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Abstract  Treatment of complex geometries with fluid -solid interaction has been one of the challenging issues in CFD 
because most engineering problems have complex geometries with fluid-solid interaction for the purpose. The unstructured 
grid method and the immersed boundary method (IBM) are two d ifferent approaches that have been developed so far. Th is 
paper details the numerical investigation of 2D laminar flow over a backward facing step in hydro-dynamically  developing 
regions (entrance region) as well in the hydro-dynamically developed regions using IBM. Although this flow represents one 
of the simplest expansion flows, the physics involved are rather complex. For a flow in to an expansion in the form of a step, 
the boundary layer separates at the step corner, forming a new free shear layer. The present numerical method is based on a 
fin ite volume approach on a staggered grid together with a fractional step approach. The momentum forcing and mass source 
terms are applied on the step to satisfy the no-slip boundary condition and also to satisfy the continuity for the mesh 
containing the same. The numerically obtained velocity profiles, and stream line p lots in the channel with backward facing 
step shows excellent agreement with the published results in various literatures.   
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1. Introduction 
Computer simulations are becoming a primary drive for 

the design and analysis of complex systems. The 
advancement of computing urges engineers to include high 
fidelity computational fluid dynamics (CFD) in the design 
and testing tools of new technological products and 
processes. Computational  simulations are now recognized 
to be a part of the computer-aided engineering (CAE) 
spectrum of tools used extensively today in all industries, 
and its approach to modeling fluid flow phenomena allows 
equipment designers and technical analysts to have the 
power of a virtual wind tunnel on their desktop computer. 
Computational simulat ion software has evolved far beyond 
what Navier, Stokes or Da Vinci could  ever have imagined. 
It has become an indispensable part of the aerodynamic and 
hydrodynamic design process for p lanes, trains, automobiles, 
rockets, ships, submarines, micro-electromechanical systems 
(MEMS), Lab-on-Chip (LOC) devices and so on; and indeed 
any moving craft or manufacturing process that mankind has 
devised so far. The advantage of numerical simulation with 
respect to experimentation is well-known.  

Despite with these developments some primary issues of 
flu id dynamic simulations are like accuracy, computational  
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efficiency and ability to handle complex geometries are 
predominant. A  brief and concise literature survey on 
immersed boundary method, backward-facing step flows and 
the channel flows with obstructions are presented here. The 
governing equations and their numerical solution methods, 
including the boundary conditions employed are briefed in 
the next  Section. The results and discussion are provided 
separately after that. 

1.1. Immersed Boundary Method (IBM) 

Flu ids flows in complex geometries are very common in  
engineering problems, and the major d ifficu lty arise in how 
to represent the body, its moving walls and its interaction 
with the flu id. The most usual approach is using Neumann 
and Dirichlet boundary conditions to represent the body 
geometry. Therefore, if the geometry is complex ones have a 
hard and, probably, a difficult work. This difficulty grows up 
if the body has a poignant and deformable geometry. In short, 
treating the coupling of the structure deformat ions and the 
flu id flow poses a number of challenging problems for 
numerical simulations. Both the unstructured grid method 
and IBM are used for simulating flow with complex 
geometries.  

In most industrial applications, geometrical complexity is 
combined with moving boundaries and high Reynolds 
numbers which considerably increase the computational 
difficult ies since they require, respectively, regeneration or 
deformation of the grid and turbulence modeling. As a result, 
engineering flow simulat ions have large computational 
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overhead and low accuracy owing to a large number of 
operations per node and high storage requirements in 
combination with low-order d issipative spatial discretization. 
Given the finite memory and speed of computers, these 
simulations are very expensive and time consuming, with 
discretizat ions that are generally limited  to a part icular 
maximum number of nodes. 

In addition to the above mentioned two methods, some 
authors have proposed different methods to treat this kind of 
problem. For example Harlow and Welch[1] proposed the 
marker and cell (MAC) approach. In th is method the flu id 
region on one side of the boundary is identified by markers, 
while on  the other side of the boundary, which  can be fluid or 
solid, is identified by another marker. It  requires huge 
storage space and CPU time. 

In view of these difficu lties it  is clear that an alternative 
numerical procedure that can cope with the flow complexity 
but at the same time retain the accuracy  and high efficiency 
of the simulations performed on fixed regular grids would 
represent a significant advance in the study of industrial 
flows. One possibility for the solution of this problem is the 
immersed boundary method (IBM). 

