
American Journal of Fluid Dynamics 2015, 5(3): 76-86 
DOI: 10.5923/j.ajfd.20150503.02 

Transient Mixed Convection Flow of a Viscoelastic Fluid 
over a Vertical Stretching Sheet Coupled with Heat-Mass 

Transfer and Chemical Reaction 

Priyadarsan K. P.1,*, S. Panda1, A. Nayak2, M. R. Acharya3 

1Department of Mathematics, NIT Calicut, NIT Campus (P.O), Kozhikode, Kerala, India 
2Department of Mathematics, Silicon Institute of Technology, Bhubaneswar, Bhubaneswar, India 
3Department of Physics, College of Basic Science, and Humanities, OUAT, Bhubaneswar, India 

 

Abstract  Our endeavour is to present a numerical analysis of momentum and mass transfer characteristics with chemical 
reaction in a transient viscoelastic fluid flow influenced by a vertical stretching sheet in a porous medium. Moreover, the flow 
is mixed convection type and controlled by magnetic field. Soret (thermal diffusion) and Dufour (diffusion thermo) effects 
due to coupled heat and mass transfer also augment the scope of the analysis together with transient case. Solutions are 
obtained for unsteady state using Keller box method. A parametric study illustrating the influence of viscoelastic parameter, 
magnetic parameter, permeability parameter, radiation parameter, Soret number, Dufour number and chemical reaction 
parameter have been studied and illustrated graphically. 
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1. Introduction 
Viscoelastic fluid flow finds lot of application in 

engineering processes. Such process include glass fiber, fiber 
and paper production, crystal growing, drawing of plastic 
sheets etc. Other applications include drilling of petroleum, 
manufacturing of foods and slurry transportation. Mass 
transfer effect have also been important in chemical 
processing equipment. In some polymer processing unit the 
flow is also driven over porous or impermeable stretching 
surface. According to Eckert and Drake [1] for isotropic 
separation the thermal diffusion (Soret) effect and diffusion 
thermo (Dufour) effect cannot be neglected. In many 
chemical engineering processes chemical reaction takes 
place between a foreign mass and the working fluid which 
moves due to stretching of surfaces. The simplest chemical 
reaction is the first order reaction in which rate of reaction is 
directly proportional to the species concentration. A 
comprehensive paper on mass transfer with chemical 
reacting species for viscoelastic fluid over a porous 
stretching sheet have been studied by Cortell [2]. Hayat et 
al.[3] considered heat and mass transfer for Soret and Dufour 
effect on mixed convection boundary layer flow over      
a stretching vertical surface in a porous medium filled with   
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viscoelastic fluid. Shateyi et al. [4] have considered the 
influence of magnetic field on heat and mass transfer of a 
mixed convection over a vertical surfaces in presence of 
Soret and Dufour effect as well as Hall effect in a porous 
medium. Makinde [5] studied the mixed convection of a 
Boussinesq fluid with Soret and Dufour effect over a vertical 
plate embedded in a porous medium. The flow is also 
controlled by magnetic field. Recently a mathematical model 
describing mass transfer with Soret and Dufour effect on 
mixed convection boundary layer flow over a stretching 
sheet filled with viscoelastic fluid in presence of magnetic 
field has been reported by Gbadeyan et al. [6]. As already 
stated Soret effect referred to species differentiation 
developing in an initial homogeneous mixture submitted to a 
thermal gradient and Dufour effect referred to heat flux 
produced by a concentration gradient. Cheng [7] considered 
these effects with mixed convection over a vertical wedge in 
a porous medium. He found that wedge angle parameter is 
insignificant for natural and mixed convection flow. 

