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Abstract  In the present paper the problem of the mathemat ical description adequacy of the liquids fluidity physical 
property using the example of the linear stability problem for the steady-state spatial flows of an  ideal incompressible fluid 
that is completely filling a volume with a solid boundary, in the absence of body forces has been studied. The direct  Lyapunov 
method proves that the fluid is absolutely stable at the rest states, and its steady-state three-dimensional flows are unstable 
when related to small spatial perturbations. We have obtained constructive sufficient conditions for the practical linear 
instability. A priori exponential lower estimate has been constructed, indicating the accumulation of small three-dimensional 
perturbations with time. As an illustration, steady-state plane-parallel shear flows in the channel have been considered 
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1. Introduction 
In the process of theoretical studies on the nature of these 

or those physical phenomena the problem of adequacy plays 
a vital ro le for the mathematical models that are designed to 
describe these phenomena. For example, if it  is found that 
some physical phenomenon is actually realized in practice, 
then the one or other mathematical model will be adequate to 
it if and only if this model has the solutions that meet this 
phenomenon, and these solutions are stable[1-3]. 

Unfortunately, today the problem of the adequacy of 
mathematical modeling of physical phenomena has no 
satisfactory solution. Currently, for the selection of adequate 
mathematical models the approach that is based on a 
comparative analysis of experimental, analytical and 
numerical results is being used as a ru le. However, we must 
admit, this approach is very time-consuming and, what is 
vital, still has not received adequate scientific justification. 
As for simple, effective and versatile  analytical methods for 
selection of mathematical models, they have not been 
created yet. 

In this paper we propose an analytical method of selecting 
adequate mathemat ical models of the hydrodynamic type. Its 
essence lies in the algorithmic construction of Lyapunov’s 
functionals[4, 5], which grow over time along the solutions  
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of the corresponding initial boundary value problems for 
small perturbations. It allows you to establish results not only 
for theoretical (semi-infinite t ime intervals), but also for 
practical (finite time intervals) linear instability[6, 7]. It is 
important that it isn’t necessary to know the exp licit fo rm of 
the solutions to the problems for s mall perturbations. 

The features of the proposed method are demonstrated 
below in the application to the classical problem of the linear 
stability of the steady-state spatial flows of an ideal 
incompressible flu id, which completely fills a vessel with 
rig id walls, in the absence of body forces to small 
three-dimensio- nal perturbations[1, 3, 8-13]. 

2. The Formulation of the Exact 
Problem 

The spatial flows of an ideal incompressible fluid, 
completely filling a volume τ  with a fixed solid 
impermeable boundary τ∂  in the absence of body forces 
are being studied. These flows are described by the solutions 
of the mixed problem[2, 10, 13] 

( ) ;in0div, τ=−∇=∇⋅+
∂
∂ uuuu p

t
          (1) 

( ) ( ),0,;on0 0 xuxunu =∂=⋅ τ  

where ( ) ( )321 ,,, uuut =xu  – the velocity field, ( )tp ,x  

– the pressure field, ( )321 ,, xxx=x  – Cartesian 

coordinates, t  – time, ( )321 ,, nnn=n  – the normal to 

the surface ,τ∂  ( ) ( )0302010 ,, uuu=xu – the initial 
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velocity field of the flu id. 
The stationary solutions of the initial boundary value 

problem (1) are also studied 
( ) ( ) ( )xxUu PpUUU === ,,, 321       (2) 

and their absolute instability with respect to small 
three-dimensional perturbations u′  and p′  is being 
proved. 

3. The Formulation of the Linearized 
Problem 

To achieve it  the mixed  problem (1) is linearized near the 
stationary solutions (2): 

( ) ( ) ;in0div, τ=′′−∇=′∇⋅+∇⋅′+
∂
′∂ uuUUuu p

t
(3) 

( ) ( ).0,;on0 0 xuxunu ′=′∂=⋅′ τ  

Here ( ) ( )321 ,,, uuut ′′′=′ xu  and ( )tp ,x′  – small 
perturbations of velocity and pressure fields, 

( ) ( )0302010 ,, uuu ′′′=′ xu  – the init ial small perturbation 
of the flu id velocity field. 

