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Abstract  This study aims at the influence of buoyancy of steady laminar boundary layer flow over a permeable flat plate 
in a uniform free stream, with the bottom surface of the plate is heated by convection from a hot fluid. Utilizing a similarity 
variable, the governing nonlinear partial differential equations are first transformed into ordinary differential equations before 
they are solved numerically by applying shooting iteration technique alongside with sixth-order Runge-Kutta integration 
scheme. The similarity solutions for the flow and thermal fields are possible if the mass transpiration rate at the surface and 
the convective heat transfer from the hot fluid on the lower surface of the plate vary like 21−x  and the thermal expansion 
coefficient β is proportional to 1−x . The numerical results are compared with recently known results from the open literature 
for some particular cases of the present study, to support their validity. The effects of the governing parameters on the flow 
and thermal fields are investigated. 
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1. Introduction 
Convective flow in porous media has been widely studied 

in the recent years due to its wide applications in engineering 
as postaccidental heat removal in nuclear reactors, solar 
collectors, drying processes, heat exchangers, geothermal 
and oil recovery, building construction, etc. (Nield and Be-
jan[1], Ingham and Pop[2], Vafai[3], Vadasz[4], etc.). It is 
well known that conventional heat transfer fluids, including 
oil, water, and ethylene glycol mixture are poor heat transfer 
fluids, since the thermal conductivity of these fluids plays an 
important role on the heat transfer coefficient between the 
heat transfer medium and the heat transfer surface. An in-
novative technique for improving heat transfer by using ultra 
fine solid particles in the fluids has been used extensively 
during the last several years. 

Laminar boundary layer flow caused by a moving rigid 
surface was initiated by Sakiadis[5] and later the work was 
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extended to the flow due to stretching of a sheet by Crane[6]. 
The flow of an incompressible fluid past a moving surface 
has several engineering applications. The aerodynamic ex-
trusion of plastic sheets, the cooling of a large metallic plate 
in a cooling bath, the boundary layer along a liquid film in 
condensation process and a polymer sheet or filament ex-
truded continuously from a die, or a long thread travelling 
between a feed roll and a wind-up roll are the examples of 
practical applications of a continuous flat surface. Tsou et 
al.[7] showed that the Sakiadis flow is physically realizable 
under laboratory conditions, and they determined the heat 
transfer rates for certain values of the Prandtl number. The 
heat transfer part of the above problem was solved by 
Pohlhausen[8], by assuming plate temperature. Recently, 
Aziz[9] and Magyari[10] studied the similar problem, but 
with convective boundary condition. Which was extended by 
Ishak[11], by introducing the effects of suction and injection 
on the flat surface, besides giving accurate numerical results 
for Pr = 0.1. Bataller[12] examined radiation effects for the 
Blasius and Sakiadis flows with a convective surface 
boundary condition. Makinde and Olanrewaju[13] examined 
the Buoyancy effects on thermal boundary layer over a ver-
tical plate with a convective surface boundary condition. 



18 Olanrewaju P. O. et al.:  Buoyancy Effects of Steady Laminar Boundary Layer Flow and Heat Transfer over a   
Permeable Flat Plate Immersed in a Uniform Free Stream with Convective Boundary Condition 

 

The objective of the present study is to extend the works of 
Ishak[11], by introducing the effects of buoyancy in the 
momentum equation and Makinde and Olanrewaju[13], by 
introducing the effects of suction and injection on the flat 
surface. The process of suction and injection (blowing) has 
its importance in many engineering applications such as in 
the design of thrust bearing and radial diffusers, and thermal 
oil recovery. Suction is applied to chemical processes to 
remove reactants. Blowing is used to add reactants, cool the 
surfaces, prevent corrosion or scaling and reduce the drag 
(see Labropulu et al.[14]). Similarly, the combined effect of 
increasing the Prandtl number and the Grashof number re-
duces the thermal boundary layer thickness along the plate 
which is vita in engineering applications. To the best 
knowledge of author, no study appeared to have considered 
combined effects of suction/injection on the flat plate and 
buoyancy forces. 

