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Abstract  A magneto-hydrodynamic model of the merging flow of two rivers is presented. The governing non-linear 

partial differential equations are reduced to single independent variable problems using the similarity transformation. The 

resulting equations are linearized using the regular perturbation series expansion solutions, and solved for the velocity 

characteristic. Expressions for the velocity are quantified and presented graphically. The analyses of results show that 

increase in the magnetic field strength and merging angle reduce the flow velocity, whereas the increase in the Grashof 

number increases it. The concurrencies of the parameter effects make some to cushion the others. The results have some 

significant implications on transport of the bed-loads/sediments in the rivers courses toward standing water bodies. 
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1. Introduction 

A confluence is a place where two flows with the same or 

different characteristics merge. The flow may be natural or 

artificial. Specifically, two or more water bodies (rivers, 

streams, lakes, or canals) may collide, conflux, or merge to 

form a new single flowing water body. When two rivers 

merge to become the source of a new one, in some cases, the 

waters may mix, as in the confluences of Rivers Ilz, Danube, 

and Inn in Passau, Germany; Jialing and Yangtze in 

Chongqing, China; Thompson and Frazer in Lytton, British 

Columbia, Canada; Benue and Niger in Nigeria. In other 

cases, they may not mix, as in the confluences of Rivers Ohio 

and Mississipi at Cairo, Illinois in the USA; Rio Negro and 

Rio Solimoes, near Manaus, Brazil; see [1]. 

The merging of rivers takes many forms. In some, a small 

river (the lateral flow) enters a large one (the main flow) to 

form an open channel flow, as in tributaries; in others,    

two non-parallel rivers flowing in approximately the same 

direction meet at a point to form a single stream. The 

merging rivers rising from mountains whose gradients,   

the chemical composition of the source rocks, and 

environmental climatic conditions are different are bound  

to have different velocities, chemical compositions, 

temperature and colours, geological properties, etc. Similarly, 

river confluence flows are characterized by significant  
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changes in flow dynamics, sediment transport, and bed 

morphology.  

Merging flow problems have been studied in a diversified 

manner. Some studied the merging flow of blood in arteries, 

and many others, the confluence flow of rivers and streams. 

On merging blood flow, [2] considered the flow through    

a straight channel with an upstream splitter plate; [3], 

neglecting the effects of pulsatility, investigated a 

two-dimensional merging blood flow in a basilar artery using 

geometrical transformation, conformal mapping, and 

numerical approaches. More so, on a general note, [4] 

numerically examined a steady two-dimensional asymmetric 

merging flow of micro-polar fluid in a rectangular   

channel. Similarly, the merging flow of two rivers has been 

studied from different perspectives. Some studied it 

ecologically [5], some hydro-dynamically [6] - [14]); some 

sedimentologically ([15] - [17]); some through laboratory 

experiments ([18], [19]), and others by field survey ([20] - 

[23]). Importantly, on a hydro-dynamic review of reports, 

[24] studied the flow dynamics of an open confluence flow 

for several merging angles and discharge ratios, and noticed 

that the flow has six hydro-dynamic regions: flow deflection, 

flow stagnation, flow separation, maximum velocity, shear 

layer, and flow recovery; the flow is characterized by helical 

flow cells. [9] studied the mixing processes in laboratory and 

field confluences using a 3-D Re-Normalization Group 

Theory (RNG) k- turbulence model and showed the 

difference between concordant (equal bed levels) and 

discordant (uneven bed levels) rivers, and the effects of the 

channels curvatures on the flow mixing. [12] investigated the 

combined hydrodynamic, sediment transport, and mixing 
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processes in large confluences using a field study approach, 

water quality, and seismic profile measurement, and 

observed the key hydrodynamic features of large 

confluences. [14] gave a review of the flow dynamics and 

sediment transport at open channel confluences, but with a 

focus on the link between flow dynamics, sediment transport, 

and bed morphology. 

Upon the above reports, it is evident that many of the 

studies on the confluence flow of rivers were carried out 

using field surveys, experiments, simulations, and otherwise. 

This paper presents an analytic model of the hydrodynamic 

behaviour of the mix-merging flow of two rivers with 

different flow characteristics. We investigate among others, 

the effects of some important hydro-dynamic parameters on 

the flow and transport of bed-loads/sediments.  

This paper is organized as follows: section 2 is the 

Methodology; section 3 is the Conclusion. 

