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Abstract  Laminar two-dimensional natural convection boundary-layer flow of non-Newtonian flu ids along an isothermal 
horizontal circular cylinder has been studied using a modified power-law viscosity model. In this model, there are no 
unrealistic limits of zero or infinite viscosity. Therefore, the boundary-layer equations can be solved numerically by using 
marching order implicit fin ite d ifference method with double sweep technique. Numerical results are presented for the case of 
shear-thinning as well as shear thickening fluids in terms of the fluid velocity and temperature distributions, shear stresses 
and rate of heat transfer in terms of the local skin-frict ion and local Nusselt number respectively. 
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1. Introduction 
Natural convection laminar flow of non-Newtonian 

power-law fluids from an isothermal horizontal circular 
cylinder p lays an important ro le in numerous engineering 
applications those are related with pseudo-plastic fluids. The 
pseudo-plastic flu id is characterized by a constant viscosity 
at very low shear rates, a v iscosity, which decreases with 
shear rate, at intermediate shear rates and an apparently 
constant viscosity at very high shear rates. The interest in 
heat transfer problems involving power-law non-Newtonian 
flu ids has grown in the past half century. An excellent 
research on non-Newtonian fluids was performed by 
Boger[1]. Acrivos[2] was the first who considered 
boundary-layer flows for such non-Newtonian fluids. Since 
then, a large number of papers have been published, due to 
their wide relevance in pseudo-plastic fluids like chemicals, 
foods, polymers, molten p lastics and petroleum production 
and various natural phenomena. 

It  shou ld  be noted that  a  complete su rvey  o f these 
literatu res was impract ical;  however, selected  papers are 
listed here to provide starting points for a broader literature 
search [3-15]. In the boundary -layer study, the p rev ious 
researchers  us ed  the t rad it ional power-law v is cos ity  
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correlation that viscosity becomes infinite for small shear 
rates or vanishes for the limits of large shear rates, which are 
giving the unrealistic physical results. Because an infin ite 
viscosity corresponds to solids and no frict ionless fluid has 
ever been found, a partial set of measured viscosity shear 
relations are not sufficient fo r a boundary-layer study. 

The recently proposed modified power-law correlat ion is 
sketched for various values of power index n, which  has been 
shown in Fig. 2. The present model is formulated based on 
the available experimental data for the non-Newtonian flu ids 
(see Boger[1]). It is clear that the new correlat ion does not 
contain the physically unrealistic limits of zero and infin ite 
viscosity displayed by traditional power-law correlations[2]. 
The modified power-law, in  fact, fits measured viscosity data 
well. The constants in the proposed model can be fixed with 
available measurements and are described in detail in Yao 
and Molla[16]. The boundary-layer formulation on a flat 
plate is described and numerically solved for non-Newtonian 
flu id in Yao and Molla[16, 17] and the associated heat 
transfer for two different heating conditions is reported in 
Molla and Yao[18, 19] for shear-thinning fluid. In this 
investigation, the behavior of both shear-thinning and 
shear-thickening flu ids on the natural convection laminar 
flow from a uniformly heated horizontal circular cylinder are 
studied by choosing the power-law index as n (=0.6, 0.8, 1.0, 
1.2, 1.4) to fu lly  demonstrate the performance of various 
non-Newtonian flu ids. 

2. Formulation of the Problem  
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A steady two-dimensional laminar natural convection 
boundary-layer of a non-Newtonian fluid over an isothermal 
horizontal circu lar cy linder of rad ius ‘a’ with uniform 
surface temperature and a distributed heat source of the form 

( )∞−TTgβ  has been considered. The v iscosity depends on 
shear rate and is correlated by a modified power-law. We 
consider shear-thinning and shear-thickening situations of 
non-Newtonian fluids. It is assumed that the surface 
temperature of the cylinder is ( )∞> TTw , where, ∞T  is the 
ambient temperature of the fluid  and T is the temperature of 
the fluid. The configuration considered is as shown in Fig. 1. 