Above mentioned work refers to steady state phenomena. 
However unsteady conduction both transient and periodic is 
very important in many applications of heat transfer. 
Designers in technological areas are often faced with start up, 
operating or instability transients. These must be understood 
sufficiently well to guide material selection. This relate to the 
temperature limitation of the materials. Unsteady conduction 
mechanisms are also very important in many earth science 
due to ever changing effects of solar radiation and 
atmospheric condition. For example, both daily and seasonal 

 



 American Journal of Fluid Dynamics 2015, 5(3): 76-86 77 
 

temperature changes cause complicated time dependent 
temperature variations in the soil. There are basically two 
kinds of unsteady processes. One is transient, where 
temperature field changes with time from an initial condition 
towards an eventually steady state. An example arises when 
an object at an initial temperature is immersed in 
surrounding at some different temperature. The temperature 
difference decays with time. The second process is periodic 
in which the temperature at each location in the region vary 
periodically with time. Appropriately the temperature of the 
soil surface into downward vary periodically due to annual 
or delay variation of atmospheric conditions. 

In this connection recent unsteady works on mixed 
convection viscoelastic flow are cited below. This include 
the study of unsteady MHD mixed convection stagnation 
point flow of a viscoelastic fluid on a vertical surface by 
Ahmad and Nazar [8]. Bhargava and Singh [9] employed 
element-free Galerkin method (EFMG) to solve the coupled 
non-linear differential equations evolved in unsteady MHD 
flow and heat transfer of a second grade fluid with viscous 
dissipation and Joule heating. Literature survey also 
witnessed unsteady flow of third grade fluid with Soret and 
Dufour effects [3]. Most recently Mohamed et al. [10] have 
reported unsteady MHD double diffusive convection 
boundary layer flow past a radiative hot vertical surface with 
chemical reactions. 

The growing need of chemical reactions in chemical and 
hydro metallurgical industries requires the study of chemical 
reaction with heat and mass transfer. Elaborate study of 
chemical reaction by Mohapatra et al. [11] exercises its need. 
Recently Nayak et al. [12] extensively analyzed the Soret 
and Dufour effects on mixed convection unsteady MHD 
boundary layer flow over a stretching sheet. In view of above, 
the aim of present study is to examine transient phenomena 
of Soret and Dufour effect in mixed convection viscoelastic 
fluid flow over a vertical stretching sheet controlled by 
magnetic field. Porous media are generally used to insulate a 
heated body to maintain its temperature, which is generated 
due to chemical reaction. Porous media are also used in 
diminishing fluid temperature. Therefore it is essential to 
estimate chemical reaction on heat and mass transfer. 

2. Problem Formulation 
Let us consider an unsteady laminar incompressible 

viscoelastic two-dimensional mixed convection flow of an 
electrically conducting fluid due to stretching of a heated or 
cooled vertical sheet in a porous medium in presence of 
chemical reaction. The x-axis is taken along the stretching 
direction of the sheet and y-axis is normal to it (Fig. 1). The 
flow field is subjected to a transverse uniform magnetic field 
of strength 0B . Prior to time ( = 0t ), the sheet has uniform 

temperature T∞  and it is at rest in an unbounded quiescent 

fluid at constant temperature T∞ . Then at time = 0t , the 

sheet is suddenly stretched with a velocity ( )eU x  which 
varies linearly with the distance x  from the origin along the 
surface. At the same time the surface temperature is suddenly 
raised from T∞  to wT  ( >wT T∞ ) and thereafter 

maintained at constant temperature T∞ . This sudden change 
in surface velocity and surface temperature gives rise to 
unsteadiness in the velocity and thermal fields. Here the 
stretching surface is assumed to be electrically 
non-conducting. The magnetic Reynolds number is 
considered to be small such that induced magnetic field is 
negligible in comparison to applied magnetic field. The 
electric field due to polarization of changes is negligible due 
to absence of external applied electric field. Similarly, the 
electric field ( E ) is zero for small and moderate values of 
magnetic field. Consequent upon this Hall term in Ohm's law 
is absent as it has less effect on the flow field. Therefore, 
only the magnetic field contributes to Lorentz force. In most 
of stretching problem the velocity of stretching surface is 
small, therefore the effect of viscous dissipation term in the 
energy equation is neglected. Small values of magnetic field 
implies the absence of Ohmic heating and Hall term in the 
energy equation. The flow is generated due to two equal and 
opposite forces (buoyancy force and force corresponding to 
stretching along the x-axis. 