The term “immersed boundary method” was first appeared 
in literature in reference to a method developed by Peskin[2] 
in the year 1972. A  force term added to the Navier-Stokes 
equation is in charge to promote the interaction between 
flu id-solid interactions. Variet ies of ideas have been 
proposed to calculate this force term leads to different 
immersed boundary techniques. Orig inally this method was 
used to simulate cardiac mechanics and associated blood 
flow. The distinguished feature of this method was that, the 
entire simulation was carried  out on a Cartesian grid, which 
did not conform to the geometry of the heart. Hence, a novel 
procedure was simulated for imposing the effect of the 
immersed boundary (IB) on the flow. That is, imposing the 
boundary conditions is not straight forward in IBM. Since 
Peskin introduced this method, numerous modifications and 
refinements have been proposed and a number of variants of 
this approach now exist. The main  advantages of the 
Immersed Boundary Method include computer memory and 
CPU time savings. Also easy grid generation is possible with 
IBM compared to the unstructured grid method. Even 
moving  boundary problems can be handled using IBM 
without regenerating grids in time, unlike the structured grid 
method. It is to be noted that generating body conformal 
structured or unstructured grid is usually very cumbersome.  

Imposition of boundary conditions on the IB is the key 
factor in developing an IB algorithm and distinguishes one 
IB method from another. In the former approach, which  is 
termed  as “continuous forcing approach”, the fo rcing 
function is incorporated into the continuous equations before 
discretizat ion, where as in the latter approach, which  can be 
termed  the “discrete forcing approach”, the forcing function 
is introduced after the equations are discretized. An 
attractive feature of the continuous forcing approach is that it 
is formulated independent of the underlying spatial 
discretizat ion. On the other hand, the discrete fo rcing 

approach very much depends on the discretization method. 
However, this allows direct control over the numerical 
accuracy, stability, and discrete conservation properties of 
the solver.   

The merits of continuous forcing approach are its 
attractiveness for problems with elastic boundaries, 
closeness to the physics of the problem;  hence relatively  easy 
to conjure up the realistic flow problems especially high 
feasibility for successful simulation of bio logical and 
multiphase flows. The demerits of the aforementioned 
method include development of “stiff” numerical systems 
due to the presence of rigid Immersed Boundary in flow 
problems. Here satisfactory results have only been attained 
for low Reynolds number flows with moderate unsteadiness. 
Smoothing of the forcing function prohibits the sharp 
representation of the IB, which is not acceptable at high 
Reynolds numbers. The method also necessitates the 
computation in substantial amount of grid points located 
inside the body which simply results in unnecessary extra 
computation time. 

The merits of discrete forcing approach include  
(i) Suitability for flows around rigid bodies,  
(ii) Handling of h igher Reynolds number flows, 
(iii) Absence of stiffness or user defined parameters that 

can impact the stability of the method,  
(iv) The ability to represent sharp IB by imposing the 

boundary conditions directly on the numerical scheme and  
(v) Computation of flow variab les inside a rig id body 

becomes unnecessary.  
Where as its demerits are need for a pressure boundary 

condition on the IB and moving boundaries are harder to deal 
with than in continuous forcing IBMs. A review about 
Immersed Boundary Methods (IBM) encompassing all 
variants is cited by Mittal and Iaccarino[3]. Feedback fo rcing 
method is applied to represent a solid body by Goldstein et 
al.[4] which induced spurious oscillat ions and restricted the 
computational time step associated with numerical stability. 

Yusof[5] proposed a different approach to evaluate the 
momentum forcing function in  a spectral method, and his 
method does not require a smaller computational time step, 
which is an important benefit of this method over preceding 
methods. The Discrete Immersed Boundary Finite Volume 
Method[6] used to simulate the present problem (i.e., to 
simulate the channel flows with obstructions) is based on a 
fin ite volume approach on a staggered mesh together with  a 
fractional step method. The obstruction is treated as an 
Immersed Boundary. Both momentum forcing and mass 
source are applied  on the body surface or inside the body to 
suit the no-slip boundary condition on the immersed 
boundary and also to satisfy the continuity for the cell 
containing the immersed boundary. In the IBM, the choice of 
an accurate interpolation scheme satisfying the no-slip 
condition on the IB is important. 

The main advantages of the Immersed Boundary Method 
(IBM) include memory and CPU t ime savings. Also easy 
grid generation is possible with IBM compared to the 
unstructured grid method. Even moving boundary problems 
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can be handled using IBM without regenerating grids in time, 
unlike the structured grid method. 

1.2. Back ward Facing Step Flows  

The study of backward-facing step flows constitutes an 
important branch of fundamental fluid mechanics. Flow 
geometry of the same is very significant for investigating 
separated flows. Th is flow is of part icular interest because it 
facilitates the study of the reattachment process by 
minimizing the effect of the separation process, while for 
other separating and reattaching flow geometries there may 
be a stronger interaction between the two. The principal flow 
features of the backward facing step flow are illustrated in 
Figure 1[7]. 

