
American Journal of Fluid Dynamics 2012,2(3): 7-16 
DOI: 10.5923/j.ajfd.20120203.01 

 

Gas-non-Newtonian Liquid Flow Through Horizontal 
Pipe – Gas Holdup and Pressure Drop Prediction using 

Multilayer Perceptron 

Nirjhar Bar, Sudip Kumar Das* 

Department of Chemical Engineering, University of Calcutta, Kolkata, 700009, India 

 

Abstract  Prediction of the gas holdup and pressure drop in a horizontal pipe for gas-non-Newtonian liquid flow using 
Artificial Neural Networks (ANN) methodology have been reported in this paper from the data acquired from our earlier 
experiment. The ANN prediction is done using Multilayer Perceptrons (MLP) trained with three different algorithms, namely: 
Backpropagation (BP), Scaled Conjugate gradient (SCG) and Levenberg-Marquardt (LM). Four different transfer functions 
were used in a single hidden layer for all algorithms. The Chi-square test confirms that the best network for prediction of gas 
holdup is when it is trained with Levenberg-Marquardt (LM) algorithm in the hidden and output layer with the transfer 
function 1 in hidden layer having 5 processing elements. The Chi-square test also confirms that the best network for predic-
tion of pressure drop is when it is trained with Backpropagation (BP) algorithm in the hidden and output layer with the 
transfer function 4 in hidden layer having 15 processing elements. 
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1. Introduction 
The co-current gas-liquid flow through pipeline has many 

different industrial applications, like chemical, petrochemi-
cals and nuclear plants, crude oil pipelines etc. The 
gas-liquid flow become very complex in nature and the three 
important hydrodynamic parameters are the void fraction, 
pressure drop and flow regime. These parameters have been 
studied extensively by experimentally and theoretically. In 
order to accurately estimate the pressure drop and void frac-
tion, it is necessary to know the flow pattern accurately[1]. 
Enormous literatures available in this field have been sum-
marized in several books[2-5]. Most of these studies are with 
gas-Newtonian two-phase flow. However, very little infor-
mation is available when the liquid is non-Newtonian in 
nature. The experimental studies on the hydrodynamic pa-
rameters estimation for gas-non-Newtonian liquid flow 
though horizontal pipeline are reported by only few re-
searchers[6-33]. All these studies show that the 
gas-non-Newtonian liquid two-phase flow hydrodynamics in 
pipes behave differently from the hydrodynamics of a 
gas-Newtonian liquid flow. Ward and Dallavalle[6] ob-
served drag reduction by injecting air into clay suspensions 
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flowing in laminar regime. Oliver and Young Hoon[7] re-
ported the several differences between the flow patterns that 
occur in gas-Newtonian and gas-non-Newtonian liquid flow. 
According to their experimental findings Newtonian liquids 
tend to produce circulating patterns whereas the 
non-Newtonian liquids produce stream line deflections 
around the gas slug. They tried to correlate their experi-
mental data by Lockhard-Martinelli correlation[8]. Rosehart 
et al.[9] also observed similar deviation. Mahalingam and 
Valle[10] reported that the flow patterns for-gas-Newtonian 
liquid flow were similar to that of gas-Newtonian liquid 
system. They observed that the two-phase pressure drop 
were greater than those of the gas-Newtonian liquid flow. 
They also observed a sharp increase in pressure drop in the 
bubble flow region but as the flow pattern changed to slug 
and wavy flow region, increase in air velocity resulted in 
sharp decrease in pressure drop, the gas holdup increased 
with increasing gas flow rate and decreasing pseudo plastic-
ity. Rosehart et al.[11] studied two-phase gas -non- Newto-
nian liquid slug flow using drag reducing polymer solution, 
i.e., liquid phase containing small amount of polyacetamide, 
a long chain polymer. They reported that the drag reduction 
in two-phase flow greater than in single phase flow and also 
showed the importance of the acceleration term in the axial 
pressure gradient. 

