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Abstract Laminar two-dimensional natural convection boundary-layer flow of non-Newtonian fluids along an isothermal
horizontal circular cylinder has been studied using a modified power-law viscosity model. In this model, there are no
unrealistic limits of zero or infinite viscosity. Therefore, the boundary-layer equations can be solved numerically by using
marching order implicit finite difference method with double sweep technique. Numerical results are presented forthe case of
shear-thinning as well as shear thickening fluids in terms of the fluid velocity and temperature distributions, shear stresses
and rate of heat transfer in terms of the local skin-friction and local Nusselt number respectively.
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1. Introduction

Natural convection laminar flow of non-Newtonian
power-law fluids from an isothermal horizontal circular
cylinder plays an important role in numerous engineering
applications those are related with pseudo-plastic fluids. The
pseudo-plastic fluid is characterized by a constant viscosity
at very low shear rates, a viscosity, which decreases with
shear rate, at intermediate shear rates and an apparently
constant viscosity at very high shear rates. The interest in
heat transfer problems involving power-law non-Newtonian
fluids has grown in the past half century. An excellent
research on non-Newtonian fluids was performed by
Boger[1]. Acrivos[2] was the first who considered
boundary-layer flows for such non-Newtonian fluids. Since
then, a large number of papers have been published, due to
their wide relevance in pseudo-plastic fluids like chemicals,
foods, polymers, molten plastics and petroleum production
and various natural phenomena.

It should be noted that a complete survey of these
literatures was impractical, however, selected papers are
listed here to provide starting points for a broader literature
search [3-15]. In the boundary-layer study, the previous
researchers used the traditional power-law viscosity
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correlation that viscosity becomes infinite for small shear
rates or vanishes for the limits of large shear rates, which are
giving the unrealistic physical results. Because an infinite
viscosity corresponds to solids and no frictionless fluid has
ever been found, a partial set of measured viscosity shear
relations are not sufficient for a boundary-layer study.

The recently proposed modified power-law correlation is
sketched for various values ofpower index n, which has been
shown in Fig. 2. The present model is formulated based on
the available experimental data for the non-Newtonian fluids
(see Boger[1]). It is clear that the new correlation does not
contain the physically unrealistic limits of zero and infinite
viscosity displayed by traditional power-law correlations[2].
The modified power-law, in fact, fits measured viscosity data
well. The constants in the proposed model can be fixed with
available measurements and are described in detail in Yao
and Molla[16]. The boundary-layer formulation on a flat
plate is described and numerically solved for non-Newtonian
fluid in Yao and Molla[16, 17] and the associated heat
transfer for two different heating conditions is reported in
Molla and Yao[18, 19] for shear-thinning fluid. In this
investigation, the behavior of both shear-thinning and
shear-thickening fluids on the natural convection laminar
flow froma uniformly heated horizontal circular cylinder are
studied by choosing the power-law indexas »n (=0.6, 0.8, 1.0,
1.2, 1.4) to fully demonstrate the performance of various
non-Newtonian fluids.

2. Formulation of the Problem
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A steady two-dimensional laminar natural convection
boundary-layer of a non-Newtonian fluid over an isothermal
horizontal circular cylinder of radius ‘@’ with uniform
surface temperature and a distributed heat source of the form
gPB(T—T, ) has been considered. The viscosity depends on
shear rate and is correlated by a modified power-law. We
consider shear-thinning and shear-thickening situations of
non-Newtonian fluids. It is assumed that the surface
temperature of the cylinderis 7, (> Tw), where, T, is the
ambient temperature of the fluid and 7 is the temperature of
the fluid. The configuration considered is as shown in Fig. 1.

Under the above assumptions, the boundary-layer
equations governing the flow and heat transfer are
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Where % and v are velocity components along the X
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and y axes, p is the fluid density, x is the dynamic
viscosity of the fluid in the boundary-layer region, g is the
acceleration due to gravity, £ is the coefficient of thermal
expansion, k is the thermal conductivity and C,, is the specific
heat at constant pressure.

