes by 

fitting an optimal separating hyperplane to the training data 

in the multidimensional feature space to maximize the 

margin between them. The maximum distance between 

training data of both classes maximizing the margin 

distance provides some reinforcement so that future data 

points can be classified with more confidence. Given a 

training dataset of n points of the form (x1, y1)… (xn, yn) 

where the yi are either 1 or −1, indicating the class to which 

the point xi belongs. Each xi is a p-dimensional real vector. 

The objective is to find the "maximum-margin hyperplane" 

that divides the group of points xi for which yi = 1 from the 

group of points for which yi = −1, so that the distance 

between the hyperplane and the nearest point xi is 

maximized. Any hyperplane can be written as a set of 

points x satisfyingin equation (1): 

w. x - b = 0                (1) 

In Figure 5, w is an n-dimensional vector perpendicular to 

the hyperplane, and b is the distance of the closest point on 

the hyperplane to the origin. Two parallel hyperplanes are 

applied to separate the two classes of data, so that the 

distance between them is as large as possible. The region 

bounded by these two hyperplanes is referred to as "margin", 

and the maximum-margin hyperplane is the hyperplane that 

lies halfway between them. With a normalized or 

standardized dataset, these hyperplanes can be described by 

the equations (2) and (3). The distance between these two 

hyperplanes is 
2

||𝑤||
. These constraints state that each data 

point must lie on the correct side of the margin. This can be 

rewritten as equation (4): 

w . xi - b ≥ 1 if yi=1            (2) 

w . xi - b ≤ -1 if yi= -1          (3) 

yi (w . xi – b) ≥ 1              (4) 

 

Figure 5.  Optimum separation plane 

To project the data from input space into feature space 

kernel functions such as Gaussian Radius Basis Function 

(RBF), Linear, Polynomial and Sigmoid (Quadratic) can be 

applied. The RBF kernel has proved to be effective with 

reasonable processing times [17]. Two parameters have to 

be specified in order to use the RBF kernels: (1) the penalty 

parameter, C, that controls the trade-off between the 

maximization of the margin between the training data 
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vectors and the decision boundary plus the penalization of 

training errors; (2) the width of the kernel function, γ. The 

output of SVMs represents the distances of each pixel to the 

optimal separating hyperplane, referred to as rule images. 

All positive (+1) and negative (-1) votes for a specific class 

are summed and the final class membership of a certain 

pixel is derived by a simple majority voting. 

3.2.2. ANNs 

An ANN is a form of artificial intelligence that imitates 

some functions of the human brain. All neurons on a given 

layers are linked by weighted connections to all neurons on 

the previous and subsequent layers. An ANN consists of a 

series of layers, each containing a set of processing units 

(neurons). During the training phase, the ANNs learn about 

the regularities present in the training data, and based on 

these regularities, ANNs construct rules that can be 

extended to the unknown data [18]. A well-trained network 

is capable of classifying highly complex data. There are 

several ANNs algorithms that can be used to classify 

remotely sensed images which include: multi-layer 

perceptron (MLP), fuzzy artmap classification, 

self-organized feature map (SOM) and radial basis function 

network (RBFN).  

MLP, the most widely used type of ANNs, has been 

applied in this research. It is a feed-forward ANNs model 

that maps input data sets onto a set of appropriate outputs. 

A perceptron element consists of a single node which 

receives weighted inputs and thresholds the results 

according to a rule. The perceptron is able to classify 

linearly separable data, but is unable to handle non-linear 

data. A neural network consists of a number of 

interconnected nodes (equivalent to biological neurons). 

Each node is a simple processing element that responds to 

the weighted inputs it receives from other nodes. The 

arrangement of the nodes is referred to as the network 

architecture as shown in Figure 6. The MLP can separate 

data that are non-linear because it is `multi-layer’, and it 

generally consists of three (or more) types of layers. It has 

been assumed that the number of layers in a network refers 

to the number of layers of nodes and not to the number of 

layers of weights.  

The first type of layer is the input layer, where the nodes 

are the elements of a feature vector. This vector might 

consist of the wavebands of a data set, the texture of the 

image or other more complex parameters. The second type 

of layer is the internal or `hidden’ layer since it does not 

contain output units. There are no rules, but theory shows 

that one hidden layer can represent any Boolean function. 