Unfortunately, the analogue fo r the integral of the kinetic 
energy to the init ial boundary value problem (3) has not yet 
been found. 

However, it can be constructed if the solutions of the 
mixed problem (3) are subject to special restriction – the 
condition of “equal-vort icity”[8, 12, 13]. The meaning of 
this provision is an integral form of the “freezing-in” 
condition of vortex lines in the field of virtual displacements 
of the fluid particles and it is expressed as the equality of 
velocity circulat ions along the contours obtained from each 
other with the volume preserving s mooth mapping o f the 
vessel with the fluid on itself. 

“Equal-swirling” small spatial perturbations (3) can be 
described most clearly by the Lagrangian displacements field 
( ) ( )321 ,,, ξξξ=txξ [14]: 

( ).rot ξUuξ
×+′=

∂
∂

t
              (4) 

In its turn, using equation (4) the initial boundary value 
problem (3) can be reformulated as follows 
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where ( ) ( )0302010 ,, ξξξ=xξ  – the initial Lagrangian 

displacements field, and ( ) ( )xξ 0t∂∂  – the in itial first 
order partial derivative of the Lagrangian displacements field 

in time. Throughout the paper, for repeated indices of 
lower-case Lat in letters the summing up from one to three is 
being carried out. 

The analogue for the functional of the kinetic energy to the 
mixed problem (4), (5) serves as the integral[8] 

( )1 const;
2 j j j mjkm kE u u e U d
τ

ω ξ τ≡ =′ ′ ′+∫     (6) 
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Here ( )tj ,xω′  – j-th component of a s mall perturbation 

of the vorticity field, jkme  – covariant pseudotensor of 

third order and the weight 1− [15], ( )xjΩ  – j-th 
component of the steady-state vorticity field. 

Taking into account the expression (6) for the functional 
E , we can conclude that among stationary solutions (2) of 

the initial boundary value problem (1) only those solutions 
that meet the rest states of studied fluid will be stable with 
respect to small spatial perturbations (4), (5) (and will be 
absolutely stable!). 

In all other cases (including in the case of rigid-body 
rotation), the integral E  for small three-dimensional 
perturbations (4), (5) is neither sign-defin ite, no 
sign-constant, so the stationary solutions (2) of the mixed 
problem (1) corresponding to the steady-state spatial flows 
of considered fluid may be unstable with respect to these 
perturbations. 

The following statement is just aimed at proving that there 
is the absolute instability in the linear approximation of the 
stationary solutions (2) which correspond to steady-state 
three-dimensional flows of the fluid under study. 

4. The Lyapunov’s Functional 
Next, an auxiliary integral[12, 13] is introduced into the 

consideration 

∫
τ

≥τξξ≡ .0dM jj                 (7) 

The present functional is a volumetric integral over the 

vessel τ  from the square distance 2
jξ  between the fluid 

particles of perturbed (4), (5) and steady-state (2) flows of an 
ideal incompressible flu id in the phase space of solutions of 
the linearized in itial boundary value problem (3). 

As for the stationary solutions (2) of the mixed  problem 
(1), without any generality limitations, the inequalities are 
true 

,2
2

2
m

kj
kjm xx

P αξξξαξ ≤
∂∂

∂
≤−          (8) 

where α  – known positive constant, then, through the 
differentiation of the functional M  (7) to the independent 
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variable t  taking into account the correlations (4), (5), as 
well as using the expression (6) for the integral E  and the 
right part of the double inequality (8) it is easy to get a key 
ratio – basic differential inequality[13] 

( ) .022 2 ≥++− MMM αλλ            (9) 

Here λ  – some positive constant, throughout the article, 
the point above denotes the total time derivative. 