The variable temperature ( )wT x  and concentration 

( )wC x  of the surface are assumed to be suddenly increased 

or decreased to the uniform ambient temperature T∞  and 

the far away concentration C∞ . For the assisting flow the 
x-axis directs upward in the direction of the stretching hot 
surface such that the stretching induced flow and the thermal 
buoyant flow assist each other. For the opposing flow, the 
x-axis directs vertically downward in the direction of the 
stretching hot surface but in this case the stretching induced 
flow and the thermal buoyant flow oppose each other. The 
density variation is taken into consideration, so that the 
Boussinesq approximation for both the temperature and 
concentration gradient can be adopted. Since heat and mass 
transfer occur simultaneously the driving potentials are more 
indicate in nature. For isotope separation and in mixture 
between gases of light molecular weight and medium 
molecular weight the diffusion thermo and thermal diffusion 
effects can not be neglected. We also consider a chemical 
reaction taking place between a foreign species and working 
fluid which moves due to stretching of surfaces. Under these 
assumptions the transient boundary layer equations under 
Boussinesq approximations are given below 

= 0u v
x y
∂ ∂

+
∂ ∂

             (1) 
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Figure 1.  Sketch of flow geometry 
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The symbol u  and v  denote the fluid velocity in the x- 
and y- direction. Here T  and C  represent the temperature 
and concentration fields respectively, ρ  is the density, µ  

is the coefficient of viscosity, 0k  is the viscoelastic 

parameter, pk  is the permeability of the porous medium, 

σ  is the electrical conductivity, g  is the acceleration due 

to gravity, Tβ  is thermal expansion coefficient, Cβ  is the 

volumetric coefficient of expansion with concentration, eα
(= / pk cρ , k is the thermal conductivity of the porous 

medium) is the thermal diffusivity, pc  is the specific heat 

at constant pressure, rq  is the radiative heat flux, Q  is the 

volumetric heat generation/absorption rate, eD  is the mass 

diffusivity, Tk  is the thermal diffusion ratio, sc  is the 

concentration susceptibility, ck  is the chemical reaction 

rate on the species concentration and mT  is the mean fluid 
temperature. Using the Rosseland approximation (see e.g. 
[13], [14]) the radiative heat flux rq  could be expressed by  

* 4

*
4= ,
3r

Tq
yk

σ ∂
−

∂
            (5) 

where *σ  represents Stefan-Boltzmann constant and *k  
is the Rosseland mean absorption coefficient. Assuming that 

the temperature difference within the flow is small, 4T  can 
be written as  

4 3 44 3 .T T T T∞ ∞≈ −            (6) 

The initial and boundary conditions of Eqs. (1)-(4) are  
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The subscripts w  and ∞  refer to the wall and free 
stream conditions. Both the wall temperature and 
concentration are assumed to have linear form i.e.  
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w

w
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where b  and (> 0)c  are the constants with > 0b  for 

heated plate ( >wT T∞ ) and < 0b  for cooled surface 

( <wT T∞ ), respectively. 
For an impulse motion the change of variables are given in 

Rashad et al. [15], Ishak et al. [16] and Williams et al. [17]  
'
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where 1/2 1/2= ( / )a yη ν ξ − , = /ν µ ρ  is the dynamic 
viscosity and the prime denotes differentiation with respect 
to η . It can be noted that Eq. (9) is compatible with Eq. (1) 
and the definition of ξ  indicates that the region of time 
integration 0 t≤ ≤ ∞  may become finite, i.e. 0 1ξ≤ ≤ . 