2. Mathematical Formulation 
We consider a steady two-dimensional laminar boundary 

layer flow over a static permeable flat plate in a viscous fluid 
of temperature T∞ . It is assumed that the free stream moves 
on the top of the solid surface with a constant velocity U∞ . 
The boundary layer equations are[11,13]: 
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where u and v are the velocity components in the x and y 
directions, respectively, T is the fluid temperature in the 
boundary layer, υ is the kinematic viscosity, g is the accel-
eration due to gravity, β is the thermal expansion coefficient, 
and α  is the thermal diffusivity. 

We shall solve Eqs. (1) and (2) subject to the following 
boundary conditions: 

( )wu 0, v V x , at y 0,
u U as y '∞

= = =

→ →∞
         (4) 

Where Vw(x) is the mass transfer velocity at the surface of 
the plane with Vw(x)>0 for injection (blowing), Vw(x) <0 for 
suction and Vw(x) = 0 corresponds to an impermeable plate. 
It is also assumed that the bottom surface of the plate is 
heated by convection from a hot fluid of temperature Tf 
which provides a heat transfer coefficient hf. It is under this 
assumption that the boundary conditions for the thermal field 
may be written as[9]: 
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With k and Tw being the thermal conductivity and the 
uniform temperature over the top surface of the plate, re-

spectively and also we have Tf > Tw> ∞T . 
We introduce a similarity variable η and a dimensionless 

stream function f(η) and θ(η) as 
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where prime symbol denotes differentiation with respect to η. 
Eqs. (1)-(5) reduces to  

x
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In order that similarity solutions of Eqs. (1)-(5) exist, we 
take (see[11],[13]): 
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where c, l and fw(=f(0)) are constants. It is noteworthy to 
mention here that fw determines the transpiration rate at the 
surface, with fw > 0 for suction, fw < 0 for injection, and fw =0 
corresponds to an impermeable surface. 

The transformed boundary conditions are: 
( ) ( ) ( ) ( )
( ) ( )

wf 0 f , f 0 0, 0 a[1 0 ],

f 1, 0 as ,

′ ′= = θ =− −θ

′ η → θ η → η→∞
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where ca .
k U∞

υ
=  The assumptions (9) is necessary for the 

boundary conditions (10) to be independent of x. It is clear 
that without these assumptions, the generated solutions are 
the local similarity solutions (see Ishak[11]). We noted that 
when wa (andf 0)→∞ = ,and in the absent of Grashof number 
the present problems reduces to the classical thermal layer 
flow on a flat with constant surface temperature considered 
by Pohlhausen[8]. Similarly if Vw(x) = 0 then the present 
problem reduces to Makinde and Olanrewaju[13]. Finally in 
the absent of Grashof number the present problem reduces to 
Ishak[11]. 

3. Numerical Procedure 
The set of non-linear ordinary differential equations (7)–(8) 

with boundary conditions in (10) have been solved numeri-
cally by using the sixth-order Runge–Kutta integration 
scheme with a modified version of the Newton–Raphson 
shooting method with Pr, Gr, fw and a as prescribed pa-
rameters. The computations were done by a program which 
uses a symbolic and computational computer language 
MAPLE[15]. A step size of ∆η = 0.001 was selected to be 
satisfactory for a convergence criterion of 10-7 in nearly all 
cases. The value of y∞ was found to each iteration loop by the 
assignment statement η∞ = η∞ + ∆η . The maximum value 
ofη∞, to each group of parameters Pr, Gr, fw and a is deter-
mined when the values of unknown boundary conditions at η 
= 0 not change to successful loop with error less than 10-7. 