Srivastava and Narsimhamurthy[12,13] reported their 
experimental studies on the two-phase gas-non-Newtonian 
liquids in horizontal pipes with turbulence promoters and 
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analysed their pressure drop and holdup data using modified 
Lockhart-Martinelli[8] correlation. Tyagi and Srivastava[14] 
analyzed the pressure drop data for annular flow of 
gas-non-Newtonian liquid and proposed an analytical model 
relating the film thickness with flow rates, physical proper-
ties of the fluids and the energy losses. Otten and 
Fayed[15,16] reported studies on both the pressure drop and 
drag reduction and later on the slug velocity and frequency in 
concurrent flow of air-carbopol 941 solution. Heywood and 
Richardson[17] studied the flow of air-kaoline solutions and 
observed a large reduction in pressure drop by injecting the 
air into the slurry. Similar drag reduction was observed by 
Farooqi et al.[18] for air-anthracite slurry flow. Eisenberg 
and Weinberger[19] developed an expression for the pre-
diction of pressure drop and holdup for annular two-phase 
flow of gas-non-Newtonian liquid. They modified the 
Lockhart-Martinelli correlation to take into account the shear 
rate dependence on the apparent viscosity of the liquid phase. 
Heywood and Charles[20] published a gas-non-Newtonian 
liquid stratified flow model to predict the liquid holdup and 
pressure drop. Farooqi and Richardson[21,22] reported their 
experimental studies on gas-Newtonian and gas- 
non-Newtonian liquid flow and analysed their data by 
modifying the Lockhart-Martinelli correlation. Chhabra et 
al.[23] studied the co-current flow of air and shear thinning 
china clay suspensions in water in a large diameter hori-
zontal pipe. They observed that the Faaooqi and Richard-
son[22] correlation agrees well with the experimental 
two-phase data. Chhabra et al.[24] studied the pressure drop 
and hold up in isothermal two-phase flow of air and aqueous 
polymer solution in horizontal pipe. Their experimental 
results agreed well the equations suggested by Farooqi and 
Richardson[22]. Das et al.[25,26] studied 
gas-non-Newtonian liquid flow through horizontal tube and 
developed empirical correlation for the prediction of 
two-phase pressure drop and holdup. Dziubinski[27] studied 
experimentally and presented an expression of drag ratio for 
two-phase pressure drop of intermittent gas-non-Newtonian 
liquid flow based on the loss coefficient concept. Jinming 
and Jingxuan[28] experimentally studied the two-phase 
gas-non-Newtonian liquid such as sewage sludge and black 
water in sewers in pipes and modified the Lock-
hart-Martinelli parameter for the prediction of two-phase 
pressure drop. Ruiz-Viera et al.[29] studied lubricating 
grease-air flow through different geometries of smooth and 
rough surfaces and observed drag reduction. Xu et al.[30] 
studied gas-non-Newtonian liquid flow through horizontal 
tube of 50 mm diameter. Xu et al.[31] studied co-current 
air-non-Newtonian liquid flow in inclined tubes of different 
diameters. Xu et al.[32] observed the drag reduction by gas 
injection to non-Newtonian liquid in stratified and slug flow 
regimes. They also proposed models for each flow regimes 
to predict the two-phase pressure drop and drag reduction. 
Jia et al.[33] reported the three dimensional computational 
multiphase fluid dynamics CMFD simulations to estimate 
the two-phase pressure drop in slug gas-non-Newtonian 
liquid flow system. ANN models have been extensively 

studied in different fields of engineering, finance etc. in last 
two decades with an objective of achieving human like 
performance. ANNs are derived from the biological coun-
terparts, and based on the concept that a highly intercon-
nected system of simple processing elements, known as 
nodes or neurons, which are able to learn highly complex 
nonlinear interrelationships existing between input and 
output variables of the data set[34]. 