Under the above assumptions, the boundary-layer 
equations governing the flow and heat transfer are  
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Where u  and v  are velocity components along the x  
and y  axes, ρ  is the fluid density, µ  is the dynamic 
viscosity of the flu id in the boundary-layer region, g is the 
acceleration due to gravity, β is the coefficient of thermal 
expansion, k  is the thermal conductivity and Cp is the specific 
heat at constant pressure.  
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The constants 21 γγ  and are threshold shear rates, which 
are given accord ing to the model of Boger[1], K  is the 
dimensional constant, for which  dimension depends on the 
power-law index n. The values of these constants can be 
determined by matching with measurements. Outside of the 
preceding range, viscosity is assumed to be constant; its 
value can be fixed with data given in Fig. 2. 

The boundary conditions for the present problems are 
0,0,0 ==== yatTTvu w     (5a) 
∞→→→ ∞ yasTTu ,0     (5b) 

We introduce non-dimensional dependent and 
independent variables according to, 
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Where, 1ν  is the reference v iscosity at 1γ , θ is the 
non-dimensional temperature of the fluid, Gr is the Grashof 
number and Pr is the Prandtl number. Using equation (6) in 
equations (1-4) we get the following non-dimensional 
equations: 
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The length scale associated with the non-Newtonian 
power-law is 
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The corresponding boundary conditions are  
01,0,0 ==== yatvu θ     (12a) 

∞→→→ yasu 0,0 θ       (12b) 
Now we introduce the parabolic transformat ion: 

θθ ===== ,,,, vV
x
uUyYxX    (13) 

Substituting variable (13) into equations (7)-(10) leads to 
the following equations: 
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The correlat ion (17) is a modified power-law correlat ion 
first presented by Yao and Molla[16]. Th is correlation 
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describes that if the shear rate γ
 
lies between the 

threshold shear rates 21  and γγ , then the non-Newtonian 
viscosity, D, varies with the power-law of γ. On the other 
hand, if the shear rate γ

 
does not lie within this range, 

then the non-Newtonian viscosities are different constants, 
as shown in Fig. 2. This is a property of many measured 
viscosities. 

Equation (14-16) can be solved by marching downstream 
with  the lead ing edge condition satisfying the following 
differential equations, which are the limits of equations 
(14-16) as X→0. 
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The corresponding boundary conditions are  
01,0,0 ==== YVU atθ     (21a) 

∞→→→ YU as0,0 θ       (22b) 
Equations (14-16) and (18-20) are discretized by a 

central-difference scheme for the diffusion term and a 
backward-d ifference scheme for the convection terms. 
Finally, we get an implicit  tri-diagonal algebraic system of 
equations, which can be solved by a double-sweep technique. 

The normal velocity is direct ly solved from the continuity 
equation. The computation is started at X=0 and marches to 
downstream to X=3.1416. After several test runs, converged 
results are obtained by using ∆X=0.0025 and ∆Y = 0.005. 

In practical applications, the physical quantities of 
principle interest are the local skin-frict ion coefficients Cf 
and the local Nusselt number Nu, which are  
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Figure 1.  The flow model and coordinate system 

 
Figure 2.  Modified power-law correlation for the power-law index n (=0.6, 0.8, 1.0, 1.2, 1.4) while 5
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3. Results and Discussion 
The numerical results are presented for the 

non-Newtonian power-law of shear-thinning fluids ( n  = 0.6 
and 0.8) and the shear-thickening flu ids (n = 1.2 and 1.4) as 
well as the Newtonian case (n = 1) while the Prandtl number, 
Pr = 10 and 50. Based on the experimental data of Boger[1] 
the thresholds shears 21 γγ   and   have been chosen as 0.1 
and 105, respectively. The obtained results include the 
viscosity, velocity and temperature distribution, velocity 
gradient and the wall shear stress in terms of the local 
skin-frict ion coefficient, ( ) 4/14/ XGrC f  and the rate of 

heat transfer as a form of the local Nusselt number, 
( ) 4/14/ −XGrNu  for the wide range of the power-law index 

n (=0.6, 0.8, 1.0, 1.2, 1.4). 
Figs. 3a and 3b show the viscosity distribution, D as a 