As the procedure of integration of the relation (9) is 
described in detail in the work[16], the following results of 
the use of this procedure are reported only. That is, if a 
countable set of conditions is added to the d ifferential 
inequality (9) 

  (10) 

( ) ( ) ( ) ( ) ,exp0,exp0 nnnn MMMM λττλττ  ≡≡  

where ( ) ( ),...,2,1,022
212 =α+λπ≡τ nnn  a priori 

exponential lower estimate will be derived from this 
inequality with necessity 

( ) tCtM λ≥ exp                 (11) 

( C  – known positive constant). 
It is worth noting that the class of solutions of the initial 

boundary value problem (4), (5) increasing with time 
according to the constructed estimate (11), with the 
additional conditions 

( ) ( ) ( )020,00 MMM 





 +≥>

λ
αλ       (12) 

on the initial data ( )xξ0  and ( ) ( )xξ 0t∂∂  is not empty. 
In fact, since the mixed problem (4), (5) is linear, it is 

solvable with respect to small three-d imensional 
perturbations in the form of normal waves[1]. Further, since 
the functional E  (6) does not have the properties of 
sign-identification or sign-constancy, the initial boundary 
value problem (4), (5) is also solvable as related to increasing 
with t ime s mall spatial perturbations in the form of normal 
waves. Finally, any g rowing in  time solution of the mixed 
problem (4), (5), which corresponds to a small three-dimen- 
sional perturbation in  the form of a normal wave, due to 
arbitrariness of positive constant ,λ  will satisfy the 
differential inequality (9), a countable set of conditions (10) 
and the lower estimate (11) identically and automatically. 
Consequently, the initial boundary value problem (4), (5), 
(12) has growing in time solutions that correspond to, at least, 
small spatial perturbations in the form of normal waves 
really that will be later illustrated by specific example. 

Thus, the correlation (11) shows clearly that, as a 
minimum, one small three-d imensional perturbation (4), (5), 
(12) of the steady-state spatial flows (2) of an ideal 
incompressible flu id increases with time, at that not slower 
than exponentially. Since this ratio is found without applying 
requirements of restrictive nature to the steady-state 
three-dimensional flows (2), it implies the absolute 

instability of the latter with respect to small spatial 
perturbations (4), (5), (12). 

In addition, the inequalities of relations system (10) are 
sufficient conditions for practical linear instability of steady- 
state three-dimensional flows (2) of an ideal incompressible 
flu id with respect to small spatial perturbations (4), (5), (12). 
As for small three-d imensional perturbations (4), (5), (12) in 
the form of normal waves, these inequalities are necessary 
and sufficient ones (in view of the fact that the positive 
constant λ  is otherwise arbitrary). It is also important that 
these conditions for practical linear instability are inherently 
constructive. This property allows the use these conditions as 
the testing and control mechanis m during physical 
experiments and numerical calcu lations. 

In conclusion, it is appropriate to pay particular attention 
to the fact that the integral M (7) is the Lyapunov’s 
functional in this article, which grows over time in 
accordance with the motion equations of the mixed problem 
(4), (5), (12). A distinctive feature of this growth is a lot of 
freedom retained for the positive constant λ  in the 
exponent index from the right side of the lower estimate (11). 
This freedom, in part icular, allows us to interpret any 
solution of the in itial boundary value problem (4), (5), (12), 
which increases with t ime according to the found priori 
exponential lower estimate (11), as an example of 
incorrectness according to Hadamard[17]. 

As it is demonstrated in the work[18] that the theory 
developed above can be extended on steady-state flows in 
unbounded closed areas, an illustrative analytical example of 
steady-state plane-parallel shear flows of an ideal 
incompressible flu id 

( ) ,const,0, 32211 ≡≡== puuxUu     (13) 

where 1U  – a certain function of the independent variable 

,2x  in the space 

( ){ }+∞<<∞−<<+∞<<∞−= 321321 ,0,:,, xHxxxxxτ  
between two quiescent rigid impermeable parallel p lanes 
( H  – width of the gap) in the absence of body forces and 
superimposed on these flows small spatial perturbations in 
the form of normal waves 

( ) ( ) ( )1 31 2 3 2 exp 1, 2,3;, , , ;j j t jx x x t x i x xh σ κ γξ + =≡ +   (14) 

( ) ( ) ( )[ ]3124321 exp,,, xxitxhtxxxp γ+κ+σ≡′  

(here ,1h  …, 4h  – some functions of its argument, 

21 σ+σ≡σ i  – an arbitrary complex, and ,κ  ,γ  ,1σ  

2σ  – some real constants), evolving in time in strict 
accordance with the constructed priori exponential lower 
estimate (11), is created further. 