 
Figure 1.  Detailed flow features of the backward facing step flow 

The phenomenon of flow separation is a problem of g reat 
importance for fundamental and industrial reasons. For 
instance it often corresponds to drastic losses in aerodynamic 
performances of airfoils or automotive vehicles. The 
backward-facing step is an  extreme example of separated 
flows that occur in aerodynamic devices such as high-lift 
airfoils at large angles of attack. In these flows separation 
may be created by a strong adverse pressure gradient rather 
than a geometric perturbation, but the flow topology is 
similar. It  is important in heat exchangers and gas turbines 
also. Since the location of the reattachment zone and its flow 
structure also determine the local heat and mass transport 
properties of the flow. This geometry has been received 
attention for half a century. Many researchers considered 
different aspects of this geometry from the flow pattern point 
of view and heat transfer. In some numerical simulations the 
backward facing step flow problem is a benchmark for 
validating the computational simulation algorithm. 

The research in  such a flow was escalated with the 
experimental and numerical work of Armaly et al.[8]. They 
presented a detailed experimental investigation in 
backward-facing step geometry for an expansion ratio  (H/h) 
of 1.9423, an aspect ratio (W/h) of 35 and Reynolds numbers 
(ReD) up to 8000. Here D=2h denotes the hydraulic diameter 
of the inlet channel with height h, H the channel height in the 
expanded region and W the channel width. When Reynolds 
number exceeds 400; it has been noticed that the flow 
appeared to be three-dimensional, a discrepancy in the 
primary recircu lation length between the experimental 
results and the numerical predict ions. Also a secondary 

recircu lation zone was observed at the channel upper wall 
corresponding to higher Re values. Armaly et al.[8] 
conjectured that the discrepancy between the experimental 
measurements and the numerical p rediction was due to the 
secondary recirculat ion zone that perturbed the 
two-dimensional character of the flow. The normalized  value 
of the reattachment length showed a peak at ReD =1,200. The 
decrease in recirculat ion length beyond a Reynolds number 
of 1,200 was attributed to the effect of Reynolds stresses. 

Kim and Moin[9] numerically imitated the flow over a 
backward-facing step using a method that is second-order 
accurate in both space and time. Their results are (variation 
of the reattachment length on Reynolds number) in good 
agreement with the experimental data of Armaly et al.[8] up 
to about ReD = 500. At ReD = 600 the computed results of 
Kim and Moin[9] started to deviate from the experimental 
values. The discrepancy was due to the three-dimensionality 
of the experimental flow around a Reynolds number of 600. 

By using a Galerkin based finite-element method, 
Gartling[10] developed a solution procedure for steady 
incompressible flow over a backward-facing step geometry. 
And the results are in good agreement with the results of Kim 
and Moin[9], especially with respect to the bottom wall 
separation zone. Lee and Mateescu[11] performed  an 
experimental and numerical investigation of air flow over a 
two-dimensional backward facing step for ReD < 3000. The 
hot film sensor measurements at ReD = 5805 and expansion 
ratio H/h = 52.0 were found to be in agreement with their 
numerical pred ictions with  respect to the locations of the 
separation and reattachment points on the upper and lower 
walls. 

The bifurcation of two-dimensional laminar flow to 
three-dimensional flow was identified by Kaiktsis et al.[12]. 
This is the primary source of discrepancies appearing in 
comparisons of numerical pred ictions and experimental data. 
From their valuable work, it has also been observed that 
irrespective of the accuracy of the numerical schemes, the 
experimentally measured recircu lation lengths were 
consistently underestimated above a Reynolds number value 
of ReD =5600. They found that, all unsteady states of the 
flow are three-d imensional and develop for Reynolds 
number ReD > Rec  (=700). Furthermore, they detected that 
the downstream flow region is excited through the upstream 
shear layer with a characteristic frequency f1. The 
supercritical states (ReD > 700) were found to be periodic 
with another incommensurate frequency, f2 . 

Numerical simulat ions of a symmetric sudden-expansion 
flow (2D) by Durst et al.[13] depicted the formation of 
secondary separation zones. This observation is similar to 
what is found in the backward-facing step flow. Both the 
experiments  and  the p red ict ions  confirm a symmetry-br
eaking bifurcation leading to one short and one long primary 
separation zone. Kaiktsis et al.[14] revisited the 
backward-facing step flow and found that the unsteadiness in 
step flow was created by convective instabilities. Another 
important conclusion of th is study is that the upstream-gene
rated small disturbances propagate downstream at 
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exponentially amplified amplitude with a space-dependent 
speed in the range 700 < ReD < 2500. 