Cai et al.[35] used neural network to identify flow regimes 
in air-water flow. Leib et al.[36] used ANN model along with 
the mixed-cell model to predict the slurry bubble column 
performance for Fischer-Tropsch synthesis. Various ANN 
modelling were used to predict various hydrodynamic pa-
rameters in packed bed and fluidized bed reactors[37-40]. 
Shippen and Scott[41] used ANN as predictive tool to pre-
dict liquid holdup in two-phase flow. Osman and Aggour[42] 
developed ANN model to predict the pressure drop for 
gas-liquid flow through horizontal and near horizontal pipes 
from a data bank consisting of 450 sets of oil field data. They 
observed that the ANN model predict the pressure drop very 
accurately than the existing available correlations and 
mechanistic models. Malayeri et al.[43] used radial basis 
function neural network to predict the cross-sectional and 
time-averaged void fraction at different temperature in 
air-water two-phase flow. Alizadehdakhel et al.[44] studied 
gas-liquid flow through 2 cm diameter tube and they mod-
elled using CFD and ANN techniques. They concluded that 
the prediction of two-phase pressure drop using CFD is more 
accurate than the ANN prediction and moreover it gives the 
insight of two-phase flow. Shaikh and Al-Dahhan[45] ob-
served that the ANN prediction of the gas holdup in bubble 
column reactors give better predictability than the correla-
tions available in the literature. Nasseh et al.[46] used neural 
network optimized by genetic algorithm to predict the 
pressure drop in venturi scrubbers. 

The pressure drop for non-Newtonian liquid and 
gas-liquid flow through different piping components like 
elbow, orifice, gate valve and globe valve was successfully 
predicted by Bar et al.[47,48] using the same Multilayer 
Perceptron. The neural network used by them had four dif-
ferent transfer functions in a single hidden layer. Only 
backpropagation algorithm was used for training. Bar et 
al.[49] also used the same method algorithm to predict the 
frictional pressure drop for non-Newtonian gas-liquid flow 
through 45° bend in the horizontal plane. 

ANN models can able to learn from examples, incorporate 
large number of variables, and provide an adequate and 
quick response to the new information. The advantages of 
neural networks are (1) the ability to represent both linear 
and nonlinear relationships, (2) the ability to learn these 
relationships directly from the data used, (3) the MLP net-
work can be used to create a model that correctly maps the 
input to the output using historical data so that the model can 
predict the unknown output, (4) The prediction by the trained 
network are alternative to experimentation and save a lot of 
time that may have been consumed[48]. Various algorithms 
are available for training of the MLP neural networks and 
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this algorithm is especially capable of solving predictive 
problems[49, 50]. Recently five different algorithms were 
used to predict the frictional pressure drop for 
gas-non-Newtonian liquid flow through 180° bend in the 
horizontal plane[51]. 

From the literature review it was clear that only very few 
prediction of the hydrodynamic parameter on gas-liquid flow 
based on ANN were reported. This paper deals with appli-
cability of ANN to predict the two-phase gas holdup and 
pressure drop of gas-non-Newtonian liquid flow through 
horizontal pipeline. 

2. Experimental 7 
Detail experimental setup has been reported in our earlier 

work[25,26,52]. The setup consists of a liquid storage tank 
(0.45 m3 capacity) fitted with a propeller type stirrer. Air 
supply systems, test section, control, measuring system for 
flow rates, pressure and other accessories. 

Table 1.  Range of different data sets for all four different systems 

Measurement Type Range 
Pipe diameter Dt (m) 0.01905 

Physical properties of liquid 
Concentration of SCMC Solution 

(kg/m3) 0.5 to 1.00 

Flow behavior index 0.6537 ≤ n/ ≤ 0.8039 
Consistency index (Nsn'/m2) 0.108 ≤ K/ ≤ 0.853 

Density (kg/m3) 1004.97 ≤ ρ ≤ 1008.06 
Surface Tension (kN/m) 106.98 ≤ σl ≤ 112.87 

Physical properties of air 
Density (kg/m3) 1.1611 

Viscosity of Air (Ns/m2) 0.0000186275 
Flow Rate 

Liquid Flow Rate Ql (m3/s) 0.00004 to 0.000284 
Gas Flow Rate Qg (m3/s) 0.00001861 to 0.00043796 