5. Example 
Substituting expressions (13) and (14) into the motion 

equations of the mixed problem (4), (5) and the boundary 
condition 
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02 =ξ  on ,τ∂  

where ( ){ ;,0;:,, 21321 Hxxxxx =+∞<<∞−=∂τ
}+∞<<∞− 3x  – resting solid non-permeable parallel 

planes, which limit the infinite in length along axes 31, xx  
channel – the fluid flow area τ  studied here, an exception 
from the obtained relations of functions ,1h  3h , and 4h  

as well as the replacement of 2h  on a new unknown 

function ( ) ( ) 212 hUixh κ+σ≡  lead to the classical 
boundary value problem of the eigenvalues and 
eigenfunctions detection for the Rayleigh equation[3, 9, 10, 
19]: 
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In accordance with the results of papers[19-21], if the first 

relation of (15) is to be multiplied by the complex-conjugate 

function ,*h and then to separate in it real and imaginary 
parts from each  other, it is rewritten in the form of an 
equivalent system of equalit ies: 
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Integration of correlations (16) on the cross-section of the 
interior layer between two non-moving solid impenetrable 
parallel planes applying boundary conditions (15) makes it 
possible, according to works[19-21], to come to the 
following equalities: 
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+H
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From correlations (17), in agreement with the results of 
papers[19-21], it follows that exponentially growing 
solutions (14) ( 01 >σ ) of the in itial boundary value 
problem (4), (5) will be able to turn these correlat ions into 

identities if and only if the derivative 2
21

2 dxUd  
changes the sign within the gap τ  between two non-moving 

solid impenetrable parallel surfaces, and, at the same time, at 
least at one point of the latter the inequality holds true 

.02
2

1
2

1 <
dx

UdU                  (18) 

However, for the quantity 2
21

2 dxUd  sign variation and 
the correlat ion (18), a  completely  different t reatment can be 
suggested as compared with the ones that were proposed in 
the works[19-21]. 

In fact, if we carefu lly analyze the integral from the right 
side of the second equality (16), temporarily forgetting about 
the boundary conditions (15), it is easy to see that it can be 
written as 

2
2 2 20 0
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It fo llows that the chain of correlations (19) will be equal 
to zero  due to the boundary conditions (15), and only in those 
cases when 
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do not tend neither to 0/0, nor to .0 ∞⋅  
Unfortunately, the situation is possible when  
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and/or 
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because the function 2dxdh  can consist of a countable 

set of branches. Examples of similar functions 2dxdh  are 
logarithmic functions, inverse trigonometric and other 
functions. 

It is impossible to choose one or another branch of the 
function 2dxdh ahead of time to find a solution to the 
problem (15). Surprisingly, but since into the formulat ion of 
the boundary value problem (15) there are not any conditions 
on the function 2dxdh  (it  is not involved in the 
formulat ion of the problem (15) at all!), there is no way to 
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uniquely select one or another branch of the function 

2dxdh  for already found solution to the boundary value 
problem (15)! The present observation makes all branches of 
the function 2dxdh  equal, that is, the integral (19) must 
vanish for all countable set of branches of the function 

2dxdh  as a whole that becomes a reason for the 

appearance of the type ∞⋅0  uncertainty. 
From the above mentioned it follows that the solutions h 

of the problem (15) with functions 2dxdh  consisting of a 
countable set of branches are not covered by the 
papers[19-21] results. These solutions will provide 
counterexamples to these results. 