Heenan and Morrison[15] conducted experiments for a 
Reynolds number (ReS) based on the step height S of 1.9x105  
and suggested that while the flow is likely to be convectively 
unstable over a large region, the global unsteadiness, driven 
by the impingement of large eddies at reattachment is the 
cause of low frequency oscillations called flapping. Erturk et 
al.[16] have presented a new, efficient and stable numerical 
method for the solution of stream function and vorticity 
equations. With this method they have presented steady 
solutions of driven cavity flow at very high Reynolds 
numbers (up to Re = 21,000) using very fine grid mesh. They 
have analysed the nature of the cavity flow at high Reynolds 
numbers. 

2. Computational Methodology  
To explain the concept of immersed boundary method, 

consider the simulation of flow past a solid body shown in 
Figure 2.  

 
Figure 2.  Schematic showing a generic body past which flow is to be 
simulated 

The body occupies the volume Ωb with boundary Γb. The 
body has a characteristic  length scale L, and a boundary layer 
of thickness δ develops over the body. In conventional 
approach, this would employ structured or unstructured grids 
that conform to the body. Generating these grids proceeds in 
two sequential steps. First, a surface grid  covering the 
boundaries Γb is generated. This is then used as a boundary 
condition to generate grids in the volume Ωf occupied by the 
flu id. If a fin ite-difference method is employed on a 
structured grid, then the differential form of the governing 
equations is transformed to a curvilinear coordinate system 
aligned with the grid lines[17]. Because the grid conforms to 
the surface of the body, the transformed equations can then 
be discretized in the computational domain with relative ease. 
If a finite-volume technique is employed, then the integral 
form of the governing equations is discretized and the 
geometrical informat ion regarding the grid is incorporated 
directly into the discretization. If an unstructured grid is 
employed, then either a finite-volume or a finite-element 
methodology can be used. Both approaches incorporate the 

local cell geometry  into the discretization and do not resort to 
grid transformations. 

Now consider employing a non-body conformal Cartesian 
grid fo r this simulat ion, as shown in Figure 3. In this 
approach the immersed boundary (IB) would still be 
represented through some means such as a surface grid, but 
the Cartesian volume grid would  be generated with no regard 
to this surface grid. Thus, the solid boundary would cut 
through this Cartesian volume grid. Because the grid does 
not conform to the solid boundary, incorporating the 
boundary conditions would require modifying the equations 
in the vicinity of the boundary. Precisely what these 
modifications are is the subject matter of IBM. However, 
assuming that such a procedure is available, the governing 
equations would then be discretized using a finite-difference, 
fin ite-volume, or a fin ite-element technique without 
resorting to coordinate transformation or complex 
discretizat ion operators. 

 
Figure 3.  Schematic of body immersed in a Cartesian grid on which the 
governing equations are discretized 

2.1. Governing Equations  

The general governing equations for unsteady, 
incompressible, viscous flow between parallel plates are 
written as 

2( ) 1
Re

i ji i
i

j i j j

u uu up ft x x x x
∂∂ ∂∂+ =− + +

∂ ∂ ∂ ∂ ∂
    (1) 

0i

i

u qx
∂ − =
∂

                 (2) 

where ix  are the Cartesian coordinates, iu are the 

corresponding velocity components, p is the pressure, if
are the momentum forcing components defined at the cell 
faces on the immersed boundary or inside the body, and q is 
the mass source/sink defined at the cell center on the 
immersed boundary or inside the body. All the variables are 
non-dimensionalized  by the bulk average velocity of the in let 
flow, Ub and the length scales are non-dimensionalised by 
the channel height at the downstream, H. The only 
dimensionless number appearing in  the governing equations 
is the Reynolds number.  

For the flow problem considered, the following definit ion 
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is used for the Reynolds number, Re. 

Re bU Hρ
µ

=                 (3) 

Here ρ  and µ are the density and the dynamic 
viscosity, respectively  

2.2. Geometry of Flow Domain and Boundary Conditions 

Figure 4 depicts the two-dimensional channel with a 
backward facing step provided near the channel entrance. 
The finite distance in between the channel, which is small 
compared to  its length and width makes the flow through this 
channel predominantly two d imensional. In addition, an 
incompressible Newtonian flu id with constant fluid 
properties is assumed as well. Buoyant forces involved are 
negligible compared with viscous and pressure forces. 

