
American Journal of Geographic Information System 2018, 7(5): 133-144 

DOI: 10.5923/j.ajgis.20180705.02 

 

Analysis of Vegetation Dynamics and Responses to 

Inter-annual Changes of Climatic Variables in Dry 

Afromontane Forest Fragments, Northern Ethiopia 

Zenebe Girmay Siyum
1,2,*

, J. O. Ayoade
3
, M. A. Onilude

4
, Motuma Tolera Feyissa

2
 

1Pan African University, Life and Earth Sciences (Including Health and Agriculture) Institute, University of Ibadan, Ibadan, Nigeria 
2Hawassa University, Wondo Genet College of Forestry and Natural Resource, Shashemene, Ethiopia 

3Department of Geography, University of Ibadan, Ibadan, Nigeria 
4Department of Agricultural and Environmental Engineering, University of Ibadan, Ibadan, Nigeria 

 

Abstract  Understanding the current changes and dynamics of different vegetation communities under the background of 

climate change provides basis for ecological restoration in drylands. The spatiotemporal variations of vegetation growth and 

their relationships with climatic variables across the arid and semi-arid parts of northern Ethiopia have not yet been well 

researched. This study analyzed the trends (changes) in vegetation greenness of the dry Afromontane forests of northern 

Ethiopia and examined their relationships with the climatic variations for the period 2000-2016, based on space-based 

vegetation index derived from the Moderate Resolution Imaging Spectroradiometer (MODIS13Q1) product and gridded 

high-resolution climate datasets. A simple linear regression model, correlation analysis, and trend analysis (using 

Mann-Kendall test and Theil-Sen median trend analysis) were used to assess vegetation dynamics and their responses to 

climate variability. Results of the study showed a general decreasing trend in vegetation greenness and slight warming trends, 

with considerable spatiotemporal variations. The NDVI-rainfall relationships were positive in both study sites, implying that 

rainfall is the main factor which determines vegetation growth in the study region. Future works may need to concentrate on 

time-series data with better quality (e.g. high resolution) and incorporate land use change and other eco-climatological factors 

into the study to better account for the spatiotemporal vegetation variability. 

Keywords  Climate Change, Dry Afromontane Forest, Normalized Difference Vegetation Index, Trend Analysis, 

Vegetation Dynamics 

 

1. Introduction 

Dryland vegetation has enormous socio-economic and 

ecological benefits. Nevertheless, they are already at greater 

risk mainly due to threats from climatic and anthropogenic 

factors [1, 2]. Recent studies claimed that the effects of 

anthropogenic disturbances on forest ecosystems seem    

to outweigh the climate-induced impacts [3, 4]; but, 

projections into future scenario also show serious 

repercussions of climate change in the dry tropics [5]. In 

addition to the human-induced land use changes, climate 

will continue to play an important role in the dynamics of 

dryland systems [6, 7]. Climate change may directly affect 

the growth  and population  dynamics of trees growing in  
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drylands [8, 9], mainly through variations in rainfall and 

temperature [10]. The variations in rainfall and temperature 

regimes are expected to influence tree growth, leaf 

phenology, and survivorship through their impacts on 

photosynthesis, respiration and nutrient dynamics [11, 12]. 

[13] also confirmed the sensitivity of dry forests to the 

predicted changes in rainfall regimes across the dry tropical 

regions. But, the future of these ecosystems remains 

uncertain in the face of the changing climate.  

The effects of climate change are expected to be even 

pronounced in the dry tropics given their high sensitivity to 

the climate anomalies, such as frequent occurrences of 

extreme heat, increasing aridity and erratic rainfall patterns. 

The climate in the tropics and sub-tropics will get warmer 

and drier, with some exceptions in East Africa, the Sahel, 

the Guinean coast and southern Sahara where there is a 

likelihood of increment in rainfall, but with a high level of 

uncertainty [14]. This will likely result in various drastic 

transformations, including losses of biodiversity, species 
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range shifts, altered tree productivity, and an overall 

extinction risks to the already endangered species living in 

the highly fragmented environments [15, 12, 16]. This will 

possibly alter the balance and functioning of the ecosystem, 

with subsequent negative impacts on the livelihoods of the 

forest-dependent people. Many dry forests and woodlands 

in the tropics are expected to be highly vulnerable to 

climate-induced forest dieback [17, 18]. This is particularly 

true for countries such as Ethiopia, where much of its 

landmass (over 72% of the total land area) is categorized 

under dryland area [19]. Therefore, understanding the 

response of dryland vegetation to climate change is 

emerging as a major research agenda [20]. In this regard, 

knowledge of the current changes and dynamics of various 

vegetation communities in the face of climate change has 

crucial roles in planning sustainable forest management 

strategies.  

A common approach used to detect the response of 

vegetation to climate change is the satellite-derived 

vegetation index (VI). The Normalized Difference 

Vegetation Index (NDVI) is among the most widely used 

VI [21, 22]. The NDVI, a normalized ratio of the 

near-infrared and red spectral reflections, is often directly 

related to percentage of ground cover, photosynthetic 

activity of plants, surface water, leaf area index and amount 

of biomass [23]. Thus, analysis of NDVI trend and its 

relationships with climatic variables help in understanding 

the temporal trend of vegetation’s biophysical 

characteristics at different spatial scales and hence have 

crucial implications for research on climate and vegetation 

dynamics [24]. Previous studies have proven the wide 

applicability of undertaking correlation analyses between 

NDVI time-series and climatic variables for examining 

vegetation dynamics and their responses to climate change 

in varied bioregions [25-29, 20]. Although these several 

studies conducted hitherto demonstrated the existence of 

close relationship between vegetation dynamics and climate 

change, such studies have to be replicated across various 

spatial and temporal scales. This helps to investigate the 

emerging complex relationships and to properly understand 

the extent to which climate change is affecting ecosystem 

structures and functioning.  