function of Y at selected X (=1, 2, 3) locations for Pr =10 and 
50, respectively and n = 0.6. From Fig.3a, it is found for Pr 
=10 that there is one region of variable v iscosity at X =1 and 
3, but there are two such regions at X =2; the primary region 
lies from Y ≈0.0 to 1.1 and the secondary variable viscosity 
region lies between Y ≈1.37 to 2.19. On the other hand, only 
one variable viscosity region was found in the case of Pr =50 
in Fig. 3b. Again, Figs. 4(a)-(f) show the viscosity 
distribution, D as a function of Y at X = 1, 2, 3 respectively 
with n = 0.6, 0.8, 1.0, 1.2, 1.4 for Pr = 10 and 50. It is clearly 
seen in Fig. 4c that there are two viscosity distribution 

regions for n=0.6 at X =2 of Pr =10; all other viscosity 
distributions are in one region. 

The velocity distribution as a function of Y at the selected 
locations (X =1, 2, 3) for the different power-law indices (n = 
0.6, 0.8, 1.0, 1.2, 1.4) are presented in Figs. 5(a-c) fo r Pr =10 
and 5(d-f) for Pr =50, respectively. Fig. 5 shows that for 
shear-thinning fluids (n=0.6 and 0.8), the velocity increases 
due to the decrease of viscosities at the downstream region; 
consequently, the boundary–layer is thinned. On the other 
hand, for shear-thickening fluids (n = 1.2 and 1.4), the 
velocity decreases slowly and the boundary-layer is 
thickened as the fluid becomes more viscous. We may 
conclude that for Pr =50, the flu id velocity is smaller than 
that for Pr =10 and the boundary-layer thickness is larger for 
Pr =50 than that for Pr =10. 

The corresponding temperature distribution are plotted for 
Pr =10 and 50 in Figs. 6(a-c) and 6(d-f), respectively. For 
both of these Prandtl numbers, at the downstream reg ion, in 
the case of shear-thinning fluids, the variation of temperature 
in the boundary-layer is smaller than that of the 
shear-thickening non-Newtonian fluids. As expected, the 
thermal boundary-layer is thinner for larger Prandtl numbers. 

Figures 7(a-c) and 7(d-f) show the corresponding velocity 
gradient for Pr =10 and 50, respectively. For the 
shear-thinning fluids (n=0.6 and 0.8), the boundary-layer 
thickness decreases more at the downstream region than for 
the shear-thickening flu ids (n = 1.2 and 1.4). The 
boundary-layer thickness for Pr =50 is almost half o f the 
boundary-layer for Pr =10. 

  

Figure 3.  Viscosity distribution for different values of X at  n = 0.6 for (a) Pr = 10, (b) Pr = 50 
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Figure 4.  Viscosity distribution for different n at (a) X = 1, Pr = 10, (b) X = 1, Pr = 50, (c) X = 2, Pr = 10, (d) X = 2, Pr = 50, (e) X = 3, Pr = 10, (f) X = 3, Pr 
= 50 
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Figure 5.  Velocity distribution for different n at (a) X = 1, (b) X = 2, (c) X = 3; Pr = 10 and (d) X = 1, (e) X = 2, (f) X = 3; Pr = 50 
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Figure 6.  Temperature distribution for different n at (a) X = 1, (b) X = 2, (c) X = 3; Pr = 10 and (d) X = 1, (e) X = 2, (f) X = 3; Pr = 50 
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Figure 7.  Velocity gradient for different n at (a) X = 1, (b) X = 2, (c) X = 3; Pr = 10 and (d) X = 1, (e) X = 2, (f) X = 3; Pr = 50 
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The effects of the non-Newtonian power-law index n (=0.6, 0.8, 1.0, 1.2, 1.4) on the variation of the wall shear stress 
( ) 4/14/ XGrC f  are shown in Fig. 8a for Pr =10 and in Fig. 8b for Pr =50. The results from these figures clearly show that at 