2. Methodology 

 

Figure 1.  A physical model of symmetrical confluxing flowing rivers 

(α=β) 

Figure 1 is a realistic representation of a merging flow of 

two rivers whose merging angles range from 0<α<90°. In 

particular, a merging angle of α=90° tends to portray a case 

where two rivers flowing from opposite directions meet, then 

clash into a merger.  

We consider the confluxing-mixing flow of two rivers 

whose dependent flow characteristics differ. The modeled 

problem is formulated based on some physically realistic 

premises. For example, we assume the merging river 

channels are symmetrical, the river waters are 

incompressible, Newtonian, and magnetically susceptible 

(due to the presence of dissolved/decayed materials, 

alkaline/salts from the source rocks); the waters are at 

different levels of concentration, and as such a chemical 

reaction, which is of a homogenous first-order type (i.e. the 

reaction is proportional to the concentration) is triggered up; 

the waters are at different velocities, temperature and 

concentration such that at mixing they have common flow 

characteristics; the source rocks and flow channels are 

porous and non-homogenous such that their permeabilities 

are anisotropic; the environmental temperature effect is 

present such that a thermal differential exists between it and 

the rivers water equilibrium temperatures. Specifically, the 

environmental/external temperature depends on the radiation 

from the sun and is usually higher than the ambient 

temperature of the rivers. Upon this, heat flows into the 

rivers from their surfaces. Naturally, the absorbed heat 

interacts with and energizes the water particles, thus 

accounting for the prescription of the net exchange term in 

the energy equation. Similarly, combining with other factors, 

the heat transferred generates convection currents, which is 

prescribed in the momentum equations.  

Rivers are planar at the surface. Considering a 2-D case, 

we assume the velocity is symmetrical about the 'z -axis. 

Therefore, if ( ' , ')i ix y  and ( ' , ')i iu v are mutually 

orthogonal axes and the associated velocity components; 

'iC  and 'iT  are the concentration and temperature of the 

waters in the merging channels, 'iT  and 'iC  are the 

equilibrium concentration and temperature of the waters   

in the merging channels, then by the Boussinesq 

approximations, the equation of mass balance, momentum, 

energy, and diffusion guiding the flow are as follows: 
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for the downstream 

where βt and βc are the volumetric expansion coefficient   

for temperature and concentration respectively; 'ip are the 

flow pressures; iC are the concentrations of the waters   

at equilibrium; iT  are the waters temperatures at 

equilibrium; i  are the permittivity of the rivers channel; 

2
oB  is the applied uniform magnetic field strength due to the 

nature of the waters; e  is the electrical conductivity of the 

waters; ik  are the thermal conductivities of the waters. Cp 

is the specific heat capacity of the waters at constant pressure; 

Q  is the heat absorption coefficient; 
2
rik  are the rates of 

chemical reaction of the waters; 'iC  are the concentrations 

(quantities of material being transported); iD  are the 

diffusion coefficient of the waters; g is gravitational field 

vector; 'iT  are the waters temperatures; 'i are the 

densities of the waters. i  are the viscosities of the waters; 

m  is the magnetic permittivity of the waters; i  are the 

kinematic viscosities of the waters. River 3 is flowing with 

the combined flow variables of rivers 1 and 2 such that 

3 1 2u u u  , 3 1 2v v v  , 3 1 2T T T  , 3 1 2C C C  ,

3 1 2    , 3 1 2p p p  , 3 1 2u u u  ,   is a 

positive fraction. 

The physical model of the merging/confluence problem is 

given in Fig. 1. Rivers 1 and 2 are flowing from different 

sources/mountains 'x   , merge at ' ox x , and 

continued towards a standing water body 'x   . Upon 

this, the model is divided into two regions: the upstream 

region ' ox x  and downstream region ' ox x , with ox  

as the nodal or merging point. More so, for the geometric 

transition occurring between the merging rivers and the 

confluent river, the problem of the wall curvature effect 

exists. To cater for this, we take a simple transition wherein 

the breadths of each of the rivers are assumed equal to    

half that of the confluent river, that is, a , and a  is 

non-dimensionally taken to be unity such that the merging 

angle is directly used (see [25]). Upon this, the boundaries 

become ' 'y x  in the upstream and 'y a   the 

downstream. Similarly, we assume the velocity of the 

merger-river to be  2' 1ou U y  . 