In general, the NDVI has been used as a proxy for 

analysing vegetation dynamics and it is expected to show 

large temporal and spatial variations in different climatic 

regions and for different vegetation types [30-32, 29]. 

NDVI data derived from NOAA/AVHRR have been widely 

used to quantify vegetation activity [33, 22]. Recently, the 

NDVI dataset derived from the Moderate Resolution 

Imaging Spectroradiometer (MODIS) improved the spatial 

resolution of the previous products and enabled a thorough 

examination of vegetation dynamics at various scales [34, 

35]. Thus, this study examined vegetation dynamics in the 

dry Afromontane forest remnants of northern Ethiopia using 

the MODIS NDVI (2000-2016) and further investigated if 

such vegetation trends can be explained by the long-term 

climate trends. Since the decline in dryland forest 

productivity can be interpreted as a sign of widespread 

drought stress, we expected NDVI to be positively 

correlated with moisture availability.  

2. Materials and Methods 

2.1. Study Area 

 

Figure 1.  Location of the Study Area 

 

 

Figure 2.  Mean Monthly Rainfall and Mean Monthly Temperature 

(Maximum and Minimum) Records (1980-2016) of the Study Areas, (a) 

Hugumburda and (b) Desa’a, Northern Ethiopia 

The study was conducted in Desa’a (1340 to 1350 N, 

3947 E) and Hugumburda (1238 N, 3932 E) forests, the 

two major dry Afromontane forest remnants in northern 

Ethiopia. These forests are mainly located along the western 
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escarpment of the Great Rift Valley facing the Afar 

depression [36]. The area falls in the semi-arid 

agro-ecological zone of Tigray region (Figure 1) where the 

climate is influenced by topography and exposures to 

rain-bearing winds [37].  

The regional climate shows a distinct seasonality in 

rainfall with a unimodal rainfall pattern. The mean annual 

rainfall was estimated at 532 mm in Desa’a [38] and 981 mm 

in Hugumburda [36]. The core rainy season occurs between 

June and September, while the remaining extended periods 

are more or less dry (Figure 2). 

Large areas of these forests are characterized by shallow 

soils and frequent rock outcrops. The dominant soil types are 

Leptosols, Cambisols, Vertisols, Regosols, and Arenosols 

[36]. The study sites are generally characterized by rugged 

topography. These forests are broadly classified as dry 

Afromontane forests and are dominated by Juniperus 

procera and Olea europaea subsp. cuspidata. 

2.2. Data Sources and Processing  

2.2.1. NDVI Data 

NDVI data derived from the Moderate Resolution 

Imaging Spectroradiometer (MODIS13Q1) product from 

NASA (USGS) was used for the period 2000-2016 as a 

proxy for vegetation growth and change detection. The 

MODIS NDVI product has a spatial resolution of 250 m and 

a temporal resolution of 16 days composites and was 

downloaded from http://earthexplorer.usgs.gov/. This 

product is based on the MODIS sensor on-board NASA’s 

Terra (EOS AM) and Aqua (EOS PM) satellites. The land 

imaging component of the MODIS sensor combines 

characteristics of AVHRR (Advanced Very High Resolution 

Radiometer) and Landsat sensors to provide improved 

monitoring of the earth’s surface at global scales. The NDVI 

data acquired from the MODIS 16-days composite datasets 

from 2000 to 2016 were calculated by the amount of 

reflectance in near-infrared (2: Band 2, 858 nm) and red (1: 

Band 1, 645 nm) portions of the electromagnetic spectrum. 

These have a spatial resolution of IFOV 250 m. 

 
 

2 1

2 1

MODISNDVI
 

 





         (1) 

Then, the NDVI values were corrected by a scale factor 

(0.0001). The NDVI time-series were aggregated to 

monthly, seasonal and annual averages to detect the NDVI 

trends in the given time period. These values measure the 

seasonal and temporal pattern of vegetation greenness, 

vigour, or productivity. Intra- and inter-annual dynamics in 

leaf phenology is often assessed using NDVI [39]. Thus, 

annual and season NDVIs were generated by computing 

averages of the respective monthly NDVI values. The 

dynamics in NDVI values is used to assess the intra- and 

inter-annual dynamics in vegetation growth [40]. The mean 

NDVI values were calculated in ArcGIS 10.3 using zonal 

statistics. 

2.2.2. Climate Data 

The availability of weather stations in the study sites is 

extremely low and the existing climate records were 

fragmentary (i.e., short climatic records containing missing 

values for several months and/or years). This imposed 

difficulties for understanding the temporal and spatial 

climate variability of the study region, which is 

characterized by a complex topography. Therefore, 

high-resolution climate datasets from AgMERRA (at 

0.25-degree resolution) [41] and the latest version of the 

Climate Research Unit time-series (CRU TS 4.01) datasets 

(at 0.5-degree resolution) [42] were used in this study. 