Measuring Parameter 
Two-phase gas holdup 0.0657 ≤ αg ≤ 0.4575 

Two-phase pressure drop per unit 
length (kPa/m) 1.68901 ≤ ΔPtp/L ≤ 7.2965 

Total number of data points 231 

The test section consists of a long horizontal straight 
Perspex tube of internal diameter 0.01905 m and 4.5 m long. 
The test liquids were prepared by dissolving the required 
amount of carboxy methyl cellulose (CMC) (high viscous 
grade – Loba Chemie Pvt. Ltd., Bombay, India) in tap water, 
stirring until a homogeneous solution was obtained and kept 
for more than 15 hrs for aging. Biological degradation was 
prevented by adding trace amounts of formalin. Liquid 
temperature was controlled by cooling coil incorporated in 
the storage tank. The liquid pumped by a centrifugal pump to 
the test section and its flow rate was controlled by by-pass 
arrangement and measured by a set of rotameters connected 
parallel. Air was drawn from a compressor and its pressure 
was reduced to 103 kN/m2g before injecting into the pipeline 
through T – entry. Flow rate was measured by a set of ro-
tameters connected parallel. Static pressure at different 
points in the test section was measured by means of U-tube 

manometers containing Mercury beneath water. Arrange-
ments for purging the air bubble and/or solutions in ma-
nometer line were also provided. Four aqueous solutions of 
CMC of approximate concentration of 0.5 – 0.1 kg/m3 were 
used as the non-Newtonian liquid and atmospheric air was 
used as other fluids. Rheological properties, densities and 
surface tension of the liquid were measured using pipeline 
viscometer, specific gravity bottle and DuNouy’s tensiome-
ter respectively. The flow regimes predominantly in the plug 
and slug flow regime. Table 1 presents the range of variable 
investigated in experimental studies. 

3. ANN Structures and Its Optimization 
Figure 1 shows the schematic diagram of the ANN. 

 
Figure 1.  Schematic diagram of the ANN 

The input parameters (from Table 1) are, 
1) Liquid flow rate – Ql 
2). Gas flow rate – Qg 
3) Flow behaviour index– n/ 
4) Consistency index– K/ 
5) Liquid density– ρl 
6) Surface tension of the liquid– σl 
Air density – ρg and air viscosity – µg and acceleration due 

to gravity g are constant so it is ineffective as input parameter 
for ANN programming. Hence they did not take part in the 
analysis. The output parameter is either gas holdup, αg or 
two-phase frictional pressure drop, ΔPtp/L. 

Three different MLP algorithms were used for our analy-
sis. These are known as Baclpropagation, Leven-
berg-Marquardt and Scaled Conjugate Gradient. 

Backpropagation is discussed in detail in our earlier pa-
pers[47-49]. Generalized delta-rule algorithm[53] is used 
for the backpropagation. If ( )ijw t is the value of connection 
weight in the hidden layer then the weights are updated 
using the following equation during the epoch number
( 1)t + , 

( ) ( )ij
ij

Ew t t
w

α ∂
∆ = −

∂                  (1) 

where E is the difference between the desired and the net-
work output for any epoch. The above equation was mod-
ified by using a momentum term and is represented by 

( ) ( ) ( 1)ij
i

ij
j

Ew t t w t
w

α µ∂
∆ = − + ∆ −

∂     (2) 

where ( )ijw t∆ represents the change of connection weights 
for the jth processing element in the hidden layer during 
epoch number t with that of ith input. α is learning rate and 
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µ is the momentum coefficient. 
This is a second order learning algorithm that uses the 

method of optimization. If N is the number of epochs and n 
is the number of weights then the weight update equation is 
given as: 

1( )T Tw J J I J eλ −∆ = +             (3) 
where J is ( 1)N n× ×  Jacobian matrix and e is ( 1) 1N × ×  
error matrix, I is the identity matrix and λ  is the combi-
nation coefficient. In this algorithm the only user dependent 
parameter is λ , which is set only in the beginning. It is not 
required for the user to modify the value of λ  during the 
training any more. When λ  is large the algorithm be-
comes steepest descent and when it is small the algorithm 
becomes Gauss-Newton. In this way the Leven-
berg-Marquardt algorithm combines the best features of 
these two algorithms but avoids most of their limitations. 