 
Figure 4.  Sketch of the flow configuration and definition of length scales 

In order to simulate a fully  developed laminar channel 
flow upstream of the step and to eliminate the corner effects, 
a standard parabolic velocity profile  with a maximum 
velocity Umax=(3/2)Ub which is prescribed at the channel 
inlet for the present model. Cross stream velocity is equal to 
zero. The Neumann boundary condition can be assumed for 
pressure at the channel inlet. Fully  developed velocity profile 
is assumed at the channel outlet. Pressure boundary 
condition need not be specified at the outlet No slip condition 
(u=0 and v=0) for velocity and Neumann boundary condition 
for pressure are considered corresponding to wall reg ions. 
The similar boundary conditions prevail when triangular 
obstructions are introduced in the channel. 

To ease the comparison of the results obtained by the 
numerical simulation using IBM, the geometry of the 
backward facing step flow problem was chosen in 
accordance to the experimental setup of Armaly et al.[8]. 
The expansion ratio is defined by 

1H S
h h
= +                    (4) 

That is, by the ratio o f the channel height H downstream of 
the step to the channel height h of the inflow channel, where 
S denotes the step height. The results are generated for an 
expansion ratio of 1.9423. This expansion ratio was 
considered in the experimental study by Armaly et al.[8] and 
the same value has been used for a set of numerical 
computations with the Reynolds numbers values of 0.0001, 
0.1, 1, 10, 50, and 100 by Biswas et al.[18]. The results have 

found to be agreeing quite well.  
The time-integration method used to solve the above 

equations is based on a factional step method where a 
pseudo-pressure is used to correct the velocity field so that 
the continuity equation is satisfied at each computational 
time step. In this study, a second-order semi-implicit time 
advancement scheme (a third order Runge-Kutta method for 
the convection terms and a second order Crank-Nicholson 
method for the diffusion terms) is used. Eq. (1) and (2) are 
expanded as follows: 
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The velocity and pressure values are calculated using the 
following equations 
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Where ˆiu  is the intermediate velocity, φ  is the 

pseudo-pressure, t∆  is the computational t ime step, k  
the sub-step index, and kα , kγ and kρ are the coefficients 
of RK3 (Third o rder Runge-Kutta) whose values are 

1 1 1

4 8
, , 0

15 15
α γ ρ= = =          (11) 

2 2 2

1 5 17
, ,

15 12 60
α γ ρ= = = −        (12) 

3 3 3

1 3 5
, ,

6 4 12
α γ ρ= = = −         (13) 

A discrete-time momentum forcing function, if  should be 
appended with the Navier-Stokes equations to treat the 
immersed boundary (IB) as a kind of forcing so that it mimic 
the effect of IB. Here it  is extracted from the literature 
presented Yusof[5]. Th is forcing function is incorporated to 
satisfy the no-slip condition on the immersed boundary (IB) 
and is applied only on the immersed boundary or inside the 
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body. In the absence of IB, if  should be made equal to zero. 
The location of points, where the forcing function has to be 
introduced, is determined in a similar fashion as that of the 
velocity components defined on a staggered grid. When the 
forcing point coincides with the immersed boundary, 
momentum forcing is applied at  that point so that the velocity 
is zero (see 1U , 2U , 3V  and 4V  in Figure 5). On the other 
hand, when the forcing point exists inside the body, 
momentum forcing is applied in such a way that the velocity 
( 1V  or 3U ) is the opposite of that ( 2v  or 4u ) outside the 
body for both the wall-normal and tangential velocity 
components (respectively), as shown in Figure 5. However, 
because 1 2 0U U= =  (no-slip) conditions and 1v  and 2v  
come into the cell (as shown in Figure 6), the cell containing 
the immersed boundary does not satisfy the mass 
conservation. Hence, a  mass source/sink term q is 
introduced for the cell containing the immersed boundary to 
satisfy the mass conservation. The mass source/sink term is 
applied to the cell center on the immersed boundary or inside 
the body. 

 

 
Figure 5.  Velocity vectors near the wall on a staggered mesh with 
wall-normal velocity and tangential velocity for a very simple situation 

2y h=  (The shaded area denotes the IB) 

2.3. Momentum Forcing and Interpolation for the 
Velocity 

To obtain ˆiu , from Eq. (5), the momentum forcing 
k

if  

must be determined in advance such that ˆiu  satisfies the 

no-slip condition on the immersed boundary. When Eq. (1) is 
provisionally discretized exp licit ly in time (RK3 for the 
convection terms and forward Euler method for the diffusion 
terms) to derive the momentum forcing value, we have 
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Rearranging Eq. (14) results in the fo llowing equation for 
k

if at a forcing point, 
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Here 
k

iU  is the velocity to be obtained at a forcing point 

by applying momentum forcing. In the following, k
iu ( ˆk

iu≠
in Eq. (5)) indicates the velocity at a grid point nearby the 
forcing point updated from Eq. (14) with 0k

if =  to 

determine 
K
iU  using the linear interpolation. 