These global grid datasets are widely used climate data 

sources in several studies. Especially, the climate data 

developed by the Climate Research Unit (CRU) of the 

University of East Anglia have been widely used in several 

studies given its global coverage, long temporal scale (since 

1901) and abundance of climatic variables [43]. These 

global grid datasets were used to derive temperature 

(minimum and maximum) and rainfall data and to 

supplement any fragmentary climate data. The combined 

climate data spans the period 1901-2016. For the 

NDVI-climate analyses, the climate data from 2000 to 2016 

was used in accordance with the MODIS NDVI data.  

2.3. Data Analysis 

2.3.1. Trend Analysis 

The study employed a combination of three commonly 

used methods of trend analysis, the least-square linear 

regression, the Mann-Kendall test, and the Theil-Sen’s slope 

trend test, to detect and characterize the trends in vegetation 

dynamics and climatic variables in the study region. These 

methods are widely used in analysing patterns of directions 

and magnitude (rates of changes) of the trends of NDVI and 

climatic time-series datasets [44, 30, 31]. The slope of the 

regression equation (developed using the linear least square 

fitting of the long-term NDVI series) was applied to analyse 

the direction of vegetation change [45, 46, 39, 20]. 

𝑆𝑙𝑜𝑝𝑒 =
𝑛×  𝑖×𝑌𝑖 −  𝑖𝑛

𝑖=1    𝑌𝑖
𝑛
𝑖=1  𝑛

𝑖=1

𝑛× 𝑖2𝑛
𝑖=1 −  𝑖𝑛

𝑖=1  
2         (2) 

Where, n is the accumulative number of years during the 

study period (n = 17 years in this study), variable i stands for 

the year number, and Yi is the value of the dependent 

variable in the ith year. In general, if the slope > 0, the 

variation of the dependent variable exhibits an increasing 

trend, whereas if slope < 0, it represents a decreasing trend.  

The Mann-Kendall test, a non-parametric rank-based test, 

analyses the strength of the trend patterns using Z statistic 

values [40, 20]. The mathematical equations for calculating 

Mann-Kendal test statistic (S), Variance of S [VAR(S)] and 

the standardized test statistics Z are as follows: 

𝑆 =   𝑠𝑔𝑛 𝑋𝑗 − 𝑋𝑘 
𝑛
𝑗=𝑘+1

𝑛−1
𝑘=1          (3) 
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𝑠𝑔𝑛 𝑋𝑗 − 𝑋𝑘 =  

1 𝑖𝑓 𝑋𝑗 − 𝑋𝑘 > 0

0 𝑖𝑓 𝑋𝑗 − 𝑋𝑘 = 0

−1 𝑖𝑓 𝑋𝑗 − 𝑋𝑘 < 0

       (4) 

The mean of S is E[S] = 0 and the variance, VAR(S) is: 

𝑉𝐴𝑅 𝑆 =
1

18
 𝑛 𝑛 − 1  2𝑛 + 5 −  𝑡𝑗  𝑡𝑗 − 1  2𝑡𝑗 + 5 
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           (6) 

Where, Xi and Xj are the time-series observations, n is the 

length of the time-series, p is the number of the tied groups in 

the dataset and tj is the number of data points in the jth tied 

group.  

The Theil-Sen method calculates the non-parametric 

(rank-based) median slope of the fitted trend line of the 

NDVI time-series and serves as an indicator of magnitude or 

quantitative rate of change in the vegetation greenness over 

time [44, 30, 31]. In this test, first a set of linear slopes are 

calculated as follows: 

𝑑𝑘 =
𝑋𝑗−𝑋𝑖

𝑗−𝑖
                (7) 

For (1  i  j  n), where d is the slope, X denotes the 

variable n is the number of data, and i and j are indices. The 

Sen’s slope is then calculated as the median from all slopes: 

b = Median dk. The intercepts are computed for each 

time-step t as given by the following equation: 

𝑎𝑡 = 𝑋𝑡 − 𝑏 ∗ 𝑡             (8) 

The corresponding intercept is as well the median of all 

intercepts. This function also computes the lower and upper 

confidence limits for the Sen’s slope. 

2.3.2. NDVI-Climate Relationship 

After estimating the trends in NDVI, rainfall, and 

temperature, the study further analysed the relationships 

between NDVI values and climatic variables (rainfall and 

temperature). The correlations between NDVI and climatic 

variables were analysed during 2000-2016. The strength of 

the linear association between NDVI values and climatic 

variables was assessed by calculating the Pearson’s product 

moment correlation coefficient [30, 31, 20, 45, 40, 44]. The 

formula for the Pearson’s r is given as follows: 

𝑟𝑥𝑦 =
  𝑋𝑖−𝑋   𝑌𝑖−𝑌  
𝑛
𝑖=1

   𝑋𝑖−𝑋  
2𝑛

𝑖=1     𝑌𝑖−𝑌  
2𝑛

𝑖=1

           (9) 

Where, n is the sample size, Xi and Yi represent 

observations of independent and dependent variables, 

respectively, and 𝑋  and 𝑌  are the corresponding average 

values. rxy is the coefficient for the two samples, which 

indicates the degree of correlation between the two factors, 

and its value is in the range of [-1, 1]. When r > 0, it means 

that they are positively correlated, whereas when r < 0, they 

are negatively correlated. In general, the larger the absolute 

value of the correlation coefficient, the stronger is the 

correlation between each variable. 

