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Abstract  The effect of suspended particles, variable g ravity and magnetic field on the thermal stability of an Oldroydian 
viscoelastic flu id through Brinkman porous medium is considered. Fo llowing the linearized  stability  theory and normal mode 
method, the dispersion relation is obtained. It has been found that for stationary convection, Oldroydian viscoelastic fluid 
behaves like an ord inary Newtonian fluid and medium permeability, medium porosity and suspended particles have 
destabilizing effects on the system whereas the magnetic field and Darcy-Brinkman number have stabilizing effects on the 
system. The sufficient conditions for the non-existence of overstability are obtained and it has also been found that the modes 
may  be oscillatory and non-oscillatory. It is also noted that the princip le of exchange of stabilit ies is valid under certain 
conditions. 
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1. Introduction 
The theoretical and experimental results of the onset of 

convection in a horizontal layer of Newtonian fluid  heated 
from below under varying assumptions of hydrodynamics 
and hydromagnetics has been discussed in detail by 
Chandrasekhar[1]. The flow through porous medium is 
important in filtering equipment, chemical reactors, oil and 
gas extraction, recovery of crude oil from earth’s interior, 
movement of ground water, etc. The physical properties of 
comets, meteorites and interplanetary dust strongly suggest 
the importance of porosity in astrophysical situations 
(McDonnel[2]).  

A porous medium is defined as a material volume 
consisting of solid matrix with an interconnected void. It is 
mainly characterized by its porosity which is defined as the 
ratio of the void space to the total volume of the medium. A 
comprehensive and detailed study of convection through 
porous medium has been given by Nield and Bejan[3]. At 
low velocities a saturated porous medium with high porosity 
is well described by the Darcy-Brinkman approximat ion and 
require that classical frictional term be added in the classical 
Darcy equation. The dynamic viscosity µ  associated with 
the Brinkman[4] term is known as effective viscosity.  
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Tissues can be treated as a porous medium as it is 
composed of dispersed cells separated by connective voids 
which allow for flow of nutrients, minerals, etc. There are 
several evidences, both theoretical and experimental, which 
suggest that the Darcy’s equation gives inadequate results of 
the hydrodynamic conditions, particularly near the 
boundaries of a porous medium. The Darcy-Brinkman 
equation, which takes into account the boundary effects, has 
been employed in recent years in biomedical hydrodynamic 
studies[5], modeling a thin fibrous surface layer coating 
blood vessels (endothelial surface layer) as it is a highly 
permeable porous medium[6,7]. It is, therefore, of interest to 
study the characteristics of the Darcy-Brinkman equation 
which have relevance importance in several bio logical, 
geological, chemical reactors and medical science 
applications, thus forming a motivation for the present study. 

In geophysical context, the flu id is often not pure but may 
instead be permeated with dust particles. The effects of 
suspended particles on the stability o f superposed flu ids have 
industrial and scientific  importance in  geophysics, chemical 
engineering and astrophysics. Scanlon and Segel[8] have 
considered the effect of suspended particles on the onset of 
Bénard convection and found that the critical Ray leigh 
number was reduced solely because the heat capacity of the 
pure fluid was supplemented by that of the particles. So the 
effect of suspended particles was thus found to increase the 
instability of the layer. An experimental demonstration by 
Toms and Strawbridge[9] reveals that a dilute solution of 
methyl methacrylate in n-butyl acetate behaves in 
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accordance with the theoretical model of Oldroyd fluid[10]. 
The present analysis would be relevant to the stability of 
some polymer solutions like a dilute solution of methyl 
methacrylate in n-butyl acetate and also find its importance 
in several geographical situations and in chemical 
technology.  

Bhatia and Steiner[11] have studied the problem of 
thermal instability of a Maxwellian visco-elastic flu id in the 
presence of a magnetic field and found that the magnetic 
field has a stabilizing influence on the overstable mode of 
convection in a visco-elastic flu id layer. The problem of 
thermal instability of a flu id layer under variab le gravity 
field has been considered by Pradhan and Samal[12]. Since 
the earth’s gravity field varies with its distance from its 
surface so it is of utmost important to take into account the 
effect of variab le gravity field having its importance in 
several convective flows, atmospheric science, astrophysics, 
geophysics and also in material processing technology. 