This is a second order learning algorithm that uses the 
method of optimization. The SCG method is the advance-
ment to that of the Conjugate Gradient (CG) method. In the 
Conjugate Gradient (CG) method the complexity of calcu-
lation for every epoch increases because of the line search 
to determine the correct step size, i.e., a line search requires 
several calculations of global error function or its derivative. 
In Scaled Conjugate Gradient (SCG) method there is no 
such line search required. It is fully automated and does not 
require the user to be involved during the training i.e., the 
user doesn’t have to provide some of the values of the user 
dependent parameters (likeα , µ etc. as mentioned above). 
This reduces the complexity significantly. This method uses 
the model-trust region approach known from Leven-
berg-Marquardt algorithm to scale the step size. 

3.1. Performance of the ANN 

The performance of the network is checked using the 
following parameters:  

Mean Squared Error (MSE), 
2

1

1 ( )
N

i i
i

MSE x y
N =

= −∑              (4) 

Average Absolute Relative Error (AARE), 

1

( )1 N
i i

i i

y xAARE
N x=

−
= ∑             (5) 

Standard Deviation (σ),  
2

1

( )1
1

N
i i

ii

y x
AARE

N x
σ

 −
= − 

−   =
∑           (6) 

Cross-correlation coefficient (R),  

1

2 2

1 1

( )( )

( ) ( )

N

i i
i

N N

i i
i i

x x y y
R

x x y y

=

= =

− −
=

− −

∑

∑ ∑

            (7) 

It has also been verified that the Cross-correlation coeffi-
cient between input and output is as close to unity as possi-
ble. 

If the performance tested using the above statistical 

measures are very close to each then to find the optimum 
statistical performance Chi-square test (χ²) will be conducted. 
It is represented as: 

2
2

1

( )N
i i

i i

x y
y

χ
=

−
=∑              (8) 

The lowest value indicates the best model. 
The MSE for each epoch for training and cross-validation 

in both cases are recorded for 5 different runs separately. 

3.2. Optimization of the ANN 

Hidden layer(s) in ANN have the ability to deal very 
complex and nonlinear problems. Single hidden layer ANNs 
creates a hyper plane. The greater numbers of hidden layers 
improve the closeness-of-fit while a smaller number of 
hidden layers improve the smoothness or extrapolation ca-
pability of the ANN[54]. White[55] indicated that a hidden 
layer with arbitrarily large quantity of neurons can perform 
accurately, whereas Walczak[56] observed that a network 
containing two hidden layers perfom better than the single 
hidden layer network for specific problems. Bansal et al.[57] 
and Tamura and Tateishi[58] observed that the single hidden 
layer can solve most of the problems for more input variables 
and outputs. In the present case single hidden layer is used. 
In the hidden layer the numbers of processing elements are 
optimized by varying the number 1 to 25. Similar procedure 
was followed in our earlier studies by Bar et al.[47,48] and 
Bar and Das[51].The description of training procedure is 
elaborately described in our earlier paper[51]. Raw data are 
used as input variables without normalization. Initially the 
total data was randomized to prevent sampling error. Then 
60% data points were used for training, 20% for 
cross-validation, 10% for testing and the rest used for pre-
diction. Table 2 presents the four transfer functions used in 
the hidden layer. The output transfer function is given below, 

( )y f x x b= = +                   (9) 
here x, y and b are the input to the output layer, the fin-
al output and bias term respectively. 