Using Eqs. (5), (6) and (9) the model Eqs. (2)-(4) reduces 
to 
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The dimensionless numbers are  

• The Prandtl number Pr = / eν α  that represents the 
ratio of momentum to thermal diffusivity,  

• The Schmidt number Sc = / eDν  that represents the 
ratio of momentum to mass diffusivity,  

• The dimensionless number 
( ) ( )fD = /e T w p s e wD K C C c c T Tα∞ ∞− −  is 

the Dufour number, 
( ) ( )rS = /T w m wK T T T C C∞ ∞− −  is the Soret 

number, Da = /pk a ν  is the Darcy number, 

2
0M = / ( )eB x U xσ ρ  is the local magnetic field 

parameter, ( ) ( )= /C w T wN C C T Tβ β∞ ∞− −  is 
the ratio of buoyancy force due to thermal diffusion, 

= /ck aγ  is the chemical reaction parameter 

( ) ( )23 2= / / ( ) / =T w eg T T x U x xλ β ν ν∞−
2/x xGr Re  is the mixed convection parameter, 

0= /K k a µ  is the visco-elastic parameter, 

= / pQ a cδ ρ  is the heat source parameter and 

* * 3= 3 /16R k k Tσ ∞  is the radiation parameter,  

where ( ) 3 2Gr = /x T wg T T xβ ν∞−  is the local 

Grashof number and = ( ) /x eRe U x x ν  is the local 

Reynolds number. It may be noted that for > 0λ  
corresponds to assisting flow (heated plate), < 0λ  
corresponds to opposing flow (cooled plate) and = 0λ  
corresponds to forced convection flow, respectively. 

In view of the scaling relations Eq. (9), the corresponding 
boundary conditions Eq. (7) are:  
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3. Numerical Procedure  
The model Eqs. (10)-(12) together with boundary 

conditions Eq. (13) are solved using an implicit 
finite-difference scheme known as the Keller-box method 
(Cebeci and Bradshaw [18]). We first introduce new 
dependent variables in order to reduce the equations to a 
system of first order equations. Therefore, the new 
dependent variables are 1( , )y ξ η , 2 ( , )y ξ η  3( , )y ξ η , 

4 ( , )y ξ η  and 5( , )y ξ η , such 
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We now consider the net rectangle in the ξ η−  plane 
and the net points defined as follows:  
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Eqs. (22)-(29) describes an implicit time discretization 
scheme. Since the governing equation is non-linear, a system 
of non-linear algebraic equations needs to be solved at each 
time step. We use fsolve in MATLAB for this purpose. A 
good initial starting guess is required to solve the non-linear 
equations. A reasonable initial guess for the velocity, 
temperature and concentration is chosen to be zero 
throughout the discrete domain at the first time step. The 
solution from the previous time step can be used otherwise. 
Convergence is achieved in less than 100 iterations and the 
convergence criterion is that the norm of the residuals should 

be less than 510− . 

4. Results and Discussion  

 

Figure 2.  Velocity profile demonstrating the progression of the transient 
solution towards the final steady-state solution. The parameters are 

= 2Da , = 1N , = 4M , = 0.1K , = 0.1R , = 7Pr , 

= 0.15fD , = 0.6Sc , = 0.4rS , = 1λ , = 0.1δ , 

= 1γ  

 

Figure 3.  Temperature profile demonstrating the progression of the 
transient solution towards the final steady-state solution. The parameters are 

= 2Da , = 1N , = 4M , = 0.1K , = 0.1R , = 7Pr , 

= 0.15fD , = 0.6Sc , = 0.4rS , = 1λ , = 0.1δ , 

= 1γ  

 

Figure 4.  Concentration profile demonstrating the progression of the 
transient solution towards the final steady-state solution. The parameters are 

= 2Da , = 1N , = 4M , = 0.1K , = 0.1R , = 7Pr , 

= 0.15fD , = 0.6Sc , = 0.4rS , = 1λ , = 0.1δ , 

= 1γ  

Figs. 2, 3 and 4 depict the velocity, temperature and 
concentration profiles at different times ξ  
(non-dimensional). For a particular value of ξ , velocity, 
temperature and concentration field decreases with increase 
in η  and becomes zero at the outside of the boundary layer, 

which satisfies boundary condition ' ( ) 0f ∞ → , 
( ) 0θ ∞ → , and ( ) 0ϕ ∞ → . The velocity, temperature 

and concentration distribution falls very rapidly near the hot 
stretching sheet and then steadily decreases to zero away 
from the surface.  