Sharma[13] studied the stability of a layer of an 
electrically conducting Oldroyd fluid in the presence of a 
magnetic field and found that the magnetic field has a 
stabilizing in fluence while the effect of suspended particles 
on the onset of Bénard convection in hydromagnetics have 
been studied by Sharma et al.[14]. Sharma and Sharma[15] 
have investigated the effect of suspended particles on 
thermal instability in Maxwellian and Oldroydian 
viscoelastic fluids in a porous medium and found that for 
stationary convection both the Maxwellian and Oldroydian 
flu ids behave like Newtonian fluid and the medium 
permeability and suspended particles have destabilizing 
effects on the system. Sharma and Sunil[16] considered the 
thermal instability o f an  Oldroydian viscoelastic fluid  with 
suspended particles in hydromagnetics in porous medium 
and concluded that, for stationary convection, magnetic field 
has a stabilizing effect whereas medium permeability and 
suspended particles have destabilizing effects on the system.  

The problem of the onset of electroconvective instability 
of an Oldroydian viscoelastic liquid layer through Brinkman 
porous medium under the simultaneous action of an electric 
field and a vertical temperature gradient has been 
investigated by El-Sayed[17]. The purpose of the present 
note treated here is to examine theoretically the problem of 
the onset of stability of an Oldroydian viscoelastic flu id 
permeated with suspended particles through a Brinkman 
porous medium under the simultaneous action of varying 
gravity field and vertical magnetic field. 

2. Formulation of the Problem and 
Perturbation Equations 

Let 0, , , , , , , , ( )iij ij ijij iT e q p and xτ δ µ λ λ λ<  

denote, respectively, the total stress tensor, shear stress 
tensor, rate of strain tensor, Kronecker delta, velocity vector, 
pressure, viscosity, stress relaxation t ime, strain retardation 
time and position vector. Then the Jeffrey (Oldroydian) 

constitutive relations for performing linear stability of 
Rayleigh–Bénard convection in clear viscoelastic fluids  are 
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Relations of the type (1) were p roposed and studied by 
Oldroyd[10]. He also showed that many rheological 
equations of general valid ity reduce to (1) when linearized. 

0 0λ =
 
yields the Maxwellian fluid, whereas 0 0λ λ= =  

gives the Newtonian viscous fluid.  
Here we consider an in fin ite horizontal layer of an 

Oldroydian viscoelastic fluid permeated with suspended 
particles and bounded by the planes z=0 and z=d in a porous 
medium of porosity ∈and medium permeability 1k . The 
flu id layer is acted on by a uniform vert ical magnetic field H 

(0, 0, H) and a variab le gravity force ( ) 0h z g=g , where 

( )h z can be positive or negative according as the gravity 

increase or decreases upward from its value ( )0 0g > . The 
layer is heated from below so that a uniform temperature 
gradient dT dzβ =  is maintained.  

The governing equations of motion and continuity for the 
Oldroydian viscoelastic fluid based on the Darcy-Brinkman 
approximation are 
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. 0q∇ =                    (3) 
Where 

( )0 0, , , , , , ,e d iq q N x t andρ µ µ µ λ= −iX g

 
denote, 

respectively, the density of fluid, viscosity, effective 
viscosity, magnetic permeability, velocity of pure fluid, 
velocity of suspended particles, number density of the 
suspended particles and the gravitational acceleration. 

( )zyxx ,,=  and 6K πρυδ′ =  where δ  being 
particle radius, is the Stokes’ drag coefficient. 

The presence of suspended particles adds an extra force 
term, in equation of mot ion, proportional to velocity 
difference between particles and fluid. Since the force 
exerted by the flu id on the part icles is equal and opposite to 



60 Kapil Kumar et al.:  Stability of an Oldroydian Viscoelastic Fluid Permeated with Suspended Particles   
through a Brinkman Porous Medium with Variable Gravity Field in Hydromagnetics  

 

that exerted by the particles on the flu id, there must be an 
extra force term, equal in magnitude but opposite in sign, in 
the equations of motion for the particles. Inter-particle 
reactions are ignored as the distances between the particles 
are assumed to be quite large compared with their d iameters. 
The effects of pressure, magnetic field and gravity on the 
particles are very s mall and hence ignored. 

If mN is the mass of part icles per unit volume, then the 
equations of motion and continuity for the particles are: 
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The energy equation is 
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Where , , , ,s s v ptc c c T and kρ  denote, respectively, 
the density of solid material, heat capacity of solid material, 
the specific heat at constant volume, heat capacity of 
suspended particles, the temperature and the thermal 
conductivity. 