In case of the no-slip wall, 
k
iU  is zero  whenever the 

forcing point coincides with the immersed boundary.  
However, in general the forcing point exists not on the 
immersed boundary but inside the body, and thus an 
interpolation procedure for the velocity k

iU  is required. In 
the present study, second-order linear interpolations are used, 
and Figure 6 shows the schematic d iagrams for the 
calculation of interpolation velocity when the backward 
facing step is considered as the IB. 

K
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K
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K
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1
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h
K
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K
Cv

1
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1h

1Ay

1
Kv

1
Ku 2

Ku
2
Kv

x∆

y∆

  
Figure 6.  Stencil for the linear interpolation scheme in the vicinity of 
backward facing step (IB) which shows instantaneous velocity, 
interpolation velocity, forcing points, etc 

To exp lain  the interpolation scheme distinctively with 
respect to Fig.6, the following second-order linear 
interpolation is considered 

1
K K

CU u= −                  (16) 

For 0 Ah y< ≤ , K
Cu  is obtained from a linear 
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interpolation between 
K
Au  and the no-slip condition at the 

IB, whereas for A By h y< < , 
K
Cu

 is obtained from K
Au  

and 
K
Bu . That is 

1 0K K
A A

A

h
U u for h y

y
= − < ≤

    (17) 

1
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K B A A B

B A

A B

y h u h y u
U

y y
for y h y

− + −
= −

−

< <
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(18) 

The exact position of IB with respect to grids is 
determined and either Eq. (17) or Eq. (18) has to be used to 
calculate the U-interpolation velocity. The same scheme is 
applied to the y-component velocity. In the case of v -velocity, 
variant of Eq. (17) and Eq.(18) may be written as follows: 

1
1 1 1

1

0K K
A A

A

h
V v for h y

y
= − < ≤

(19) 

1 1 1 1
1

1 1

1 1 1

( ) ( )K K
K B A A B

B A

A B

y h v h y v
V

y y
for y h y

− + −
= −

−

< <

 

(20) 

The exact position of IB with respect to grids is 
determined and either Eq. (19) or Eq. (20) has to be used to 
calculate the V-interpolation velocity. 

2.4. Mass Source and Continuity Equation 

The procedure of obtaining the mass source 
K
ijq  in Eq. (6) 

is explained in this section. Consider the star marked 
two-dimensional cell shown in Fig. 6, where 1

Kv is the 
velocity components inside the body and 1

Ku , 2
Ku  and 2

Kv are 
those outside the body. For the rectangular cell containing 
only flu id, the continuity reads 

1 2 2 0K K Ku y v x u y∆ − ∆ − ∆ =       (21) 

Meanwhile, for the rectangular cell containing both the 
body and the fluid the continuity equation becomes 

1 1

2 2

K K K

K K

u y v x q x y

u y v x

∆ + ∆ + ∆ ∆

= ∆ + ∆
       (22) 

From Eq. (21) and Eq. (22), the mass source 
K
ijq  is 

obtained as 2
K

K vq y= −∆
. In general,  

K
ijK

ij
v

q
y

= −
∆

               (23) 

Note that 2
Kv

 is unknown until equations (6) and (7) are 

solved and thus we use 2ˆ
Kv  instead of 2

Kv  and is updated 

as and when 2
Kv  is being found out. Therefore, in general 

the mass source 
K
ijq  is defined as 

ˆK
ijK

ij
v

q
y

= −
∆

            (24) 

2.5. Solution Procedure 

 
Figure 7.  Flow chart for the Immersed Boundary Method 

For the spatial discretization of Eq. (5) to (8) a fin ite 
volume approach on a staggered grid together with a 
fractional step method was employed. Being a CFD method, 
the Finite Volume Method (FVM) describes mass, 
momentum and energy conservation for solution of the set of 
differential equations considered. The FVM is comparable to 
other approximated numerical methods such as Finite 
Difference Method (FDM) and Finite Element Method 
(FEM). It  is characterized by the partit ion of the spatial 
domain  in  a finite number of elementary volumes for which 
are applied  the balances of mass, momentum and energy. 
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The approximated equations for the method can be obtained 
by two approaches. The first consists in applying  balances 
for the elementary volumes (finite volumes), and the second 
consists in the integration spatial-temporal o f the 
conservation equations. In this work, the latter approach is 
followed. 