A 95% significance level was used to determine the 

strength of the relationships. Various studies revealed that 

correlation analyses between NDVI time-series and climatic 

variables are widely applied for examining vegetation 

dynamics and their responses to climate change in varied 

bioregions [25-29, 20]. Before undertaking the analyses, 

each time-series data was standardized by subtracting the 

mean of the time-series and dividing by the standard 

deviation. R programming language software (mainly in R 

commander) was used for all the statistical data analyses. R 

programming language is powerful and license free software 

capable of performing a wide variety of statistical tests 

ranging from simple to sophisticated analyses with little 

programming. It is highly extensible with user-submitted 

packages for specific functions. A script developed in the R 

environment allows easy reproducibility of analysis. It has a 

lot of functionalities and vast package ecosystem making   

it highly flexible and powerful for dealing with data 

management, analysis and graphic presentations. In general, 

R software is a well-developed, simple and effective 

programming language which is compatible with all 

computer operating systems. It includes an integrated suite 

of software facilities for data manipulation, calculation and 

graphical display. Therefore, R programming language 

remains the best analytical tool for various statistical tests, 

including linear and non-linear modelling, classical 

statistical tests, time-series analysis, classification, and 

clustering, among others. Consequently, R software was 

chosen for analysing the time-series datasets used in this 

study. Accordingly, this study used specific functions in the 

trend package within the time-series package for the data 

analyses. The mathematical basis for these analyses are 

presented in the aforementioned equations. In general, 

analyses results are statistically significant at P<0.05 unless 

stated otherwise. 

3. Results 

3.1. Trends in Vegetation Greenness 

Table 1 presents a summary of descriptive statistical 

parameters of the NDVI values in both study sites for the 

period 2000-2016. The mean NDVI values recorded were 

0.68780.0155 ( SE) and 0.58000.0244 ( SE) in 

Hugumburda and Desa’a, respectively (Table 1). The 

variability of annual NDVI values, as measured by the 

coefficient of variation, was higher in Desa’a site than 

Hugumburda site. 

Using a linear regression analysis, we showed the changes 

in NDVI trends during 2000-2016 in the dry Afromontane 

forest remnants of northern Ethiopia. The NDVI changing 

patterns were analysed based on the slope which is the 

gradient of the trend line (Figure 1). Results of the monthly 

NDVI values showed an increasing trend towards the main 
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rainy season in the region. Although variations were noticed 

across the study periods, we, generally, observed a gradual 

increment in NDVI starting from June towards the end of the 

main growing season (September) and starts to drop 

thereafter. In both study sites, the maximum NDVI values 

were recorded in August and September. The NDVI trends 

of both study sites during 2000-2016 as estimated by means 

of the least-squares linear regression, Theil-Sen’s slope trend 

test and the Mann-Kendall test score are presented in Figure 

3 and Table 2.  

Table 1.  Descriptive Statistics of NDVI Values (2000-2016) 

Variable 

Hugumburda site Desa’a site 

Mean 

NDVI 

Max 

NDVI 

Min 

NDVI 

Mean 

NDVI 

Max 

NDVI 

Min 

NDVI 

Range 0.2868 0.2305 0.4270 0.4524 0.4296 0.3684 

Minimum 0.6353 0.6905 0.4769 0.4943 0.5396 0.3703 

Maximum 0.9220 0.9210 0.9039 0.9468 0.9692 0.7387 

Mean 0.6878 0.7443 0.5338 0.5800 0.6385 0.4534 

SE Mean 0.0155 0.0125 0.0238 0.0244 0.0231 0.0203 

Median 0.6772 0.7292 0.5166 0.5609 0.6143 0.4424 

SD 0.0640 0.0516 0.0979 0.1006 0.0954 0.0836 

CV 9.31 6.93 18.35 17.34 14.94 18.43 

 

 

Figure 3.  Trend Analysis Plot (2000-2016) for Mean Annual NDVI 

Changes in two Sites, (a) Hugumburda and (b) Desa’a Sites, in Northern 

Ethiopia. The Dotted Lines Represent LOWESS Smoothing Line 

The study further analysed the inter-annual NDVI trends 

using the Mann-Kendall test and Thiel-Sen median trend 

analysis method. The inter-annual trend of NDVI values  

for the period 2000-2016 alternated between greening 

(increasing) and browning (decreasing) trends in both study 

sites, with a peak value recorded in the year 2001. 

Overall, the results showed a decreasing trend of 

vegetation greenness across the study periods in both study 

sites. Nevertheless, the changes in annual NDVI values were 

not significant at the 5% significance level, with the 

exception of the minimum NDVI value in Desa’a site which 

showed significant vegetation degradation. Based on the 

results of the Theil-Sen slope, the annual change rates were 

-0.002 for Hugumburda and -0.003 for Desa’a. In general, 

results of the Mann-Kendall test and Theil-Sen median trend 

analysis (Table 2) confirmed that the overall trend of 

vegetation greenness is slightly decreasing with time even 

though an increasing trend was also noticed in certain areas. 

The degree of vegetation degradation is more serious in 

Desa’a site as compared to that of Hugumburda site. 