Thus, the results of works[19-21] are true not for all 
solutions h of the boundary value problem (15), but only for 
their particular class with functions 2dxdh  consisting of 
a fin ite number of branches. Expanding the use of the 
papers[19-21] results is unjustified and wrong. This is 
confirmed by the specific example below. 

Indeed, a subclass of steady-state flows (13) with the 
profile of the longitudinal velocity in the form[18] 

( ) ,exp 221 cxbaxU −=            (20) 

where ,a  b , and c  are arbitrary real constants, is 
considered further in th is article. 

With the help of the independent variable 

2expcxbiκ−≡η  and the required function 

lhw η≡η)(  




 +±≡ cl 22 γκ  changes the 

ordinary differential equation (15), taking into account the 
correlation (20), can be shaped as follows  
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d
dwail
η

κση      (21) 

If in the correlation (21) another change of the 
independent variable ( )aiz κ+ση−≡  is to be carried 

out and take ,34−≡l  it is easy to make sure that it will 
be a variant of the Gauss hypergeometric equation[22] 
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The general solution of the correlation (22) is the function 
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(here 1C  and 2C  are some constants). 
The boundary conditions (15) will hold fo r the function 

)(zw  (23) if and only if 
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It follows that in this case the disperse correlation in the 
form 
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must be satisfied. All appearing in the formula (24) 
functions of the complex variable 21 σ+σ=σ i  are 
understood in the sense of its main branches. 

Unfortunately, this disperse correlation cannot allow to 
calculate its roots through analytical methods, so one has to 
graphically  exp lore the issue, whether it  has roots that 
correspond to the exponentially growing small three- 
dimensio-nal disturbances in the form of normal waves (14), 
(15), or not (see Figures 1-3 below). 

The essence of the graphic examination of the disperse 
correlation  (24) to hold it  roots, which  correspond to the 
exponentially increasing small spatial perturbations in the 
form of normal waves (14), (15), is that first this correlation 
is rewritten in the form of ×+= iGG )(Re)( σσ  

.0)(Im =× σG  Then, the curves 0)(Re =σG  (red 
lines in Figures 1-3) and 0)(Im =σG  (blue lines in 

Figures 1-3) are drawn on the complex plane ( )21,σσ . If 
as a result, these curves have the intersection points with the 
coordinates ( )21 ,0 σσ >  that it is these points will signal 
that the disperse correlation (24) has roots that correspond to 
the exponentially growing small three-d imensional 
disturbances in the form of normal waves (14), (15). 
Herewith, the coordinates ( )21 ,0 σσ >  of the intersection 
points of the studied curves 0)(Re =σG  and 

0)(Im =σG  in numerical terms are being found using the 
coordinate grid through its suitable scaling. 

The following are the results of the graphic dispersion 
correlation (24) study to hold it roots, which correspond to 
the exponentially growing small spatial perturbations in the 
form of normal waves (14), (15), for the three sets of 
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characteristic parameters κ,,,, Hcba , and γ  (see 

Figures 1-3 below, 1σ -axis is horizontal coordinate straight 

line, 2σ -axis – vertical one): 

:22,22,1,3,1,230)1 ====== γκHcba  

;120,015.0 21 −≈≈ σσ            (25) 

 
Figure 1.  Illustration to the data (25) (the origin is located at coordinates 
(0, -120)) 

:22,22,1,3,1,22)2 ====== γκHcba  

;8,015.0 21 −≈≈ σσ              (26) 

 
Figure 2.  Illustration to the data (26) (the origin is located at coordinates 
(0, -8)) 

:22,22,1,3,1,2)3 =====−= γκHcba  

.4,015.0 21 ≈≈ σσ              (27) 

 
Figure 3.  Illustration to the data (27) (the origin is located at coordinates 
(0, 4)) 

It is important that these roots of the disperse correlation 
(24) do not coincide with  any of the specific points of the 
functions of complex variab le 21 σσσ i+=  present in it. 