 
Figure 2.  Variation of the minimum value of cross-validation MSE with 
the number of processing elements in the hidden layer for gas holdup for 
four different Transfer functions used in the hidden layer for BP algorithm 
in hidden and output layer 
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Figures 2 and 3 show the variation of minimum value of 
MSE for cross-validation with the number of processing 
elements in the hidden layer for gas holdup and pressure drop 
respectively. Four different transfer functions were used in 
the hidden layer for both cases, where LM and BP algorithms 
were used in the hidden layer and output layer respectively. 
Similar procedure was followed for all three types of algo-
rithms used for the prediction of gas holdup and pressure 
drop. The number of processing element is considered op-
timum where the MSE value is minimum. Table 2 shows the 
optimum number of processing elements in the training 
section of the ANN for both gas holdup and pressure drop. 

 
Figure 3.  Variation of the minimum value of cross-validation MSE with 
the number of processing elements in the hidden layer for pressure drop for 
four different Transfer functions used in the hidden layer for BP algorithm 
in hidden and output layer 

The threshold value of the MSE for cross-validation for all 
three networks had been kept as 0.001. 

The stopping criterion was also added for all three dif-
ferent algorithms used. In total the training using BP algo-
rithm was initially set for 32000 epochs. If there was no 
improvement of the value of cross-validation MSE for 20000 
epochs, then the training was stopped for training using BP 

network. Similarly the training using SCG and LM algorithm 
was initially set for 20000 and 1000 epochs respectively. If 
there was no improvement of the value of cross-validation 
MSE for 5000 epochs for training using SCG and 300 epochs 
for training using LM algorithm, then the training was 
stopped. 

Table 3 shows the minimum value of cross-validation 
MSE reached during training for both holdup and pressure 
drop. The network is considered optimized at that particular 
point where the cross-validation error recorded its minimum 
value. 

These optimum numbers of processing elements are used 
for further subsequent analysis. 

Figure 4 presents the training curves for SCG algorithm 
using the four different transfer functions in hidden layer for 
the prediction of pressure drop. Similar trend was observed 
for the other two algorithms also. The decrease in the aver-
age MSE values matches the desired result for a standard 
neural network training curve. However this decrease does 
not indicate the optimum training performance of the net-
work but it is the cross-validation curve that indicates the 
optimum performance. 

 
Figure 4.  Variation in the MSE for training using SCG algorithm vs. the 
numbers of epochs for the prediction of pressure drop 

Table 2.  Optimum numbers of processing elements in the hidden layer for four different transfer functions 

Transfer Function in Hidden Layer Equation Algorithm 
Optimum Number of Processing Ele-

ments 
αg ΔPtp/L 

Transfer Function 1 1 ( ) tanh
x x

x xh
e e

f x x
e e

β β

β β
β

−

−

−
= =

+
 

BP 3 17 
LM 5 4 

SCG 2 5 

Transfer Function 2 2

1 for 1
( )  Where

 1 for 1
h

x x
f x x

x x

β β
β

β β

= >
=

= − < −
 

BP 3 18 
LM 8 21 

SCG 5 24 

Transfer Function 3 3

0 for 0
( )  Where   

 1 for 1
h

x x
f x x

x x

β β
β

β β

= <
=

= >
 

BP 15 25 
LM 19 16 

SCG 15 19 

Transfer Function 4 4 ( )
1

1 xhf x
e β−

=
+

 
BP 15 7 
LM 2 22 
SCG 14 5 
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Table 3.  Performance of the best Neural Network on the basis of minimum value of MSE reached during Cross-validation 

Transfer Function 
in Hidden Layer 

Algorithm 
BP LM SCG 

αg ΔPtp/L αg ΔPtp/L αg ΔPtp/L 
1 0.0057 0.0012 0.0045 0.0010 0.0051 0.0010 
2 0.0054 0.0011 0.0053 0.0011 0.0049 0.0010 
3 0.0052 0.0010 0.0045 0.0013 0.0048 0.0009 
4 0.0056 0.0012 0.0046 0.0010 0.0048 0.0011 

 

 
Figure 5.  Variation in the MSE for cross-validation using LM algorithm 
vs. the numbers of epochs for the prediction of pressure drop 

Figure 5 presents the cross-validation curves for LM al-
gorithm using the four different transfer functions in hidden 
layer. It is clear from the curve that the curves reach a satu-
ration point in training and then it remains constant or it does 
not change for the betterment of the performance of training 
even if the decrease in the value of MSE in the training curve 
continues. It is for this reason the stopping criterion was used 
for cross-validation. It is evident from the abrupt end of the 
training in Figures 4 and 5 before reaching the epoch number 
20000 and 1000 respectively. Similar trend was also ob-
served for the training with BP network also. 