Table 2.  Mann-Kendall and Sen’s Slope Tests Results of NDVI Changes 
for the Period 2000-2016 

Site 
NDVI 

values 

Mann-Kendall’s 

tau (τ) 
Sen’s slope (s) P-value 

Hugumburda 

Mean 

NDVI 
-0.2058824 -0.001558673 0.26610 

Max 

NDVI 
-0.2941176 -0.003084956 0.10820 

Min 

NDVI 
-0.1176471 -0.0009434204 0.53660 

Desa’a 

Mean 

NDVI 
-0.1617647 -0.002970642 0.38700 

Max 

NDVI 
-0.2647059 -0.003640219 0.14940 

Min 

NDVI 
-0.3970588 -0.005439763 0.02902* 

*Significant Trend at 5% Significance Level of Two-tailed Tests 

3.2. Trends in Climatic Variability 

Table 3 presents a summary of descriptive statistics of the 

climatic variables in both study sites for the period 

1980-2016. Higher amount of mean annual rainfall (848.7 

mm) was recorded in Hugumburda site than in Desea site. 

The coefficient of variation (CV), which measures 

dispersion around the mean, was also computed to determine 

the variability of annual rainfall and temperature in the study 

sites. The variability of annual rainfall was higher in 

Hugumburda compared to that of Desa’a site, whereas the 

variation for both maximum and minimum temperature was 

higher in Desa’a site (Table 3). 

The inter-annual changes in rainfall and temperature 

(minimum and maximum) in the period 1980-2016 are 

presented in Figure 4. In Desa’a site, the minimum and 

maximum temperature recorded were 28°C (in 2007) and 

12°C (in 2011), respectively. The minimum temperature 

recorded in Hugumburda site was 15°C in 2005, while the 

(a) 

(b) 
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maximum temperature was 30°C in 2015. In general, 

temperature showed a slightly increasing but insignificant 

trend in both study sites. But, the trend in minimum 

temperature was significant in both study sites (p<0.05) 

(Table 4). 

Table 3.  Descriptive Statistical Attributes of Rainfall and Temperature for 
the Period 1980-2016 

Variable 
Hugumburda site Desa’a site 

Rainfall Tmax Tmin Rainfall Tmax Tmin 

Range 944.0 2.517 1.933 590.7 2.683 1.883 

Minimum 455.7 28.642 15.325 352.4 25.175 12.117 

Maximum 1399.7 31.158 17.258 943.1 27.858 14.000 

Mean 848.7 30.107 16.455 595.3 26.823 13.119 

SE Mean 37.1 0.105 0.0740 19.6 0.106 0.0768 

Median 819.6 30.133 16.508 583.3 26.892 13.158 

SD 225.4 0.640 0.450 119.3 0.645 0.467 

CV 26.56 2.13 2.73 20.04 2.40 3.56 

Note: Tmax= mean annual maximum temperature, Tmin= mean annual 

minimum temperature 

 

 

Figure 4.  Trend Analysis Plot (with LOWESS Smoothing Curves) for (a) 

Mean Annual Rainfall and (b) Mean Annual Temperature (Maximum and 

Minimum) in Hugumburda and Desa’a Sites of the Dry Afromontane 

Forest Remnants in Northern Ethiopia for the Period 1980-2016 

On the other hand, the temporal changes in rainfall 

showed a negative trend during the study period. Peak values 

of rainfall were recorded in 2005, 2007 and 2012 in Desa’a 

site. The maximum value of mean annual rainfall recorded in 

Desa’a was 943.1 mm, and 1399.7 mm in Hugumburda. It is 

evident from the figure that considerable spatiotemporal 

variations in temperature and rainfall were observed in the 

study region both temporally and spatially. 

Table 4. Mann-Kendall and Sen’s Slope Tests Results for Rainfall and 
Temperature (*Significant Trend at 5% Significance Level of Two-tailed 
Tests) 

Site 
Climate 

variable 

Mann- 

Kendall’s 

tau (τ) 

Sen’s slope 

(s) 
P-value 

Hugumburda Annual RF -0.3235294 -15.95455 0.07651 

 Tmax 0.2533202 0 0.2478 

 Tmin 0.51245 0 0.0168* 

Desa’a Annual RF -0.78266 -5.675 0.4338 

 Tmax 0.2435441 0 0.2684 

 Tmin 0.5092286 0 0.0177* 

3.3. Relationships between NDVI Trends and Climatic 

Variables 

The study analysed the relationships between NDVI 

trends (2000-2016) and changes in climatic variables 

(rainfall and temperature) in the semi-arid region of northern 

Ethiopia. Results of the correlation analysis between the 

area-averaged mean NDVI values and climatic variables in 

both study sites are presented in Table 5. 

The correlations showed considerable variations spatially 

over the study periods. Positive correlations were found 

between the mean NDVI values and rainfall in the vegetated 

areas of both study sites. The correlations in Desa’a site were 

significant (P<0.05) (Table 5). But, the NDVI values 

correlated negatively with temperature, and significant 

correlations (at 5% significance level) were found in April 

and June-September. 

In addition, correlation coefficients (Pearson’s r) were 

calculated between the seasonally-averaged NDVI values 

and the corresponding seasonal rainfall and temperature to 

determine the relationship between vegetation dynamics and 

the seasonal climatic variables. The mean NDVI showed 

different responses to the changes in the climatic variables.  