The convection and diffusion terms were evaluated using 
a central differencing scheme of second-order accuracy. 
Solution of non-dimensional u and v are made possible in 
Alternating Direction Implicit (ADI) approximate 
factorization method clubbed with powerful and accurate 
Tri-Diagonal Matrix Algorithm (TDMA). The pressure 
solver is based on Successive Over Relaxat ion (SOR) 
method. The numerical code is developed using Digital 
Visual FORTRAN (DVF) and a detailed flow chart is shown 
in Figure 7, based on which the computer code is developed. 

3. Results and Discussions 
In order to ensure whether the predicted results are grid  

independent or not, extensive grid refinement studies were 
carried out. Finally, in backward facing step flow problem, 
the non -dimensional stream wise velocity  at the centre of the 
channel outlet for Re=1.0 is tabulated (Table 1). It is seen 
that for the computational stencil of 252x102, percentage 
change of stream wise velocity with respect to previous 
stencil (202x82) is negligib le. Hence the same grid size was 

selected for the code execution for all numerical examples 
presented here. 

Table 1.  Maximum non-dimensional stream wise velocity at the centre of 
the channel for different number of grids in horizontal and vertical 
directions at re=1.0 

Maximum 
non-dimensional 

stream wise velocity 
at the channel exit 

Number of grids in 
stream wise 

direction 

Number of grids in 
cross stream 

direction 

0.681687 27 7 
0.763075 52 22 
0.765939 102 42 
0.766465 152 62 
0.766649 202 82 
0.766798 252 102 

The general features of the two-dimensional flow field  
offered for an  expansion ratio o f H/h=1.9423 and a wide 
range of Reynolds numbers. This expansion ratio was 
considered in the experimental study by Armaly et al.[8]. It 
is found from the numerical computations that the flow over 
the backward-facing step is two d imensional and 
non-oscillatory  in  the region  of ReD < 100. Th is observation 
was well supported and commensurate with the experiments 
of Armaly et al.[8]. 

Figure 8 shows the stream wise velocity contours of the 
backward facing step flow problem in steady state flow field 
for an expansion ratio H/h=1.9423 for the Reynolds number 
range 10-4 < Re < 102.  

 

 
Figure 8.  Stream wise velocity contours for backward facing step flow for different Reynolds numbers 
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.  
Figure 9.  Transverse velocity contours for backward facing step flow for different Reynolds numbers 

Table 2.  Comparison of the results for backward facing step flow 

Re 
Size of the corner vortex 

(x1 /H) 
Size of the corner vortex 

(x1
 
/
 
h) 

Size of the corner vortex 
(x1 /

 
h) 

Present work Present work Biswas et al.[87] 
0.0001 0.180 0.3491 0.350 

0.1 0.183 0.3549 0.358 
1.0 0.188 0.3647 0.365 

10.0 0.26 0.5044 0.50 
50.0 0.8 1.5519 1.55 
100 1.45 2.8128 2.8 

 

It is being observed that the maximum velocity is at the 
upstream side of the channel. A vortex is also visible at the 
concave corner behind the step. Stream wise velocity is 
being fully developed far downstream of the channel. It is 
being noted that immediately after the concave vortex, the 
flu id adjacent to the walls decelerates due to the formation of 
the two hydrodynamic boundary layers and backward 
pressure. Consequently, as a result of continuity principle, 
flu id outside these two boundary-layers accelerates. Due to 
this action, a transverse velocity component is engendered, 
which is clearly  visible from the cross stream velocity 
contours generated for the aforesaid Reynolds numbers as 
shown in Figure 9, that sends the fluid away from the two 
plates outside the two boundary-layers and towards the 
centerline between the two walls. However, this action 
gradually decays with further increase in  the axial distance 
downstream the backward facing step and finally vanishes 
when the flow becomes hydro dynamically fully developed. 

It has also been observed that at low Reynolds numbers 
the flow separates at the sharp corner and then reattaches 
itself to  the lower boundary further downstream forming  a 
single primary re-circulat ing eddy. The reattachment length 
increases almost linearly with Reynolds number, the slight 
non-linear trend being attributed to viscous drag along the 
upper boundary. Computed non-dimensionalised 
reattachment lengths against inlet Reynolds number are 

shown in Table 2, to compare the same with the results of 
Biswas et al.[18]. 