The kinematic viscosity v(:ﬁj is correlated by a
P
modified power-law, which is
__n-1 _
K0 for 7, < X < 7, )
p oy

The constants y, and y, are threshold shear rates, which

are given according to the model of Boger[l], K is the
dimensional constant, for which dimension depends on the
power-law index n. The values of these constants can be
determined by matching with measurements. Outside of the
preceding range, viscosity is assumed to be constant; its
value can be fixed with data given in Fig. 2.

The boundary conditions for the present problems are

u=0, v=0, T=T, at y=0 (5a)
u—0, T—>T, as y—>o (5b)
We introduce non-dimensional dependent and
independent variables according to,
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Where, v, is the reference viscosity at j,, 0 is the

non-dimensional temperature of the fluid, Gr is the Grashof
number and Pr is the Prandtl number. Using equation (6) in
equations (1-4) we get the following non-dimensional
equations:

a_u+Q:0 (7)
ox Oy
ua—u—i-va—u=i D@_u +@sin x (8)
Ox oy oy\ Oy
2
u%+vﬁzl_a 0 9)
Ox dy  Prgy?
n—1
K 14 O
D:—V—lzGr 1/4 OU|
PVila oy
n-1 1D n—1
_ K (V_lj |:gﬁ(Tw_Too)a3 4 a_u
pvi\a? vi P o)
=Ca_un—l
o)

The length scale associated with the non-Newtonian
power-law is

Cp 11(1-n) 1
a= (3n=5)/2 T (11)
KVI [gﬂ(Tw_Too)]
The corresponding boundary conditions are
u=0, v=0, 6=1 at y=0 (12a)
u—>0, 050 as y—>w (12b)
Now we introduce the parabolic transformation:
X=x, Y=y, U=% v=v, 0=0 (13
x

Substituting variable (13) into equations (7)-(10) leads to
the following equations:
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The correlation (17) is a modified power-law correlation
first presented by Yao and Molla[16]. This correlation
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describes that if the shear rate |}/| lies between the

threshold shear rates 71 and Vo then the non-Newtonian
viscosity, D, varies with the power-law of . On the other

hand, if the shear rate |}/| does not lie within this range,

then the non-Newtonian viscosities are different constants,
as shown in Fig. 2. This is a property of many measured
viscosities.

Equation (14-16) can be solved by marching downstream
with the leading edge condition satisfying the following
differential equations, which are the limits of equations
(14-16) as X—0.

U +8—V =0 (18)
oY
2
y Uy - pl U VD 4 (19)
oY oY? oY oY
2
V% _1 00 (20)
oY Proy?
The corresponding boundary conditions are
U=0, V=0, 6=1 at Y=0 (21a)
U—>0, >0 as Yo (22b)

Equations (14-16) and (18-20) are discretized by a
central-difference scheme for the diffusion term and a
backward-difference scheme for the convection terms.
Finally, we get an implicit tri-diagonal algebraic system of

equations, which can be solved by a double-sweep technique.
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10 g _________ n=12
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The normal velocity is directly solved from the continuity
equation. The computation is started at X=0 and marches to
downstreamto X=3.1416. After several test runs, converged
results are obtained by using AX=0.0025 and AY = 0.005.