On a seasonal scale, most positive correlations occurred 

during the rainy season, exceeding all other seasons (Figures 

5 and 6). Negative correlations were observed during the dry 

season. Spatially, the positive correlations between NDVI 

and rainfall in Hugumburda site were significantly higher 

than those in Desa’a site.  

The study further analysed the correlations between  

NDVI and rainfall of the same month in both study sites. 

Stronger correlations were found between NDVI during 

August (r=0.665, p-value=0.004) and September (r=0.494, 

p-value=0.044) in Hugumburda site, and NDVI during  

May (r=0.491, p-value=0.045) and August (r=0.346, 

p-value=0.174) in Desa’a site. 

 

(a) 

(b) 
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Table 5.  Correlation Coefficients (Pearson’s r) for NDVI and Climate Variables 

Site NDVI values 
Annual rainfall 

Wet season 

rainfall 

Max 

temperature 
Min temperature 

r(p-value) r(p-value) r(p-value) r(p-value) 

Hugumburda 

Mean NDVI 0.209 (0.422) 0.438 (0.079) -0.286 (0.266) -0.343 (0.178) 

Max NDVI 0.270 (0.295) 0.435 (0.081) -0.279 (0.277) -0.391 (0.120) 

Min NDVI 0.152 (0.561) 0.383 (0.129) -0.224 (0.386) -0.309 (0.227) 

Desa’a 

Mean NDVI 0.511 (0.036)* 0.397 (0.115) -0.395 (0.117) -0.346 (0.174) 

Max NDVI 0.585 (0.014)* 0.481 (0.050)* -0.443 (0.075) -0.382 (0.130) 

Min NDVI 0.560 (0.020)* 0.488 (0.047)* -0.393 (0.118) -0.427 (0.087) 

*At the 0.05 Level was Significantly Correlated 

Table 6.  Correlations (Pearson’s r) between Seasonally-averaged NDVI Values and Corresponding Climatic Variables (Rainfall and Temperature; Tmax 
= Maximum Temperature, and Tmin = Minimum Temperature); Correlations with p-value <0.05 are Significant 

Site Season 
Rainfall (mm) Tmax (°C) Tmin (°C) 

r(p-value) r(p-value) r(p-value) 

Hugumburda 

Autumn -0.490 (0.046) 0.168 (0.519) 0.330 (0.195) 

Winter 0.074 (0.778) -0.170 (0.514) 0.049 (0.853) 

Spring 0.286 (0.265) 0.037 (0.889) -0.003 (0.991) 

Summer 0.323 (0.206) -0.296 (0.249) -0.303 (0.238) 

Desa’a 

Autumn 0.038 (0.888) 0.025 (0.926) -0.022 (0.935) 

Winter -0.135 (0.606) -0.305 (0.235) -0.096 (0.713) 

Spring 0.501 (0.04) -0.261 (0.312) 0.141 (0.588) 

Summer 0.272 (0.291) -0.409 (0.103) -0.134 (0.607) 

 

 

 

Figure 5.  Spatial Distribution of Seasonal NDVI Changes from 2000 to 

2016 in Hugumburda Site, Northern Ethiopia 

 

 

Figure 6.  Distribution of Seasonal NDVI Changes from 2000 to 2016 in 

Desa’a Site, Northern Ethiopia 
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Figures 5 and 6 show the spatial distribution of NDVI 

values and were used to determine the overall relationship 

between vegetation dynamics and seasonal climatic 

variables during 2000-2016. Higher NDVI values were 

recorded during the summer season in both study sites 

confirming that rainfall remains the main factor affecting 

vegetation growth in the dry Afromontane forests of northern 

Ethiopia. 

4. Discussion  

This study analysed the trends in vegetation greenness and 

climatic variables in the semi-arid region of northern 

Ethiopia. Besides, correlation analyses were undertaken 

between the climate datasets and NDVI time-series to 

analyse vegetation responses to climate variability in the 

study region. The results showed an overall decreasing 

(browning) trend of vegetation cover, with considerable 

spatiotemporal variability. Rainfall remained an overriding 

factor in determining the spatiotemporal variability in NDVI 

trends. 

4.1. Analyses of Trends 

Using a combination of a least-square linear regression 

analysis, Mann-Kendall test and Theil-Sen median trend 

analysis, this study examined the changes in trends of NDVI 

values and the main climatic variables in the dry 

Afromontane forests of northern Ethiopia. Previous studies 

[e.g. 44, 20] confirmed that the changes in NDVI trends can 

best be described using the results of the Mann-Kendall test 

and the Theil-Sen median trend analysis. Accordingly, the 

significance level of the changes in NDVI trends was 

determined using the Z-values at 5% significance level. The 

results of the Mann-Kendall test were classified into 

insignificant changes (if -1.96 < Z < 1.96) or significant 

changes (if Z  1.96 or Z  -1.96). Besides, the patterns of 

trends in NDVI values and climatic variables were classified 

following the approach of [20] (Table 7). 