 
Figure 6.  Comparison of two-phase gas hold up across the horizontal tube 
for prediction using SCG algorithm in hidden and output layer with four 
different transfer function in the hidden layer for testing 

Figure 6 shows the comparison between the experimental 
to the predicted output for the four different transfer func-
tions in the hidden layer for testing in case of gas hold up 
using SCG algorithms. Figure 7 shows the comparison be-

tween the experimental to the predicted output for the four 
different transfer functions in the hidden layer for testing in 
case of pressure drop using LM algorithms. 

 
Figure 7.  Comparison of two-phase pressure drop across the horizontal 
tube for prediction using LM algorithm in hidden and output layer with four 
different transfer function in the hidden layer for testing 

Table 4.  Performance of the best Neural Networks for the prediction of 
gas holdup for four different Transfer functions in case of Testing 

Transfer 
Function 
in Hid-

den 
Layer 

Measurement 
Type 

Algorithm 

Back- 
propagation 

Levenberg- 
Marquardt 

Scaled 
Conjugate 
Gradient 

Transfer 
Function 

1 

AARE 0.090430 0.084924 0.108509 
SD (σ) 0.071715 0.066647 0.067787 
MSE 0.000850 0.000706 0.001065 

CCC (R) 0.936184 0.948621 0.920925 

Transfer 
Function 

2 

AARE 0.107320 0.108411 0.101549 
SD (σ) 0.067273 0.073213 0.082658 
MSE 0.001041 0.001018 0.001018 

CCC (R) 0.921524 0.923092 0.923189 

Transfer 
Function 

3 

AARE 0.110109 0.118054 0.114825 
SD (σ) 0.080493 0.092129 0.073951 
MSE 0.001099 0.001296 0.001103 

CCC (R) 0.916794 0.903497 0.916153 

Transfer 
Function 

4 

AARE 0.092641 0.093234 0.098421 
SD (σ) 0.075881 0.073871 0.082890 
MSE 0.000926 0.001044 0.001024 

CCC (R) 0.930569 0.926581 0.925216 

The proximity of the data points to the reference line in 
Figures 6 and 7 indicate that the training was accurate for 
both gas holdup and pressure drop. This result can be veri-
fied from the statistical analysis presented in Tables 4 and 5 
for gas holdup and pressure drop respectively. It is now 
indicative from these figures that the network can be used for 
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final prediction. 

Table 5.  Performance of the best Neural Networks for the prediction of 
pressure drop for four different Transfer functions in case of Testing 

Transfer 
Function 
in Hid-

den 
Layer 

Measurement 
Type 

Algorithm 

Back- 
propagation 

Levenberg- 
Marquardt 

Scaled 
Conjugate 
Gradient 

Transfer 
Function 

1 

AARE 0.046471 0.052851 0.053139 
SD (σ) 0.049124 0.045764 0.049825 
MSE 0.043197 0.047604 0.048153 

CCC (R) 0.985995 0.985342 0.985077 

Transfer 
Function 

2 

AARE 0.050923 0.051074 0.052552 
SD (σ) 0.043452 0.052885 0.045107 
MSE 0.048502 0.051778 0.044430 

CCC (R) 0.985155 0.984029 0.986698 

Transfer 
Function 

3 

AARE 0.051514 0.052352 0.067349 
SD (σ) 0.046650 0.049904 0.049764 
MSE 0.049918 0.048652 0.072142 

CCC (R) 0.984423 0.983875 0.981974 

Transfer 
Function 

4 

AARE 0.049044 0.058184 0.049855 
SD (σ) 0.045002 0.056398 0.044501 
MSE 0.043868 0.057469 0.045236 

CCC (R) 0.986066 0.981417 0.986130 

Tables 4 and 5 present the performance of Neural Network 
for testing for gas holdup and pressure drop respectively. The 
low value of the Average Absolute Relative Error (AARE), 
Standard Deviation (σ) and MSE also shows the closeness 
between desired and the predicted data, i.e., the accuracy of 
the results in the different systems. It can be observed clearly 
from Tables 4 and 5 that the network is appropriate for final 
prediction. 