Analyzing the data (25)-(27), first of all, it is necessary to 
note the fact that the velocity profiles ( )21 xU  (20), 
(25)-(27) of the steady-state plane-parallel shear flows (13) 
of an ideal incompressible flu id between two fixed hard 
waterproof parallel endless surfaces in the absence of mass 
forces have no points of inflection. Thus, the validity of the 
works[19, 21] results on the stability based on the 
immutability of the value 2

21
2 dxUd  sign for all three 

characteristic sets (25)-(27) of defin ing parameters can be 
observed. 

As for the validity of inequality (18), for the velocity 
profile ( )21 xU  (20) with the parameters ,a  b , and c
(25) it is true everywhere in  the layer τ  between the two 
non-mo- ving solid impenetrable parallel planes, for the 
velocity profile  ( )21 xU  (20) with the parameters ,a  b , 
and c  (26) – in the part  of this layer, but for the velocity 
profile ( )21 xU  (20) with the parameters ,a  b , and c  
(27) this inequality, on the contrary, is false anywhere within 
the gap τ  between two non-moving solid impenetrable 
parallel unlimited  surfaces. Hence, accord ing to the results of 
articles[20, 21], at least, the steady-state plane-parallel shear 
flow (13), (20), (27) of an ideal incompressible flu id between 
two non-moving solid impermeable parallel planes in the 
absence of body forces must also be stable with respect to 
small spatial perturbations in the form of normal waves (14), 
(15). 

However, the result (27) indicates clearly that, contrary to 
the results of works[19-21] on stability, the steady-state 
plane-parallel shear flow (13), (20), (27) o f an ideal 
incompressible fluid within the layer τ  between two 
non-moving solid impenetrable parallel infinite surfaces in 
the absence of body forces is still unstable with respect to 
small three-d i- mensional perturbation in the form of normal 
wave (14), (15), (27). 

Indeed, it is graphically found that the exponentially  
growing s mall spatial perturbation in the form of the normal 
wave (14), (15), (27) corresponds to the stationary velocity 
profile ( )21 xU  (20), (27). Of course, correlations (9), (11) 
as well as a countable set of conditions (10) are made for this 
perturbation. 

Hence, it also fo llows that the action of the papers[19-21] 
results does not really apply to the small three-d imensional 
perturbation in the form of the normal wave (14), (15), (27). 
Therefore, the conditions for the linear stability[19-21] of the 
steady-state plane-parallel shear flow (13), (20), (27) can be 
satisfied for some small spatial d isturbances in the form of 
normal waves (14), (15), but in  no way for the small 
three-dimensional disturbance in the form of the normal 
wave (14), (15), (27). Th is testifies the necessary and 
sufficient nature of these stability conditions. 

By the way, the function )(1 zψ  that appears in the 
general solution (23) contains a complex-valued inverse 
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tangent and a natural logarithm (complex-valued too), so that 
its first-order derivative dzd 1ψ  consists of a countable 
set of branches, and it is fully in agreement with the earlier 
reasoning. 

As a result, the construction of an illustrative analytical 
example of the steady-state plane-parallel shear flows (13) of 
an ideal incompressible flu id within the limits of the gap τ  
between two non-moving solid impermeable parallel planes 
in the absence of body forces and imposed on these flows 
small spatial disturbances in the form of normal waves ( 14), 
developing over time in strict  accordance with the designed a 
priori exponential lower estimate (11), regard less of whether 
linear stability conditions of the works[19-21] are true or not, 
has been completed. 

6. Conclusions 
In the present paper the problem of linear stability of 

steady-state three-dimensional flows (2) of an ideal 
incompressible fluid, which completely fills an arbitrary 
vessel with fixed solid impermeable walls, in the absence of 
body forces has been considered. 

The direct  Lyapunov method proves that the flows are 
absolutely unstable with respect to small spatial 
perturbations (4), (5), while the states of rest, on the contrary, 
are absolutely stable. We derive constructive sufficient 
conditions (see the inequalities of the system of correlations 
(10)) of the practical linear instability. A priori exponential 
lower estimate (11) has been constructed, which testifies to 
the time rise in the studied small perturbations. An 
illustrative analytical example of steady-state plane-parallel 
shear flows (13) of an ideal incompressible fluid between 
two non- moving solid impenetrable parallel unbounded 
surfaces in the absence of body forces and imposed to these 
flows s mall three-d imensional perturbations in  the form of 
normal waves (14), that evolve over time in accordance with 
constructed a priori exponential lower estimate (11) 
regardless of whether the conditions of linear stability of 
works[19-21] are true or not, has been constructed. 