The Maxwell’s equation yields 

( ) 2H q H H
t

η∂
∈ = ∇× × + ∈ ∇

∂
          (7) 

and ,0. =∇ H                   (8) 
Where η  denote the electrical resistivity. 
The equation of state is 

 ( )0 01 T Tρ ρ α = + −              (9) 

The steady state solution corresponding to the system of 
equations (2)-(9) are: 
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Let the init ial state solution described by equation (10) be 
slightly perturbed. We assume that q (u,v,w), qd  (l,r,s), N, θ, 

pδ , δρ  and ( ), ,x y zh h h h  denote, respectively, the 

perturbation in fluid velocity q(0,0,0), perturbation in 
particle velocity qd (0,0,0), perturbation in part icle number 
density 0N , temperature T, p ressure p, density ρ  and 

magnetic field H. The change in density δρ  caused by 
perturbation θ in temperature, is given by 

0δρ αθρ= −                 (11) 
The govern ing perturbat ion equations (using Oberbeck-

Boussinesq approximation) due to linearization procedure 
are: 
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denote, respectively, the kinematic viscosity, the effective 
kinemat ic v iscosity, the co-efficient of thermometric 
conductivity, unit vertical vector, vertical flu id velocity and 
suspended particles velocity and  
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Eliminating pδ  between the three component equations 
of (12) and using equations (13) and (14), we obtain:  
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for the z-component of vorticity and z-component of current 
density, respectively. 

From equation (16), we obtain: 
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The x and y component equations of (18) along with (17) 
yields: 
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3. Dispersion Relation and Discussion 
Decomposing the disturbances into normal modes by 

seeking solutions whose dependence on x, y and t is given 
by:  
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Where xk , yk
 
are the wave numbers along x and y 

directions, respectively and ( )222
yx kkk +=  is the 

resultant wave number and n is the frequency of the 
harmonic disturbance, which is, in general, a  complex 
constant. 

Using expression (24) and making the substitutions of the 
non-dimensional quantities of the form 
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 We obtain the non-dimensional form of Equations 

(19)-(23) (after d ropping the asterisk for convenience) as: 
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Eliminating and KΘ  from equations (25), (27) and 
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= , is the thermal Rayleigh number 
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= , is the Chandrasekhar number. 

From equations (26) and (29), we obtain: 
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It is apparent from equation (31) that for the problem 
under consideration  
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that is the z- components of vorticity and current density 
vanish identically for the problem on hand. 

The boundary conditions appropriate to two free and 
perfectly conducting boundaries are defined as: 
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to that for a Maxwell fluid whereas for 
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ordinary viscous fluid. 

4. Solution of the Eigen-value Problem 
The boundary conditions (32) and (33) suggest that a 
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defined by  
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Equation (35) is required dispersion relation accounting 
the effects of magnetic field, suspended particles and 
medium permeability on thermal instability of an Oldroyd 
visco-elastic flu id through a Brinkman porous medium.

 

5. The Stationary Convection 

When instability sets in as stationary convection, the 
marginal state will be characterized by putting 0σ =  in 
equation (35) and get the eigenvalue relationship for a 
stationary instability of the form:  

( )
( ) ( ) ( )1

23
1

1

1 11 1AD x x QR x
xBh z P P

  + +  = + + + ∈ ∈    
 (36) 

Thus it is clear from equation (36) that for stationary 
convection Oldroydian visco-elastic fluid behaves like an 
ordinary Newtonian flu id since the stress relaxation 
parameter 2F  and strain retardation parameter 1F  
vanishes with σ . 

Minimizing equation (36) with respect to x , yields the 
third order equation in x  as 

( )
( ) ( )

1 1

1 1

3 2

1

4 3 3

9 4 0

A A

A A

D x D x

D x D Q P
  

  

+ + ∈

+ + ∈ + + ∈ − =
     (37) 

Substituting the value of crit ical wave number cx  thus 
obtained from equation (37), in  equation (36), g ives the 
value of critical Rayleigh number for stationary instability. 

In order to investigate the effects of suspended particles, 
magnetic field, medium permeability, Darcy-Brinkman 
number and medium porosity, we examine the behaviour of 

1 1 1 1 1

1 1

, , ,
A

dR dR dR dR dRand
dB dQ dP dD d ∈

 

analytically.  