Now, the boundaries conditions are: 

1 ' 0u  , 1 ' 0v  , 1 'T = 0, 1 ' 0C   at ' 0y           (16) 

2 ' 0u  , 2 ' 0v  , 2 'T = 0, 2 ' 0C   at ' 0y          (17) 

1 ' 0u  , 1 ' 0v  ,
 1 1' wT a T , 1 2' wC a C , 

a 1 < 1, a 2 < 1 at ' 'y x                    (18) 

2 ' 0u  , 2 ' 0v  , 2 1' wT a T , 2 2' wC a C , 

a 1 < 1, a 2 < 1 at ' 'y x                    (19) 

for the upstream channels, and 

3 ' 1u  , 3 ' 0v  , 3 ' 1T  , 3 ' 1C   at ' 0y          (20) 

3 ' 0u  , 3 ' 0v  , 3 ' wT T , 3 ' wC C  at ' 1y      (21) 

for the downstream channel 
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where Re is the Reynolds number; Gr is the Grashof number 

due to temperature difference; Gc is the Grashof number due 

to concentration difference.  2 is the local Darcy number; 

M2 is the Hartmann’s number; Pr is the Prandtl number; Sc is 

the Schmidt number; 
2
1  is the rate of a chemical reaction, 

and N2 is the heat exchange parameter; cl  is the     

scaled length, oU  is the characteristic velocity, which is 

maximum at the centre and zero at the wall, wC  and wT  

are concentration and temperature, respectively at which  

the river walls are maintained,   and   are the 

dimensionless temperature and concentration, p , u , v  and

  are dimensionless pressure, velocity in the x-axis, 

velocity in the y-axis and density, respectively; x and y  are 

the dimensionless x- and y- axes, respectively, and  
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where   is the stream function, and   is the independent 

variable of the stream function, and 
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are the velocity components, 

into equations (1) - (21), we have  
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2
1 1 1 1 1 1 1 1'' ' Re ( ' ' ') 0Sc f f                (28) 

with boundary conditions 

1 0f  , 1 ' 0f  , 1 0  , 1 0   at 0           (29) 

1 0f  , 1 ' 0f  , 1 1 wa   , 1 2 wa   , 

1 21, 1a a   at x                          (30) 

and 

2 '' 0f                                      (31) 

2
2 2 1 2 2 2 2 2 2 2''' '' ' Re( ' '' '')f f M f f f f f Gr Gc         (32) 
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2
2 2 2 2 2 2 1 2'' ' Re ( ' ' ') 0Sc f f              (34) 

with the boundary indications: 

2 0f  , 2 ' 0f  , 2 0  , 2 0   at 0           (35) 

2 0f  , 2 ' 0f  , 2 1 wa   , 2 2 wa   , 

1 21, 1a a   at x                          (36) 

for the upstream channels, and 
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with the boundary conditions 

3 1f  , 3 ' 0f  , 3 1  , 3 1   at 0            (41) 

3 0f  , 3 ' 0f  , 3 w  , 3 w   at 1        (42) 

for the downstream channel 

where 
2 2 2
1 ( )M M    

Equations (25) - (28), (32) - (34) and (37) - (40) are 

non-linear and coupled. Making them tractable, we seek for 

the perturbation series expansion solutions of the form:  

1( , ) ( , ) ( , ) ...on x y n x y n x y                    (43) 

where n  represents the flow dependent variables, 

1
1

Re
    is the perturbation parameter. The choice of 

this parameter is based on the fact that, at the merging point, 

the interaction of the two rivers creates a sort of turbulence, 

implying an increase in the Reynolds number. 1Re will 

therefore give a very small value by which the problem is 

perturbed. It is interesting to note that the turbulence effects 

decay away some distances from the merging point and the 

flow normalizes. 

Substituting equation (43) into equations (25) - (42) 

yields a set of equations that require some analysis. On the 

analysis of flow, we shall invoke the Kirchhoff Law of the 

flow of materials at the junction wherein the quantity of 

materials entering the junction is said to be equal to the total 

quantity of materials leaving the junction. Impliedly, the 

quantity of water/materials leaving Rivers 1and 2 for the 

junction is equal to the total quantity of water/materials in 

River 3. This tends to explain the fact that River 3 is the 

combined continuation of Rivers 1and 2. On this premise, we 

seek for approximate solutions to describe the problem. We 

choose the order zero equations as the equations describing 

the flow characteristics of Rivers 1 and 2 in the unperturbed 

state of flow, and the order one equations for River 3 as those 

describing the perturbed state of the flow downstream. 