In practical applications, the physical quantities of
principle interest are the local skin-friction coefficients Cy
and the local Nusselt number Nu, which are

Cf(Gr/4X)1/4 ={D6—U} (23)
oY ly_

Nu(Gr/4x) " = —[Z—Iﬂ (24)
Y=0

Figure 1. The flowmodel and coordinate system
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Figure 2. Modified power-law correlation for the power-law index n (=0.6,0.8, 1.0, 1.2, 1.4) while}/] =0.1and Y, = 10°
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3. Results and Discussion

The numerical results are presented for the
non-Newtonian power-law of shear-thinning fluids (7 = 0.6
and 0.8) and the shear-thickening fluids (» = 1.2 and 1.4) as
well as the Newtonian case (2 = 1) while the Prandtl number,
Pr=10 and 50. Based on the experimental data of Boger| 1]
the thresholds shears y, and y, have been chosen as 0.1

and 10°, respectively. The obtained results include the
viscosity, velocity and temperature distribution, velocity
gradient and the wall shear stress in terms of the local

skin-friction coefficient, Cf(Gr/4X)l/4 and the rate of
heat transfer as a form of the local Nusselt number,
Nu(Gr/4X)_”4 for the wide range of the power-law index
n (=0.6, 0.8, 1.0, 1.2, 1.4).

Figs. 3a and 3b show the viscosity distribution, D as a
function of Y at selected X (=1, 2, 3) locations for Pr =10 and
50, respectively and n = 0.6. From Fig.3a, it is found for Pr
=10 that there is one region of variable viscosity at X =1 and
3, but there are two such regions at X =2; the primary region
lies from Y ~0.0 to 1.1 and the secondary variable viscosity
region lies between Y=1.37to 2.19. On the other hand, only
one variable viscosity region was found in the case of Pr=50
in Fig. 3b. Again, Figs. 4(a)-(f) show the viscosity
distribution, D as a function of Y at X =1, 2, 3 respectively
with n= 0.6, 0.8, 1.0, 1.2, 1.4 for Pr = 10 and 50. It is clearly
seen in Fig. 4c that there are two viscosity distribution

@

0.75

0.5

0.25 | | |

regions for n=0.6 at X =2 of Pr =10; all other viscosity
distributions are in one region.

The velocity distribution as a function of Y at the selected
locations (X=1, 2, 3) for the different power-law indices (n =
0.6, 0.8, 1.0, 1.2, 1.4) are presented in Figs. 5(a-c) for Pr=10
and 5(d-f) for Pr =50, respectively. Fig. 5 shows that for
shear-thinning fluids (n=0.6 and 0.8), the velocity increases
due to the decrease of viscosities at the downstream region;
consequently, the boundary—layer is thinned. On the other
hand, for shear-thickening fluids (n = 1.2 and 1.4), the
velocity decreases slowly and the boundary-layer is
thickened as the fluid becomes more viscous. We may
conclude that for Pr =50, the fluid velocity is smaller than
that for Pr =10 and the boundary-layer thickness is larger for
Pr =50 than that for Pr =10.

The corresponding temperature distribution are plotted for
Pr =10 and 50 in Figs. 6(a-c) and 6(d-f), respectively. For
both ofthese Prandtl numbers, at the downstream region, in
the case ofshear-thinning fluids, the variation of temperature
in the boundary-layer is smaller than that of the
shear-thickening non-Newtonian fluids. As expected, the
thermalboundary-layer is thinner for larger Prandtlnumbers.

Figures 7(a-c) and 7(d-f) show the corresponding velocity
gradient for Pr =10 and 50, respectively. For the
shear-thinning fluids (n=0.6 and 0.8), the boundary-layer
thickness decreases more at the downstream region than for
the shear-thickening fluids (z = 12 and 1.4). The
boundary-layer thickness for Pr =50 is almost half of the
boundary-layer for Pr=10.
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Figure 3. Viscosity distribution for different values of X'at n =0.6 for (a)Pr=10, (b) Pr=50
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Figure 4. Viscosity distribution for differentn at (a) X =1, Pr =10, (b) X =1, Pr =50, (¢) X =2, Pr =10, (d) X =2, Pr =50, (¢) X =3, Pr =10, (f) X=3,Pr