4. Results and Discussion 
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Here, we assigned physically realistic numerical values to 
the embedded parameters in the system in order to gain an 
insight into the flow structure with respect to velocity and 
temperature profiles. The results are presented graphically in 
Figures 1-10 and conclusions are drawn for the flow field 
and other physical quantity of interest that have significant 
effects. To test the validity of our results, so comparisons of 
the present results with previously works are performed and 
excellent agreement has been obtained in Tables 1 and 2. 
From Table 3, it is understood that the increase in convective 
parameter a, the local Grashof number Grx and suc-
tion/injection parameter fw are to increase the skin friction 
coefficient and heat transfer rate. Also increase in the Prandtl 
number Pr is to reduce the skin friction at the plate and in-
crease the heat rate transfer at the wall plate. In many prac-
tical applications, the characteristics involved, such as the 
heat transfer rate at the surface are vital since they influence 
the quality of the final products. 

Figures 1 and 2 represent the influence of the local 
Grashof number on velocity and temperature fields, respec-
tively. In Figure 1, it was noticed that local Grashof number 
is to increase the velocity distribution in the boundary layer 
which leads to thickening of the boundary layer thickness 
while temperature in the boundary layer decreases with 
increase in the value of Grx as shown in Figure 2 for im-
permeable surface. Figures 3 and 4 depict the effect of local 
Grashof number on the velocity and temperature field for 
permeable surface. The same influence was established but 
the velocity and the temperature at the wall plate was 
maximum for impermeable surface. It was noted that for 
permeable surface the convergence was rapid compared with 
the impermeable surface. Figure 5 depicts the velocity solu-
tions for various values of fw. We notice that the velocity 
gradient at the surface which represents the skin friction 
coefficient increases with increasing fw. Thus the surface 
shear stress is higher for suction compared to injection. 
Figure 6 represents the temperature profiles for different 
values of suction/injection parameter fw and it was observed 
that the heat transfer rate at the surface is higher for suction 
compared to injection. Infact, it was due to the fact that the 
surface shear stress increases when suction is introduced, 
which then in turn increases the local Nusselt number. It was 

later observed that in the presence of local Grashof number 
the velocity and temperature solutions reaches zero faster 
compared to Ishak[11] work in the absence of local Grashof 
number. To be specific, it reaches zero at η = 6.8 while that 
of Ishak[11] reaches zero at η = 8.5. The effect of Prandtl 
number is to reduce the thermal boundary layer thickness 
which increases in value of Prandtl number as in Figure 7. 
Increasing the Prandtl number means that slowing the rate of 
thermal diffusion. Figures 8 to 10 represent the temperature 
profiles for various values of convective parameter a. It is 
seen that from Figures 8 to 10 that the surface temperature 
θ(0) increases as a increases. From the definition of pa-
rameter a at any location x is directly proportional to the heat 
transfer coefficient associated with the hot fluid hf. It is seen 
from Figures 8 to 10 that (0) 0 as a .θ → →∞  This case for 
impermeable surface was first considered by Pohlhausen[8]. 

Table 1.  Computations showing comparison with Aziz[1], Makinde & 
Olanrewaju[13] and Ishak[11] results for Grx = 0, fw = 0 (impermeable) for 

(0)′−θ when Pr = 0.72 

a Aziz[9] Makinde & 
Olanrewaju[13] Ishak[11] Present results 

0.05 0.0428 0.0428 0.042767 0.042766941992484209 
0.10 0.0747 0.0747 0.074724 0.074724195214009151 
0.20 0.1193 0.1193 0.119295 0.119295494196438630 
0.40 0.1700 0.1700 0.169994 0.169994412957404028 
0.60 0.1981 0.1981 0.198051 0.198050668962487962 
0.80 0.2159 0.2159 0.215864 0.215864006864323970 

1 0.2282 0.2282 0.228178 0.228177853286349014 
5 0.2791 0.2791 0.279131 0.279131077287059768 

10 0.2871 0.2871 0.287146 0.287146220678761388 
20 0.2913 0.2913 0.291329 0.291328920605072150 