An increase in the number of hidden layers enables the 

network to learn more complex problems, but the capacity 

to generalize is reduced and there is an associated increase 

in training time suggests that if a second hidden layer is 

used, the maximum number of nodes in the second hidden 

layer should be three times the number in the first hidden 

layer. The third type of layer is the output layer and this 

presents the output data which represent in image 

classification, the number of nodes in the output layer is 

equal to the classes in the classification and following 

layers by connections [19]. Back-propagation for training 

the network can be expressed mathematically as shown in 

equation (5). w refers to the vector of weights, x is the 

vector of inputs, b is the bias and φ is the activation 

function. 

y = φ ( 𝑤𝑖 
𝑛
𝑖=1 𝑥𝑖 + 𝑏)= φ (wT x + b)     (5) 

 

Figure 6.  MLP with back-propagation 

3.3. Multiple Classifier Systems (MCS) 

MCS are based on the combination of different classifier 

algorithms, so the individual advantages of each method can 

be combined. Three forms of MCS have been tested and 

compared which includes: 1) serial combination, 2) Parallel 

combination, and 3) Hierarchical (hybrid) combination [20]. 

3.3.1. Serial Combination 

The classification result generated by a classifier is used as 

the input into the next classifier until a result is obtained 

through the final classifier in the chain. In this research the 

results from SVMs have been applied as input to ANNs as 

shown in Figure 7. 

 

Figure 7.  Serial combination 

3.3.2. Parallel Combination  

Multiple classifiers are designed independently and their 

outputs are combined according to certain strategies. In this 

research we combine the classification result for SVMs and 

ANNs using the maximum rule as shown in Figure 8. 

 

Figure 8.  Parallel combination 

3.3.3. Hierarchical (Hybrid) Combination  

Hybrid systems are normally used to combine both the 

serial and parallel MCS. The most common used hybrid 

systems are: Maximum Rule (MR), Dempster-Shafer 

Theory (DST), Weighted Sum (WS) and Fuzzy Majority 

Voting (FMV). The maximum rule (MR) has prooved to be 

effective in combining high dimensional data with high 

accuracy as well as low processing time and has been 
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applied for combining both the serial and parallel results as 

shown in Figure 9.  

 

Figure 9.  Hierarchical (hybrid) combination 

MR is a simple method for combining probabilities 

provided by multiple classifiers. It interprets each class 

membership as a vote for one of the k classes. For each 

individual classifier, the class that receives the highest-class 

membership is taken as the class label for that classifier. 

After that, the class labels from the N classifiers are 

compared again and the class that receives the highest class 

membership is taken as the final classification as in 

equation (6) is the class membership of a pixel to belong to 

a class Ck given by classifier fi, and PMR is the probability 

based on MR [12]. 

PMR= max [max PP (CK | fi)]         (6) 

4. Results and Discussion 

To perform the SVMs classification, pairs of (C, γ) were 

tested and the one with the best cross-validation accuracy 

was selected. First we applied a coarse grid with ranges of 

values of [0.001, 0.01, 1,……, 10 000] for both C and γ. 

Then we applied a finer grid search in the neighbourhood of 

the best C and γ, obtained from the coarse grid, with ranges 

of values [(C or γ)-10, (C or γ) +10] and with interval of 0.01 

to obtain a better cross-validation. The obtained values   

are 0.111 and 100 for gamma and penalty parameters 

respectively. Once C and γ have been specified, they were 

used with the entire training set, to construct the optimal 

hyperplane. The out put from the SVMs classifier are 

probabilities in the range of 0 to 1, where 0.0 expresses 

absolute improbability and 1.0 expresses a complete 

assignment to a class. A typical view of the SVMs output, the 

decision values of each pixel for each class, is shown in 

Figure 10. The membership values from all the land covers 

were compared and the class with the highest membership 

value was assigned to the pixel label to obtain the final 

SVMs classification as shown in Figure 13(b). 

 

 

Figure 10.  Atypical view of membership values of the SVMs output: (a) 

Buildings, (b) Trees, (c) Roads, and (d) Grass classes 

 

 

Figure 11.  Atypical view of membership values of the ANNs output: (a) 

Buildings, (b) Trees, (c) Roads and (d) Grass classes 

 

 

Figure 12.  Atypical view of membership values of the hybrid system: (a) 

Buildings, (b) Trees, (c) Roads and (d) Grass classes 

 

Figure 13.  a typical view of the classification results. (a) orthophoto, (b) 

SVMs classified image, (c) ANNs classified image, (d) serial combination 

classified image, (e) parallel combination classified image, (f) hybrid (MR) 

classified image. The colors indicate the different classes: Red for buildings, 

Green for trees, Black stands for roads and White for Grass 

To perform the ANNs classification, the structure of the 

MLP model was as follows: the numbers of input, hidden 

and output layer neurons were 8, 1 and 8 respectively; 

training threshold contribution=0.90; training rate=0.200; 

training RMS exit criteria 0.10 and number of training 

iteration=1000. A typical view of the ANNs output, the 

decision values of each pixel for each class, is shown in 

figure 11. The membership values from all the land covers 

were compared and the class with the highest membership 

value was assigned to the pixel label to obtain the final 

ANNs classification as shown in Figure 13(c). The 

probability values (images) obtained from SVMs and ANNs 
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were then combined in serial, parallel and hybrid forms in 

order to estimate the combined probabilities. A typical view 

of membership values of the hybrid system is given in figure 

12. Once again, the membership values from all the land 

covers were compared and the class with the highest 

membership value was assigned to the pixel label. Typical 

views of the serial, parallel and hybrid systems classification 

results are shown in Figure 13(d), (e) and (f).  