the leading edge of non-Newtonian fluids, whose effects start from 18.0>X  for Pr =10 and 24.0>X  for Pr =50, the wall 
shear stress decreases for the shear-thinning fluids (n=0.6 and 0.8) and increases for the shear-thickening flu ids (n=1.2 and 
1.4). At the downstream region, there is a similarity solution at 3=X  and at π=X , the boundary-layer of shear-thinning 
flu ids is greater than that of shear-thickening fluids. As expected, the boundary-layer is thinner for larger Prandtl number. 
Figs. 9(a) and 9(b) represent the local-rate o f heat transfer in terms of the local Nusselt number ( ) 4/14/ −XGrNu  for Pr =10 
and Pr =50, respectively. The local Nusselt number increases for n < 1 and decreases for n > 1 at the leading edge of 
non-Newtonian fluids, whose effects start from 21.0>X  for Pr =10 and 29.0>X  for Pr =50. At the downstream region, 
heat transfer is similar at π=X . 

  
Figure 8.  Wall shear stress for different values of n: (a) Pr =10, (b) Pr = 50 

 
Figure 9.  Local Nusselt  number for different values of n: (a) Pr =10, (b) Pr = 50 
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4. Conclusions 
This study deals with the laminar two-dimensional natural 

convection boundary-layer flow of non-Newtonian flu ids 
along an isothermal horizontal circular cy linder using a 
modified power-law viscosity model. The proposed 
modified power-law correlation agrees well with the actual 
measurements for non-Newtonian fluids; consequently, it is 
a physically realistic model. The problem associated with the 
non-removal singularity introduced by the traditional 
power-law correlations do not exists for the modified 
power-law correlation proposed in this paper. Therefore, we 
may conclude from the above numerical simulations that the 
proposed modified power-law correlations can be used to 
investigate other heat transfer related problems for 
shear-thinning or shear-thickening non-Newtonian fluids in 
boundary-layers. It is revealed that the effect of 
non-Newtonian fluids eventually becomes dominant when 
shear rate increases within  the threshold shear limits. We 
may summarise our results from above simulations as 
follows:  

●It is seen from the numerical simulat ions that the 
velocity increases due to the decrease of viscosities at the 
downstream reg ion for shear-thinning fluids. However, the 
velocity decreases slowly as the fluid becomes more v iscous 
for the case of shear-thickening fluids. 

●At the downstream reg ion of the boundary layer, the 
variation of the temperature inside the boundary-layer is 
smaller for the case of shear-thinning fluids than that of the 
shear-thickening non-Newtonian flu ids for all Prandtl 
numbers considered here. 

●The boundary-layer thickness decreases more at the 
downstream region for the shear-thinning flu ids than that for 
the shear-thickening fluids. It is revealed that the 
boundary-layer thickness for Pr =50 is almost half o f the 
boundary-layer for Pr =10. 

●It is observed that the local Nusselt number increases 
when n < 1 and decreases when n > 1at the leading edge of 
non-Newtonian fluids for both Prandtl number considered 
here. 

Nomenclature 
Cf Local skin-friction 
C Constant 
D Non-dimensional viscosity of the fluid 
a Radius of the circular cylinder 
g Acceleration due to gravity 
n Non-Newtonian power-law index 
k Thermal conductivity of the fluid 

Cp Specific heat at constant pressure 
Gr Grashof number 
K Dimensional constant 
Nu Local Nusselt  number 
Pr Prandtl number 
T Dimensional temperature of the fluid 
Tw Surface temperature of the cylinder 

∞T  Ambient temperature 

vu ,  Velocity components along the yx,  axes, respectively 

yx,  Cartesian coordinate measured along the surface of the 
cylinder and normal to it respectively 

U, V Dimensionless fluid velocities in the X, Y directions, 
respectively 

X Axial direction along the circular cylinder  
Y Pseudo-similarity variable 

Greek symbols 
α  Thermal diffusivity 
β Thermal expansion coefficient 
ρ  Fluid density 

θ  Dimensionless temperature of the fluid 

µ Dynamic viscosity 
ν  ( µ / ρ ) kinematic viscosity 

1ν  Reference viscosity of the fluid 

γ  Shear rate 
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