Table 2.  Computations showing comparisons with Makinde & Olanre-
waju[13] results for fw = 0 (impermeable) for (0)′− θ for various embed-
ded flow parameters 

a Grx Pr Makinde & 
Olanrewaju[13] Present results 

0.1 0.1 0.72 0.07507 0.075077162687329987 
1.0 0.1 0.72 0.23750 0.237506157092818748 
10 0.1 0.72 0.30559 0.305596432752293646 
0.1 0.5 0.72 0.07613 0.076137748064108737 
0.1 1.0 0.72 0.07704 0.077044846560947566 
0.1 0.1 3.00 0.08304 0.083045987123692544 
0.1 0.1 7.10 0.08672 0.086721160479174289 

 

Table 3.  Computations showing f (0), (0) and (0)′′ ′− θ θ for various embedded flow parameters 

a Grx Pr wf  f (0)′′  (0)′−θ  (0)θ  
0.1 0.1 0.72 0 0.368815518866807690 0.0750771626873299874 0.249228373126700458 
1.0 0.1 0.72 0 0.440365295559651482 0.2375061570928187480 0.762493842907181141 
10 0.1 0.72 0 0.467927882847428034 0.3055964327522936461 0.969440356724770026 
0.1 0.5 0.72 0 0.497022154578945774 0.0761377480641087373 0.238622519358912766 
0.1 1.0 0.72 0 0.632007094035491379 0.0770448465609475663 0.229551534390523976 
0.1 0.1 3.00 0 0.349397347069098750 0.0830459871236925440 0.169540128763074366 
0.1 0.1 7.10 0 0.342704996405172046 0.0867211604791742892 0.132788395208256527 
0.1 0.1 0.72 -1 0.142839194015394078 0.0468428376312674256 0.531571623687325801 
0.1 0.1 0.72 -0.5 0.227584686539569646 0.0643250233479395889 0.356749766520604138 
0.1 0.1 0.72 0 0.368815518866807690 0.0750771626873299874 0.249228373126700458 
0.1 0.1 0.72 1 0.744567932664679022 0.0853794261350979967 0.146205738649020200 
0.1 0.1 0.72 2 1.177773368835239420 0.0899465299660448386 0.100534700339551183 
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Figure 1.  Velocity profiles for Pr = 0.72, a = 0.1, fw = 0 (impermeable) 

 
Figure 2.  Temperature profiles for Pr = 0.72, a = 0.1, fw = 0 (impermeable) 

 
Figure 3.  Velocity profiles for Pr = 0.72, a = 0.1, fw = 0.5 (permeable) 

 
Figure 4.  Temperature profiles for Pr = 0.72, a = 0.1, fw = 0.5 (permeable) 

 
Figure 5.  Velocity profiles for Pr = 1, a = 1, Grx = 0.1 

 
Figure 6.  Temperature profiles for Pr = 1, a = 1, Grx = 0.1 
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Figure 7.  Temperature profiles for fw = 0, a = 1, Grx = 0.1 

 
Figure 8.  Temperature profiles for fw = 1, Pr = 0.72, Grx = 0.1 

 
Figure 9.  Temperature profiles for fw = 1, Pr = 0.72, Grx = 0.1 

 
Figure 10.  Temperature profiles for fw = 1, Pr = 0.72, Grx = 0.1 

5. Conclusions 
We studied theoretically the problem of steady laminar 

boundary flow and heat transfer over a stationary permeable 
flat immersed in a uniform free stream in the presence of 
buoyancy forces with convective boundary condition. The 
similarity solutions are possible if the convective heat 
transfer from the lower surface and the mass transpiration 
rate at the surface vary like 21−x  and thermal expansion 
coefficient is directly proportional to 1−x , where s is the 
distance from the leading edge of the solid surface. It was 
found that the combined effect of suction and local Grashof 
number increases the surface shear stress and as a conse-
quence increases the heat transfer rate at the plate.  
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