Equation (36) yields 

( )
( ) ( ) ( )2

3 2
1 111

1
1 1AdR Q

x
dB xh z B

D x x
P P

  
= − + +

∈

  + +  + ∈    
 (38) 

which is negative implying thereby that the suspended  
particles have a destabilizing effect on the viscoelastic 
Oldroydian  fluid  for the case of stationary convection when 
the gravity field  increases upward from its value g0 i.e. 

( )( )0h z > . Th is destabilizing effect  of suspended 

particles agrees with prev ious published work by Scanlon 
and Segel[8], Sharma and Sharma[15] and Sharma and 
Sunil[16]. 

From equation (36), we get  
( )

( )
1

1

1 xdR
dQ h z xB

+
=

∈
            (39) 

which shows that magnetic field always has a stabilizing 
effect on the viscoelastic Oldroydian fluid for the case of 
stationary convection when the gravity field increases 

upward from its value g0 i.e. ( )( )0h z > . This stabilizing 

effect of magnetic field is an agreement of the previous 
results by Sharma[13] and Sharma and Sunil[16]. 
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From equation (36), we get  

( )
( ) ( )

1

32
1

2 2

111 AD xxdR
dP Bxh z P P

 ++
 = − +

∈     

(40) 

which is always negative imply ing thereby that the medium 
permeability has a destabilizing effect on the viscoelastic 
Oldroydian flu id for the case of stationary convection as the 
gravity field increases upward from its value g0 i.e. 

( )( )0h z > . This destabilizing result agrees with the 

earlier work reported by Sharma and Sharma[15] and 
Sharma and Sunil[16]. 

From equation (36), we get  

( )
( )

1

3
1 1

A

xdR
dD BxP h z

+
=

∈
           (41) 

which is always positive. Therefore, the modified 
Darcy-Brinkman number has a stabilizing effect on the 
system for the case of stationary convection as the gravity 
field increases upward from its value g0 i.e. ( )( )0h z > .  

From equation (36), we get  

( )
( )

( )1

3
1

2 1

11 1AD xdR Q x
d xBh z P

  +
= − + + 

∈ ∈     

(42) 

which is negative implying thereby that the effect of medium 
porosity is to destabilize the system for the case of stationary 
convection as the gravity increases upward from its value g0 

i.e. ( )( )0h z > . This destabilizing effect of porosity 

agrees with the result of El-Sayed[17]. 

6. Results and Discussion 
The dispersion relat ion (36) is analyzed  numerically. The 

region of stationary instability for different values of 
suspended particles, magnetic field, medium permeability, 
Darcy-Brinkman number and medium porosity is shown in 
figures 1, 2, 3, 4, and 5, respectively. It  is clear from figure1 
that the critical Rayleigh number decreases with an increase 
in the value of suspended particles. Figure 2 illustrates that 
critical Rayleigh number increases with an increase in 
magnetic field. Figure 3 shows a decrease in critical 
Rayleigh number with permeability. Figure 4 illustrates that 
an increase in the value of Darcy-Brinkman  number 
increases the critical Rayleigh number, thereby depicting the 
stabilizing effect of Darcy-Brinkman number for the 
problem on hand. From figure 5, we find that an increase in 
the medium porosity decreases the critical Rayleigh number, 

and hence decreases the region of stability.  

 
Figure 1.  Variation of Rayleigh number 1R  with wave number x, for 

1
5AD = , Q = 50, 0.5∈= , 0.2P =  and B=5,10,15,20,25 

 
Figure 2.  Variation of Rayleigh number 1R  with wave number x, for 

1
3AD = , B = 10, 0.5∈= , 2P = and Q=10,20,30,40,50 

 
Figure 3.  Variation of Rayleigh number 1R  with wave number x, for 

1
3AD = , B = 10, 0.5∈= , 50Q =  and P=0.1, 0.2, 0.3, 0.4, 0.5 
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Figure 4.  Variation of Rayleigh number 1R  with wave number x, for 

P=0.5, B = 10, 0.5∈= , 50Q =  and 
1AD =1, 2, 3, 4, 5 

 

Figure 5.  Variation of Rayleigh number 1R  with wave number x, for 

1
3AD = , B = 10, 0.5P = , 50Q =  and ∈=0.1, 0.2, 0.3, 0.4, 0.5 

7. Overstability Case 
Here we examine the possibility of whether the instability may occur as overstability. Since for overstability we wish to 

determine the critical Rayleigh number for the onset of instability via a state of pure oscillations, it suffices to find the 
conditions for which equation (35) will admit solutions with 1σ  real. Equating the real and imaginary parts of equation (35), 
we get 
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  + −  ∈    − + + + + +        + +       