It should be emphasized that from a mathematical point of 
view, the results of this paper are, for the most part, a  priori, 
since the existence theorems for solutions to studied mixed 
problems for systems of differential equations with partial 
derivatives have not been proved. 

Finally, concerning the question whether the mathemat ical 
model (1) adequately describes the physical property of 
liquids flu idity, it  should be answered in  the negative, 
because this model has no stable solutions (2), corresponding 
to the steady-state flows, although such flows are observed in 
nature and implemented in applications. 

However, the current bad situation can be improved by the 
fact that if the conditions (see the inequalities of the 
correlations system (10)) of the pract ical linear instability are 
not carried out, stationary solutions (2) of the init ial 
boundary value problem (1) are stable to the small spatial 
perturbations (4), (5), (12) in  the form of normal waves at 

those or any other finite time intervals. 
Thus, the mathematical model (1) does not adequately 

characterize the physical property of liquids fluid ity in a 
theoretical sense (on semi-infinite time intervals), but 
adequately – in a practical one (on fin ite time intervals). 

It fo llows that the constructive sufficient conditions (see 
inequalities of the correlations system (10)) of the practical 
linear instability may serve as a foundation for creation of an 
effective method for control of the steady-state flows (2) in 
real-t ime mode[23]. 

Indeed, suppose, for example, it is necessary to develop 
some technological process based on the use of steady-state 
flows (2). 

In order for this process to be reliable in  operation, it is 
necessary to ensure its practical stability fo r all admissible 
disturbances. In particular, the process must be stable in a 
practical sense with respect to the small three-d imensional 
perturbations (4), (5), (12) in the form of normal waves. 

This goal can be ach ieved by constructing a numerical 
model that would meet  the linearized mixed  problem (4), (5), 
(12), with control at  reference t ime points nτ  (10) for the 
validity of inequalities of the correlations system (10). 
During the construction of this model it is required to focus 
your major efforts on the fact that the inequalit ies of the 
correlations system (10) were not true at the expense of those 
or any other known external influences on the unsteady-state 
flows (4), (5) (for example, at the expense of the initial 
conditions (12) v iolat ion). 

As a result, the practical stability of the developed 
technological process will be guaranteed, at least relative to 
small spatial perturbations (4), (5), (12) in the form of normal 
waves, and so the foundation will be laid for the creation of 
an effective method to control the steady-state flows (2) in 
real-t ime mode. 

Unfortunately, the problem of constructing a numerical 
model described above (at least to date) has not been solved 
yet, and it is just waiting for the moment when experts pay 
their attention to it. 

As there is no significant information about stationary 
solutions (2) of the initial boundary value problem (1) in the 
key differential inequality (9), it is justifiab ly to hope that 
this relation in either fo rm will arise in the study of other 
mathematical models of hydrodynamic type. Therefore, the 
way of constructing Lyapunov’s functionals presented in this 
paper, which are characterized by a property to increase with 
time according to the interesting linearized equations of 
motion, will undoubtedly be a great help in ensuring the 
adequacy of the mathemat ical modeling of fluidity, at that 
not only for liquids, but also for other physical media (such 
as gases, plasma, and the like). 

Finally, the present conditions of practical linear 
instability (see the inequalities of the correlations system 
(10)) can be interpreted as a numerical algorithm, which is 
built without digitizat ion of appropriate defining d ifferential 
equations for the first time in the history of science[24]. This 
fact indicates that with the aid of these conditions it is 
possible to set numerical results that in the degree of their 
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accuracy, reliability and validity are in no way inferior to 
their corresponding analytical results. Thus, any distinction 
between numerical and analytical results is erased. 
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