Figure 10 shows streamlines of the steady state flow field  
for an expansion ratio H/h=1.9423 and a Reynolds number 
range 10-4< Re< 102. It is evident from the stream lines that 
as the Reynolds number increases there is a backward flow 
occurring at the step, which is result of the negative pressure 
developed due to separation occurring at high velocity due to 
high Reynolds number. The plots well agree with literature 
especially commensurate with the experiments of Armaly et 
al.[8] which reveals that flow over the backward-facing step 
is purely two dimensional and non-oscillatory in the 
considered region. The streamline patterns for Re =10-4, 10-1, 
and 1.0 depict that the flow follows the upper convex corner 
without revealing a flow separation. Furthermore, a corner 
vortex is found in the concave corner behind the step. In this 
range of very small Reynolds numbers (10-4< Re< 1), the 
size of this vortical structure is nearly constant varying 
between x1/h=0.3491 (for Re=10-4) and 0.3647 (for Re=1). 
Under these conditions, the effect of inertia forces can be 
assumed to be negligible compared with viscous forces often 
denoted as molecular t ransport. Hence the flow resembles 
the Stokes flow. Thus the determination of the separation and 
reattachment locations thus offers a severe bench-mark test 
for any hydrodynamic model because of the highly 
non-linear flow kinemat ics in the vicin ity of the step. 
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Figure 10.  Streamlines in the vicinity of backward facing step for different Reynolds numbers 

Capturing of the corner eddies not only in backward  
facing step flow but also in flow with geometrical 
obstructions is numerically challenging and therefore, 
refined control volumes with the resolution in either 
direction of the flow domain is taken as Δx = 0.004 and Δy = 
0.01. The entire domain was div ided into 25704 control 
volumes and the code is run to generate the results with an 
accuracy of 10-6 in all the cases. For the backward-facing 
step flow two important parameters are ev idently responsible 
for the corner eddies. The first is given by the geometrical 
configuration, which can be defined by the expansion ratio 
H/h. The second is the Reynolds number. Fig. 10 clearly 
demonstrates the effect of the Reynolds number for a fixed 
expansion ratio H/h = 1.9423. The size of the corner eddy is 
nearly constant for all Reynolds numbers below ReD = 1.0. 
However, for ReD > 1.0 the corner vortex strongly increases 
in size. As a d irect consequence, the corner vortex reaches up 
to the corner of the step at ReD = 10.0 and covers the 
complete face of the step. Hence a change in the entire flow 
structure is observed and the notation of a corner vortex has 
to be replaced by the notation recirculation region, which for 

ReD > 10.0 better reflects the flow structure. With increasing 
Reynolds number the size of the recirculat ion region steadily 
increases. 

4. Conclusions 
Immersed-boundary method is adopted to validate a 

relevant flu id mechanics bench mark problem, the backward 
facing step flow problem. The present method is based on a 
fin ite volume approach on a staggered mesh together with  a 
fractional-step method. The momentum forcing  and the mass 
source/sink are applied  on the body surface or inside the 
body to satisfy the no-slip boundary condition on the 
immersed boundary and the continuity for the cell containing 
the immersed boundary, respectively. A linear interpolation 
scheme is used to satisfy the no-slip velocity on the 
immersed boundary, which is numerically stable regardless 
of the relative position between the grid and the immersed 
boundary.  

The present algorithm is ideally suited to low Reynolds 
number flows also. Predictions from the numerical model 
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have been compared against experimental data of different 
Reynolds numbers of flow past backward-facing step 
geometries. In addition, computed reattachment and 
separation lengths have been compared against alternative 
numerical predictions in the published literatures. Also, the 
immersed boundary method with both the momentum 
forcing and mass source/sink is found to gives realistic 
velocity profiles and recirculation eddies for the backward 
facing step flow problem demonstrating the accuracy of the 
method. By conducting this numerical study, we can 
conclude that immersed boundary method is a robust way of 
determining flow field and can rival experimental and 
laboratory study. Generally  for backward  facing  step flow, 
the velocities are very small in the recirculat ion zone 
compared to the velocity of the mean flow. Hence the 
separation surface is submitted to a strong shear. In order to 
characterize the topology of the separated zone, 
measurements of the reattachment length in  the stream wise 
direction may be captured.  

The range of Reynolds numbers, where the analysis is 
made possible only in three dimensional way, may be 
identified by rigorous numerical experimentation. The 
discrepancy in the primary recircu lation length between the 
experimental results and the numerical predict ions in both 
2D and 3D analysis may analysed critically. According to 
Armaly et alI[8], during experimentation a secondary 
recircu lation zone was observed at the channel upper wall 
when the Reynolds number is greater than 400. It may also 
be ensured numerically that the discrepancy between the 
experimental measurements and the numerical p rediction is 
due to the secondary recirculation zone that perturbed the 
two-dimensional character of the flow. Further numerical 
experimentation of poignant bodies may l\also be carried 
out. 
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