( ) ( ) ( )( ) ( )2 2 4 2 2 2
1 1 1 1 1 1 21 1 1Q x R x h z x B p Bσ π τ σ π τ


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     (43) 

and 
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 (44) 

Eliminating R1 between equations (43) and (44) and assuming 2
1 yσ = , we get a fourth order polynomial in y of the form: 

4 3 2
0 1 2 3 4 0a y a y a y a y a+ + + + =                                (45) 

Where 
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where ( ){ }1`
1AD D x= + + ∈  

The values of the coefficients 1 2 3,a a and a  involving large number of terms are not included to save spaces. Since 1σ
is real for overstability to occur therefore all the roots of y should be positive. 

From equation (45), the product of root 4

0

a
a

 
=  

 
 is positive. 

0a  is negative if  

1 1 2 11 1 .B and E p p or B and Eη κ> > > >                               (48) 
and 

4a  is positive if  

2 1 01 1 .B and F F or B and λ λ> > > >                             (49) 
The inequalities defined by (48) and (49) are the sufficient conditions for the non-existence of overstability. 

8. Principal of Exchange of Stabilities and Oscillatory Modes 
Here we determine the condition, if any, under which principle of exchange of stabilit ies is satisfied and the possibility of 

oscillatory modes for the Oldroydian viscoelastic fluid under the influences of variable gravity, suspended particle and 
magnetic field through Brinkman porous medium.  

For this, we mult iply equation (25) by W* (the complex conjugate of W), integrating over the range of z and making use of 
equations (27) and (28) with the help of boundary conditions (32) and (33), we obtain  
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Where ( )1 2 22
1 0

,I DW a W dz= +∫ ( )1 2 2 22 4 2
2 0

2 ,I D W a W a DW dz= + +∫ ( )1 2 22
3 0
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4 0

,I dz= Θ∫ ( )1 2 22
5 0

,I DK a K dz= +∫ ( )1 2 2 22 4 2
6 0

2I D K a K a DK dz= + +∫  

All the above integrals I1-I6 are positive definite.  

Putting 0iσ σ= , where 0σ  is real, into equation (50), and equating imaginary part, we obtain 
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    − + ++ + −  ∈    + ∈ + + − =   + ∈ + +        
 (51) 

Equation (51) implies that 0 0σ =  or 0 0σ ≠  which  mean that modes may be non oscillatory  or oscillatory. The 

oscillatory modes introduced due to presence of magnetic field, suspended particles, visco-elasticity, medium permeability 

and Darcy-Brinkman parameter.

 

In the absence of magnetic field, equation (51) reduces to 
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 (52) 

It is evident from equation (52) that if 2 11B and F F> >  then the term inside the bracket is positive which implies 

that 0 0σ = , thus the modes are non-oscillatory and the principle o f exchange of stabilities is satisfied. 

9. Conclusions 
The problem of thermal instability of an Oldroydian 

viscoelastic fluid permeated with suspended particles in the 
presence of variable gravity and vertical magnetic field 
through a Brinkman porous medium is considered in the 
present paper. For stationary convection, Oldroydian flu id 
behaves like an ord inary Newtonian flu id. The effect of 
suspended particles, medium porosity and medium 
permeability are found to hasten the onset of thermal 
instability whereas magnetic field and Darcy-Brinkman 
number have a stabilizing effect on the system, as such their 
effect is to postpone the onset of thermal instability when the 
gravity field increases upward from its value g0 i.e. 

( )( )0h z > . We thus find that, in case of Brinkman porous 

medium, the Darcy-Brinkman number has a stabilizing 
effect fo r the problem under consideration whereas both 
medium porosity and medium permeability have 
destabilizing effects on the system for the case of stationary 
convection.  

The oscillatory modes are introduced due to presence of 
magnetic field, suspended particles, visco-elasticity, medium 
permeability and Darcy-Brinkman parameter. The princip le 
of exchange of stabilities is found to hold under certain 
conditions. The sufficient  conditions for the non-existence of 
overstability are also obtained. The present analysis would 
be relevant to the stability of some polymer solutions and 
Oldroydian  viscoelastic fluids and finds its importance in 
several scientific and engineering fields like ground water 
hydrology, petroleum engineering and in geophysics. 
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