Following this, the order one equations for the upstream flow 

and order zero equations for the downstream flow are played 

down. So, our working equations are reduced to 



 American Journal of Fluid Dynamics 2021, 11(1): 5-12 9 

 

 

1 " 0of                                      (44) 

2
1 1 1 1o 1 1"' " 'o o o of f M f Gr Gc                 (45) 

2
1 1 1" ' 0o o oN                            (46) 

2
1 1 1 1" ' 0o o o                            (47) 

2 " 0of                                      (48) 

2
2 2 1 2o 2 2"' " 'o o o of f M f Gr Gc                (49) 

2
2 2 2" ' 0o o oN                            (50) 

2
2 2 1 2" ' 0o o o                            (51) 

with the boundary conditions 

1 0of  , 1 ' 0of  , 1 0o  , 1 0o   at 0         (52) 

2 0of  , 2 ' 0of  , 2 0o  , 2 0o   at 0        (53) 

1 0of  , 1 ' 0of  , 1 1o wa   , 1 2o wa   , 

1 21, 1a a   at x                          (54) 

2 0of  , 2 ' 0of  , 2 1o wa   , 2 2o wa   , 

1 21, 1a a   at x                          (55) 

for the zeroth order in the upstream,  

and 

31'
" 0f                                      (56) 

2
31 31 1 31 3o 3 3o 3 31 31"' " ' ' " "o of f M f f f f f Gr Gc        (57) 

2
31 31 31 3o 3 3 3" ' Pr( ' ' ' )o o oN f f              (58) 

2
31 31 1 31 3o 3 3 3" ' ( ' ' ')o o oSc f f            (59) 

with the boundary conditions 

31 0f  , 31 ' 0f  , 31 0  , 31 0   at 0        (60) 

31 0f  , 31 ' 0f  , 31 0  , 31 0   at 1        (61) 

for the first order in the downstream 

Expressing the order zero terms in equations (57) - (59) in 

terms 3 1 2o o of f f  , we get 

2
31 31 1 31"' " 'f f M f  

 

2
1o 1 1o 2 2o 1 2o 2' " ' " ' " ' "o o o of f f f f f f f     

 
 

-
2

1o 1 1o 2 2o 1 2o 2" " " "o o o of f f f f f f f     
   

31 31Gr Gc                                  (62) 

2
31 31 31" ' N    

2
1o 1 1o 2 2o 1 2o 2Pr ' ' ' ' ' ' ' 'o o o of f f f         

 
 

 
2

1o 1 1o 2 2o 1 2o 2Pr ' ' ' 'o o o of f f f          
 

   (63) 

2
31 31 1 31" '     

2
1o 1 1o 2 2o 1 2o 2' ' ' ' ' ' ' 'o o o oSc f f f f         

 
  

2
1o 1 1o 2 2o 1 2o 2' ' ' 'o o o oSc f f f f          

 
   (64) 

The order zero equations describe the upstream flow, 

while the order one equations describe the downstream flow. 

More so, the presence of the order zero terms in the order one 

equations indicates the influence of the upstream on the 

downstream flow. 

We investigate the effects of some hydro-dynamic 

parameters on the flow velocity structure of the merging two 

rivers, and their attendant implications on the transport of 

their bed-loads/sediments. The computations are carried  

out using the Mathematica 9 computational software. For 

constant values of 0.2, 0.2,Re 100, 0.1, 0.3,w w        

1 20.1,Pr 0.71, 0.3, 0.1, 0.1, 0.1,N Sc a a       and 

varied values of 
2 0.04,0.16,0.36,0.64,1.0;M 

0.2,0.4,0.6,0.8,1.0;Gr  30,45,60,75,90   we obtained 

the graphs shown below. The figures show that the flow 

velocity is decreased by the increase in the magnetic field 

strength and merging angles but increases by the increase in 

the convective currents.  

The effect of the magnetic field on the velocity is seen in 

Fig. 2 and Fig. 3. They show that the flow velocity decreases 

as the magnetic field strength increases. By the nature of the 

source rocks, the water of the river is alkaline or slightly 

acidic, and subsequently magnetically susceptible. Being 

alkaline, the water particles exist as charges. In the presence 

of the Earth magnetic field, which is due to the Earth rotation, 

they produce electric currents. The currents act on the 

magnetic field to produce a mechanical force, the Lorentz 

force. This force has the potency for freezing up flow 

velocities, and this accounts for what is seen in Fig. 2 and Fig. 