 

Figure 5.  Influence of M with = 0.1Da , = 1N , = 0.1K , 

= 0.2R , = 7Pr , = 0.15fD , = 0.6Sc , = 0.7rS , 

= 4λ , = 0.1δ , = 2γ  

Fig. 5 show velocity profiles for different values of 
magnetic parameter M . It is observed that magnetic field 
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decelerates fluid velocity and there is a decrease in boundary 
layer thickness. Physically this implies that increase in 
magnetic field increases induction drag, which tends to 
destroy motion across field lines. The effects of viscoelastic 
parameter have been depicted in Fig. 6. The velocity 
boundary layer decreases for large value of viscoelastic 
parameter. Fig. 7 depicts the effect of mixed convection 
parameter both for assisting and opposing flow: for > 0λ  
corresponds to >wT T∞ , i.e heat transfer takes place from 
wall to boundary. Consequently boundary layer thickness is 
more. For < 0λ  corresponds to <wT T∞  i.e. the plate is 
cooler than the ambient and heat transfer occurs from outside 
to plate. So the velocity field decreases. 

 

Figure 6.  Influence of K with = 1Da , = 1N , = 2M , 

= 0.4R , = 1Pr , = 0.15fD , = 0.6Sc , = 0.7rS , 

= 1λ , = 0.1δ , = 2γ  

 

Figure 7.  Influence of λ  with = 0.1Da , = 1N , = 3M , 

= 0.1K , = 0.2R , = 7Pr , = 0.15fD , = 0.6Sc , 

= 0.7rS , = 0.1δ , = 0.1γ  

In fact Dufour parameter fD  tends to thicken thermal 

boundary layer and thus decreasing heat transfer rate at the 
wall (Fig. 8). Similarly, Soret parameter rS  tends to 
thicken concentration boundary layer, thus decreasing the 
mass transfer rate in the wall (Fig. 9). 

Fig. 10 illustrates decrease in temperature field with 
increase in radiation parameter. Again the effect of 
viscoelastic parameter on temperature profiles is illustrated 
in Fig. 11. Increasing viscoelastic parameter reduces 
temperature field. Temperature near the wall decreases 
rapidly and then decreases slowly away from the sheet. In 
case of assisting flow with increase in mixed convection 
parameter, temperature distribution field decreases (Fig. 12). 

 

Figure 8.  Influence of fD  with = 2Da , = 1N , = 2M , 

= 0.1K , = 0.2R , = 7Pr , = 0.15fD , = 0.6Sc , 

= 0.7rS , = 1λ , = 0.5δ , = 2γ  

 

Figure 9.  Influence of rS  with = 2Da , = 1N , = 2M , 

= 0.1K , = 0.2R , = 7Pr , = 0.15fD , = 0.6Sc , 

= 1λ , = 0.1δ , = 1γ  
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Figure 10.  Influence of R with = 4Da , = 1N , = 3M , 

= 0.1K , = 7Pr , = 0.15fD , = 0.6Sc , = 0.7rS , 

= 1λ , = 0.1δ , = 0.1γ  

 

Figure 11.  Influence of K with = 1Da , = 1N , = 2M , 

= 0.4R , = 1Pr , = 0.15fD , = 0.6Sc , = 0.7rS , 

= 1λ , = 0.1δ , = 2γ   

 