=50
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The effects of the non-Newtonian power-law index n (=0.6, 0.8, 1.0, 1.2, 1.4) on the variation of the wall shear stress
o (Gr/4X)”4 are shown in Fig. 8a for Pr =10 and in Fig. 8b for Pr =50. The results fromthese figures clearly show that at

the leading edge of non-Newtonian fluids, whose effects start from X > 0.18 forPr=10and X >0.24 for Pr =50, the wall
shear stress decreases for the shear-thinning fluids (»=0.6 and 0.8) and increases for the shear-thickening fluids (»=1.2 and
1.4). At the downstreamregion, there is a similarity solution at X =3 and at X = r, the boundary-layer of shear-thinning
fluids is greater than that of shear-thickening fluids. As expected, the boundary-layer is thinner for larger Prandtl number.

Figs. 9(a) and 9(b) represent the local-rate o f heat transfer in terms of the local Nusselt number Nu(Gr/4X)7”4 for Pr =10

and Pr =50, respectively. The local Nusselt number increases for n < 1 and decreases for n > 1 at the leading edge of
non-Newtonian fluids, whose effects start from X >0.21 forPr=10and X >0.29 for Pr =50. At the downstream region,

Sidhartha Bhowmick ef al.: Non-Newtonian Natural Convection Flow alongan Isothermal
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4. Conclusions

This study deals with the laminar two-dimensional natural
convection boundary-layer flow of non-Newtonian fluids
along an isothermal horizontal circular cylinder using a
modified power-law viscosity model. The proposed
modified power-law correlation agrees well with the actual
measurements for non-Newtonian fluids; consequently, it is
a physically realistic model. The problem associated with the
non-removal singularity introduced by the traditional
power-law correlations do not exists for the modified
power-law correlation proposed in this paper. Therefore, we
may conclude fromthe above numerical simulations that the
proposed modified power-law correlations can be used to
investigate other heat transfer related problems for
shear-thinning or shear-thickening non-Newtonian fluids in
boundary-layers. It is revealed that the effect of
non-Newtonian fluids eventually becomes dominant when
shear rate increases within the threshold shear limits. We
may summarise our results from above simulations as
follows:

olt is seen from the numerical simulations that the
velocity increases due to the decrease of viscosities at the
downstream region for shear-thinning fluids. However, the
velocity decreases slowly as the fluid becomes more viscous
for the case of shear-thickening fluids.

e At the downstream region of the boundary layer, the
variation of the temperature inside the boundary-layer is
smaller for the case of shear-thinning fluids than that of the
shear-thickening non-Newtonian fluids for all Prandtl
numbers considered here.

eThe boundary-layer thickness decreases more at the
downstreamregion for the shear-thinning fluids than that for
the shear-thickening fluids. It is revealed that the
boundary-layer thickness for Pr =50 is almost half of the
boundary-layer for Pr=10.

olt is observed that the local Nusselt number increases
when n < 1 and decreases when n > lat the leading edge of
non-Newtonian fluids for both Prandtl number considered
here.

Nomenclature

Ct Local skin-friction

C Constant

D Non-dimensional viscosity of the fluid
a Radius of the circular cylinder

g Acceleration due to gravity

n Non-Newtonian power-law index

k Thermal conductivity ofthe fluid

G Specific heat at constant pressure

Gr Grashof number

K Dimensional constant
Nu Local Nusselt number

Pr Prand! number

T Dimensionaltemperature ofthe fluid
Tw Surface temperature ofthe cylinder

T Ambient temperature

u,v  Velocity omponentsalongthe X, ) axes, respectively
X,y Cartesian coordinate measured along the surface ofthe
’ cylinder and normal to it respectively
U,V Dimensionless fluid velocities in the X, Y directions,
respectively
X Axial direction alongthe circular cylinder
Y Pseudo-similarity variable
Greek symbols

a Thermal diffusivity

B Thermal expansion coefficient

o, Fluid density

P2l Dimensionless temperature of the fluid
n Dynamic viscosity

1% (u/ p)kinematic viscosity

v Reference viscosity of the fluid

4 Shear rate
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