Table 7.  Classification of NDVI Trend Changes using the Sen’s Slope 
and Z-values 

Group SNDVI Z-values 
Description of 

NDVI trend 

1  0.001  1.96 
Significant 

improvement 

2 0.0001 to 0.001 -1.96 to +1.96 Slight improvement 

3 -0.0001 to 0.0001 -1.96 to +1.96 
Stable or 

non-vegetated 

4 -0.001 to -0.0001 -1.96 to +1.96 Slight degradation 

5 < -0.001  -1.96 
Significant 

degradation 

Source: adapted from [20] 

The results showed no significant (obvious) trend of both 

vegetation dynamics and climate variability. The vegetation 

change alternated between increasing (greening) and 

decreasing (browning) trends. Similar vegetation dynamics 

trends were reported by [30]. Besides, slight warming was 

observed (especially the minimum temperature showed a 

significant trend) in the study region, while rainfall showed a 

decreasing trend. The results showed that the trend patterns 

of NDVI and the climatic variables (rainfall and temperature) 

were spatially and temporally heterogeneous, alternating 

between increasing and decreasing trends. However, the 

results showed an overall decreasing trend of vegetation 

greenness in both study sites across the study periods 

(2000-2016). These results indicate that the study region 

experienced considerable vegetation degradation during the 

study periods. 

Table 8.  Results of the Mann-Kendall Test (Z) and Theil-Sen Median 
Trend (S) Analysis Showing Trend Patterns of NDVI (MaxNDVI = 
Maximum NDVI, MinNDVI = Minimum NDVI) and Climatic Variables 
(R ainfall and Temperature; Tmax = Maximum Temperature and Tmin = 
Minimum Temperature) 

Variable 
Hugumburda Desa’a 

S Z S Z 

Mean NDVI -0.0016 -1.1122 -0.0029 -0.8651 

MaxNDVI -0.0031 -1.6065 -0.0036 -1.4417 

MinNDVI -0.0009 -0.6179 -0.0054 -2.1832 

Annual rainfall -15.955 -1.7713 -5.6750 -0.7827 

Tmax 0 1.1558 0 1.1068 

Tmin 0 2.3910 0 2.3717 

In light with the warming climate and anthropogenic 

pressures, we expected increasing vegetation degradation in 

the study region. As expected, a browning trend of 

vegetation greenness was found in both study sites and this 

was congruent with the trends in rainfall. The results confirm 

the assertion that moisture availability during the main 

growing season remains the primary limiting factor to tree 

growth in arid and semi-arid regions [30]. 

Obviously, as confirmed by several studies, the large 

spatiotemporal variability of NDVI trends are expected 

across different climatic regions and for different vegetation 

communities [31]. Some showed an increasing trend in 

greenness in various bioregions, including the northern high 

latitudes (e.g. 40, 31] and in the Sahel region [45]. Others 

have shown decreasing trends in vegetation growth in many 

parts of the globe, for example, in central Asia [29], and 

across the boreal forests [47]. Such vegetation changes were 

reported to be closely linked with the trends in climatic 

variables. In the high latitudes, greening trends are largely 

controlled by temperature, while in other regions (e.g. in 

Africa, China, and the United States) vegetation productivity 

is highly linked to precipitation anomalies [52, 31]. [46] 

found vegetation improvement in some areas and at the same 

time vegetation degradation in others, and both temperature 

and rainfall were the driving factors. In line with this study, 

[20] reported a decreasing trend of vegetation greenness  

for shrubs and sparse vegetation types of desert regions   

and attributed it to the impacts from increased drought 

occurrence (i.e., increased temperature and decreased 
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precipitation). Even though the study highlighted drought to 

be the main factor affecting vegetation degradation, it 

equally identified human-induced degradation. 

4.2. Relationships between Vegetation Dynamics and 

Climatic Variables 

Previous studies have already proven the wide 

applicability of undertaking correlation analyses between 

NDVI time-series and climatic variables for examining 

vegetation dynamics and their responses to climate change in 

varied bioregions [25-29, 20]. The spatiotemporal patterns of 

vegetation are continuously changing worldwide owing to 

the continuous upheavals from climatic and anthropogenic 

factors. Large temporal and spatial variations in NDVI 

trends are expected in different climatic regions and for 

different vegetation types [30, 31]. Thus, this study analysed 

vegetation dynamics over the past two decades and their 

responses to the changing climatic variables.  

In this study, the correlation between NDVI and climate 

variables were analysed in the semi-arid region of northern 

Ethiopia. Results of the correlation analyses revealed a 

general correspondence between vegetation dynamics and 

climatic variations. The study region experienced slight 

warming and decreasing rainfall, and this is congruent with 

the declining trend in vegetation growth. The decline in 

vegetation growth can, therefore, partly be explained by the 

recurrent drought events due to the changes in rainfall and 

temperature and the complex relation with other factors. 

 

 

Figure 7.  Scatter Diagram of Relationships between Mean NDVI Values 

and Rainfall (mm) for the Period 2000 to 2016 in two Study Sites, (a) 

Hugumburda and (b) Desa’a, in the Dry Afromontane Forest Remnants, 

Northern Ethiopia 

In general, the correlation analyses confirmed that the 

changes in climatic variables had an impact on the regional 

vegetation dynamics. In both study sites, positive 

correlations were found between the NDVI values and 

rainfall, whereas the correlations with temperature were 

negative (Tables 5 and 6). Strong relations were observed 

when NDVI values were compared with rainfall during the 

main growing season (i.e., the core rainy season) (Figure 7). 