Figure 12.  Influence of λ  with = 0.1Da , = 1N , = 3M , 
= 0.1K , = 0.2R , = 7Pr , = 0.15fD , = 0.6Sc , 

= 0.7rS , = 0.1δ , = 0.1γ  

Fig. 13 and 14 illustrate the effect of Dufour number and 
Soret number in concentration profiles. It is observed that 
increasing Dufour effect, concentration profile decreases 
whereas increasing Soret number temperature field increases. 
Fig. 15 depicts the effect of ratio of momentum diffusivity to 
thermal diffusivity. When thermal diffusivity decreases 
concentration profiles are reduced. Effect of radiation 
parameter (Fig. 16) is opposite to that of effect of mixed 
convection parameter (Fig: 18) and effect of Schimdt 
number (Fig. 19) on concentration profiles. Viscoelastic and 
chemical reaction parameters reduce concentration profiles 
(Fig. 17). The effect of chemical reaction is shown in Fig. 20. 
For > 0γ  (destructive reaction) the second term in the 
right hand side of Eq. (4) becomes positive and it contributes 
to the concentration reduction. Increasing γ  value 
decreases the concentration. 

 

Figure 13.  Influence of fD  with = 2Da , = 1N , = 2M , 

= 0.1K , = 0.2R , = 7Pr , = 0.15fD , = 0.6Sc , 

= 0.7rS , = 1λ , = 0.5δ , = 2γ  

 

Figure 14.  Influence of rS  with = 2Da , = 1N , = 2M , 

= 0.1K , = 0.2R , = 7Pr , = 0.15fD , = 0.6Sc , = 1λ , 

= 0.1δ , = 1γ  
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Figure 15.  Influence of Pr  with = 4Da , = 1N , = 3M , 

= 0.1K , = 0.2R , = 0.15fD , = 0.6Sc , = 0.7rS , 

= 1λ , = 0.1δ , = 0.1γ  

 

Figure 16.  Influence of R with = 4Da , = 1N , = 3M , 

= 0.1K , = 7Pr , = 0.15fD , = 0.6Sc , = 0.7rS , 

= 1λ , = 0.1δ , = 0.1γ   

 

Figure 17.  Influence of K = 1Da , = 1N , = 2M , 

= 0.4R , = 1Pr , = 0.15fD , = 0.6Sc , = 0.7rS , 

= 1λ , = 0.1δ , = 2γ  

 

Figure 18.  Influence of λ  with = 0.1Da , = 1N , = 3M , 

= 0.1K , = 0.2R , = 7Pr , = 0.15fD , = 0.6Sc , 

= 0.7rS , = 0.1δ , = 0.1γ  

 

Figure 19.  Influence of Sc with = 0.1Da , = 1N , = 3M , 

= 0.1K , = 0.2R , = 7Pr , = 0.15fD , = 1λ , 

= 0.7rS , = 0.1δ , = 0.1γ  

 

Figure 20.  Influence of γ  with = 0.1Da , = 1N , = 3M , 

= 0.1K , = 0.2R , = 7Pr , = 0.15fD , = 1λ , 

= 0.7rS , = 0.1δ  
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5. Conclusions 
This work studies the Soret and Dufour effects on mixed 
convection heat and mass transfer over a vertical stretching 
sheet in a porous medium with chemical reaction. The final 
outcomes of the discussion are mentioned below:  

•  Time integration parameter enhances the flow  
•  Viscoelastic parameter and magnetic parameter reduces 

the thickness of flow field  
•  Mixed convection parameter λ  influences the flow 

depending on whether >wT T∞  or not. The positive 

value of λ  implies heat flow occurs from wall to 
surrounding and the negative value of λ  indicated 
heat flow occurs from ambient to wall  

•  Dufour number increases the temperature field where as 
Soret number reduces the temperature field  

•  Soret and Dufour numbers have significant effects on 
distribution of velocity, temperature and concentration  

•  Increase in chemical reaction parameter produces a 
decrease in concentration  
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