4.1. Overall Kappa 

The results for SVMs, ANNs, serial combination, parallel 

combinations and hybrid system have been compared with 

the reference data. The overall Kappa of single classifiers 

aw well as hybrid systems are summarized in Table 3. 

Table 3.  Overall Kappa of single classifiers and hybrid systems 

Overall Kappa Classifier 

0.6393 SVMs 

0.6801 ANNs 

0.7484 Serial Combination 

0.7974 Parallel Combination 

0.8277 Hybrid Combination 

The overall kappa for individual classifiers was 0.6393 

and 0.6801 for SVMs and ANNs respectively. The hybrid 

system has performed the best with 0.8277 overall kappa 

followed by parallel combination and serial combination 

with 0.7974 and 0.7484 overall kappa, respectively. 

A closer examination of the SVMs and ANNs results 

reveals that the kappa coefficient is relatively low, indicating 

these methods are unsatisfactory for classifying remotely 

sensed images if they are not incorporated into a 

combination system. The improvement in overall Kappa 

achieved by the three combination methods compared with 

the best individual classifier are 0.0683, 0.1173 and 0.1476 

for serial, parallel and hybrid systems respectively. 

4.2. Class Accuracy 

The kappa index of agreement (KIA) is statistical measure 

and has been adapted for class-accuracy assessment in this 

research. Class accuracies of single classifiers as well as 

hybrid systems are summarized in Table 4. For buildings, 

the hybrid and parallel systems have achieved the best class 

accuracies with 1.000 KIA followed by serial combination, 

ANNs and SVMs with 0.8438, 0.6535 and 0.5413 KIA 

respectively. For trees, the parallel combination achieved 

the best rsults with 0.9754 KIA followed by ANNs, hybrid 

combination, serial combination and SVMs with 0.8490, 

0.8151, 0.6816 and 0.6573 KIA respectively. For roads, 

SVMs and serial combination achieved the best results with 

0.9600 KIA followed by the hybrid system, parallel system 

and ANNs with 0.8251, 0.7145 and 0.5661 KIA 

respectively. For grass, the hybrid combination achieved the 

best results with 0.6956 KIA followed by the parallel 

combination and ANNs with 0.6322 and 0.5535 

respectively. SVMs and serial Combination have performed 

the worst with the same KIA, 0.4296. 

An assessment of the KIA confirms that the hybrid system 

performed the best in most cases as shown in table 4. Most of 

the class-accuracies are improved by the hybrid system. 

Whereas the application of SVMs and ANNs resulted in 

average KIA of 0.64705 and 0.62455 respectively, the 

application of the combination systems resulted in average 

KIA of 0.72875, 0.779875 and 0.76745 for serial, parallel 

and hybrid systems respectively. Another advantage of the 

hybrid systems is that the achieved errors are less variable. 

Whereas the application of SVMs and ANNs resulted in 

standard deviation of 0.1978 and 0.1182, for KIA, the 

application of the combination systems resulted in average 

KIA of 0.1990, 0.1601 and 0.1086 for serial, parallel and 

hybrid systems respectively. 

Finally, it is worth noting that the classification accuracy 

for the land cover classes of trees and roads using the hybrid 

system is lower compared to those using Parallel and Serial 

techniques. Under such an observation, if a particular class is 

very important, different combination techniques have to be 

tested first to select the best combination method for that 

class. 

Table 4.  Class-Specific Accuracies of single classifiers and hybrid 
systems 

Class-Specific Accuracies 
Classifier 

Grass Roads Trees Buildings 

0.4296 0.9600 0.6573 0.5413 SVMs 

0.5535 0.5661 0.8490 0.6535 ANNs 

0.4296 0.9600 0.6816 0.8438 Serial 

0.6322 0.7145 0.9754 1.0000 Parallel 

0.6956 0.8251 0.8151 1.0000 Hybrid 

5. Conclusions 

In this paper, automatic building extraction procedure 

within classification approaches has been applied. Aerial 

image with spatial resolution 9cm, LiDAR data and other 

ancillary data have been applied as input data for different 

classification approaches. SVMs and ANNs classifiers were 

tested and compared to classify buildings, trees, roads and 

grass. The results show that the ANNs method has achieved 

an overall kappa of 0.6801, compared with 0.6393 that was 

obtained from the SVMs method. The improvements of 

overall kappa that were obtained by combining SVMs and 

ANNs classifiers have been reported. Hybrid Combination 

performed the best with 0.8277 overall kappa followed by 

parallel combination and serial combination with 0.7974 

and 0.7484 overall kappa respectively.  
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