3. More so, the magnitude of   has some effects on the 

flow patterns; as can be seen in Fig. 2 and Fig. 3. 

 

Figure 2.  Velocity ( ( )f  )-Magnetic field (
2M ) profiles for 

0 5) 
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Figure 3.  Velocity ( ( )f  )-Magnetic field (
2M ) profiles for 

0 7)   

In a similar development, the porosity of the river 

channels has the same effects on the velocity as the magnetic 

field parameter. 

 

Figure 4.  Velocity ( ( )f  )-Grashof number ( Gr ) profiles for 

0 5)   

The effect of convective currents (Grashof number) on the 

flow velocity is seen in Fig. 4 and Fig. 5. These figures  

depict that the flow velocity increases as the Grashof number 

increases. The temperature difference between the 

environment, which is due to the radiation from the sun, and 

the ambient temperature of the fluid in the presence of 

gravity, volumetric expansion coefficient due to temperature, 

viscous force and density effects create convective currents. 

The convective currents break the fluid particles from the 

grip of the fluid viscosity, thus making them buoyant and 

flow with ease. The ease of flow accounts for the increase  

in the velocity; as seen in Fig. 4 and Fig. 5. Similarly, the 

effects of the size of   on the flow pattern are seen in Fig. 4 

and Fig. 5. For 0 5,  the profiles tends to converge at 

5;   for 0 7  , the profiles converge at 5.5.   At 

this point, a flow separation, which may be due to an adverse 

flow condition, wherein 0
f







 is noticed. A short distance 

from this point, the profiles become distinct. 

 

Figure 5.  Velocity ( ( )f  )-Grashof number ( Gr ) profiles for 

0 7)   

More so, the results here are applicable when the Grashof 

number which is due to the chemical concentration of the 

water is considered. 

Additionally, the effects of the confluence angle on the 

flow velocity are seen in Fig. 6 and Fig. 7. These figures 

show that the flow velocity decreases as the confluence angle 

increases. As the water of rivers 1 and 2 clashes into the 

merger, rotational and whirling/spinning motions are 

generated. This creates a sort of turbulence at the merging 

point. The rotation and spinning tend to reduce the motion in 

the axial direction, thus accounting for what is seen in Fig. 6 

and Fig. 7. Significantly, the spinning motion creates scours 

at the merging point. Even so, the effects of the size of   on 

the flow pattern, in the presence of the merging angle can be 

seen in Fig. 6 and Fig. 7. 

  

Figure 6.  Velocity ( ( )f  )-Confluence angle (  ) profiles for 

0 5)   
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Figure 7.  Velocity ( ( )f  )-Confluence angle (  ) profiles for 

0 10)   

The results show that, apart from the existing 

gradient/slope between the river and the source mountain, 

mass volume of the water, depth of the river, gravity, amidst 

others, hydrodynamic parameters affect the river flow, and 

subsequently affect the transport of the bed-loads/sediments. 

Usually, as the river flows downwards from the mountains, 

the particles eroded are carried along with them as 

bed-loads/sediments. The gradient effect highly enhances 

their transport in the upper and middle zones of the river, 

where velocities are high and moderate, respectively. The 

gradient effects subside or are decayed in the depositional 

zone. Naturally, the other factors and hydro-dynamic 

parameters effects take sway completely. Specifically, the 

decrease in the velocity by the increase in the magnetic field 

and porosity parameters and merging angle retard the 

transport of the bed-loads/sediments, thus causing early 

deposition of the materials and shallowing-up of the river. 

On the other hand, the increase in velocity through the 

increase in the convective currents and Reynolds number 

enhances the transport of the bed-loads/sediments, thus 

delaying the shallowing-up of the river in its course towards 

a standing water body. 

3. Conclusions 

A hydro-dynamic confluence flow model of two rivers is 

presented. The effects of some parameters: magnetic field 

strength, convective currents and merging angle on the flow 

velocity structure are investigated. The analysis of results 

shows that the increase in 

  magnetic field decreases the velocity,  

  Grashof number increases the velocity, and  

  merging angle decreases the velocity.  

The effects of these parameters on the flow have attendant 

implications on the transport of river bed-load/sediments. 
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