NDVI in June, July and August showed positive and 

significant relations with rainfall, but it was negatively 

correlated with temperature. This shows that the NDVI was 

mainly influenced by the June – August rainfall, with a 

possible lag effect on September where good correlations 

were noticed as well. This implies that precipitation is the 

main limiting factor for vegetation growth in the dry 

Afromontane forests of the entire study region. These results 

show similarities with the climate response patterns for the 

regional NDVI and tree-ring growth of the main tree species 

of the dry Afromontane forest remnants, showing some 

common limiting factors for their growth. This finding is 

consistent with most studies undertaken in arid and semi-arid 

regions which revealed that precipitation is the main factor in 

determining the growth of desert vegetation, even for 

mountain forests and grasslands (e.g. 32, 48]. On the other 

hand, some other previous studies, mainly from the high 

latitude regions, have suggested that temperature may be the 

key factor for vegetation growth [44].  

In a study conducted on desert vegetation in Hexi region, 

China, [48] found a positive correlation between NDVImax 

and annual precipitation, indicating that precipitation is a key 

factor for desert vegetation growth in the study region. 

Nevertheless, the same study confirmed the existence of 

spatial differences in such relations; non-significant positive 

correlation was also observed mainly in areas located in the 

lower reaches of river basins. This can be attributed to the 

disturbances from human activities. Similarly, [49] found an 

overall increasing NDVI trend with both temperature and 

rainfall before the mid or late 1990s in the Mongolian plateau. 

However, a downward NDVI trend was observed with the 

significantly decreased precipitation since the mid or late 

1990s. [44] found an overall enhancement in vegetation 

greenness since 1981 in the Tao river basin (in Northwestern 

China) and was primarily driven by temperature. [50] 

reported a general increasing trend in NDVI in the study 

region between 2001 and 2012, while about 35% of the 

region showed degradation. 

In general, earlier studies reported that the NDVI–climate 

relationship differs with climatic regions and their long-term 

trends, at inter-annual levels. In arid and semiarid regions, a 

strong positive NDVI-rainfall relationship is commonly 

reported [e.g. 24, 31]. Nevertheless, such relationships 

would be examined on the condition that increasing rainfall 

could compensate the increasing water requirement along 

with increasing temperature [31], and the physiological 

characteristics of the vegetation. In humid regions, 

temperature controls vegetation dynamics [31]. On the other 

hand, the complexity in the NDVI-climate relationships may 
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also be explained by the interactive effects from other factors, 

for instance, anthropogenic activities may have accumulative 

effects on vegetation dynamics [31, 46]. 

On the other hand, some studies also noted that the 

interactions between growing season NDVI and climatic 

variables are more complex than the expected due to the 

existence of lag effects of the climatic factors on the NDVI 

values [39, 47]. For instance, [47] noted a lag effect of 1-2 

years in the correlations between NDVI and climatic 

variables (rainfall or temperature). Thus, this finding should 

be supported with further studies emphasizing on the water 

requirements and drought tolerance of vegetation in this 

ecological region along with impacts from human-induced 

disturbance. This study analysed only the associations 

between NDVI, rainfall, and temperature. However, it is 

obvious that there are other factors that may have an 

influence on terrestrial vegetation growth, such as relative 

humidity, nutrients, light intensity and mechanical factors 

including the occurrence of fire and other damages [50, 51]. 

These need to be further studied to better understand 

vegetation dynamics and their responses to the changing 

climate. 

5. Conclusions 

Understanding the spatiotemporal vegetation dynamics  

of a given region is crucial to provide baseline information 

for advocating ecological restoration and management 

endeavours, particularly in dry agro-ecologies. This study 

used simple linear regression model, correlation analysis, 

and trend analysis (using Mann-Kendall test and Theil-Sen 

median trend analysis) to assess vegetation dynamics and 

their responses to climate variability. For this purpose, the 

MODIS NDVI time-series data and gridded rainfall and 

temperature datasets were used for the common periods 

(2000-2016). Results of the study confirmed the general 

assumption about trends in vegetation greenness in most arid 

and semi-arid regions of the world; we found a general 

declining trend in vegetation greenness during the study 

period, but with considerable spatiotemporal variations. The 

vegetation change alternated between increasing (greening) 

and decreasing (browning) trends. Slight warming was 

observed (especially the minimum temperature showed a 

significant trend) in the study region, while rainfall showed  

a decreasing trend. Besides, positive NDVI-rainfall 

relationships were found in the vegetated areas of both study 

sites. This implies that the annual changes in NDVI were 

mainly affected by rainfall, and this conforms to the claim 

that moisture availability is the main factor in determining 

the growth of dryland vegetation.  

In general, this study confirms the utility of MODIS NDVI 

time-series data as an index to express vegetation dynamics 

at the landscape scale. But, it is assumed that the interplay of 

other factors with climatic variables may affect the estimates 

on NDVI changes. Therefore, more investigations are 

needed to accurately clarify and quantify the impacts of 

various interacting (natural and human-induced) factors on 

vegetation dynamics. To this end, future works may need to 

concentrate on time-series data with better quality (e.g. 

resolution) and incorporate land use change and other 

eco-climatological factors into the study to better account  

for the spatiotemporal vegetation variability. For instance, 

we suggest further studies emphasizing on the water 

requirements and drought tolerance of vegetation in this 

ecological region along with impacts of human-induced 

disturbance. 
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