 
Figure 8.  Comparison of two-phase hold up across the vertical coil for 
prediction using LM algorithm in hidden and output layer with transfer 
function 1 in the hidden layer 

Tables 6 and 7 present the performance of Neural Network 
for final prediction for both holdup and pressure drop re-
spectively. It is also clear from these tables that the Cross 
Correlation Co-efficient value is nearly 0.92 and above for 
prediction of gas hold up and is nearly 0.98 and above for 
prediction of pressure drop. The low value of the Average 
Absolute Relative Error (AARE), Standard Deviation (σ) 
and MSE also shows the closeness between desired and the 

predicted data, i.e., accuracy of the result in the different 
systems. This result indicates that the performance of the 
network output is excellent. 

 

Figure 9.  Comparison of two-phase pressure drop across the vertical coil 
for prediction using BP algorithm in hidden and output layer with transfer 
function 4 in the hidden layer 

The Chi-square test confirms that the best network for 
prediction of gas hold up is the transfer function 1 with 5 
processing elements using LM algorithm in the hidden and 
output layer. The Chi-square test also confirms that the best 
network for prediction of gas hold up is the transfer function 
4 with 15 processing elements using BP algorithm in the 
hidden and output layer. 

Table 6.  Performance of the best Neural Networks for different Transfer 
functions in case of final prediction of gas holdup 

Transfer 
Function 
in Hidden 

Layer 

Measurement 
Type 

Algorithm 

Back- 
propagation 

Levenberg- 
Marquardt 

Scaled 
Conjugate 
Gradient 

Transfer 
Function 

1 

AARE 0.091266 0.075573 0.106422 
SD (σ) 0.092439 0.047312 0.069971 
MSE 0.000672 0.000471 0.000759 

CCC (R) 0.942542 0.958949 0.935684 
χ² 0.062886 0.041274 0.069060 

Transfer 
Function 

2 

AARE 0.106728 0.101460 0.092272 
SD (σ) 0.099315 0.071613 0.078079 
MSE 0.000725 0.000775 0.000622 

CCC (R) 0.942603 0.931033 0.948149 
χ² 0.071326 0.071842 0.058631 

Transfer 
Function 

3 

AARE 0.103239 0.100667 0.098528 
SD (σ) 0.080199 0.068727 0.082401 
MSE 0.000734 0.000841 0.000666 

CCC (R) 0.940091 0.936302 0.944430 
χ² 0.069272 0.076576 0.064841 

Transfer 
Function 

4 

AARE 0.087570 0.104571 0.096417 
SD (σ) 0.079781 0.048844 0.074468 
MSE 0.000604 0.000878 0.000847 

CCC (R) 0.949548 0.929649 0.933941 
χ² 0.055872 0.077033 0.079276 

Figure 8 shows the comparison between the experimental 
to the predicted output for the network trained with LM 
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algorithm in the hidden and output layer, using transfer 
function 1 in the hidden layer in case of gas hold up. Figure 9 
shows the comparison between the experimental to the pre-
dicted output for the network trained with BP algorithm in 
the hidden and output layer using transfer function 4 in the 
hidden layer in case of pressure drop. These comparisons 
prove the effectiveness of the Neural Network analysis. 

Table 7.  Performance of the best Neural Networks for different Transfer 
functions in case of final prediction of pressure drop 

Transfer 
Function 
in Hid-

den 
Layer 

Measurement 
Type 

Algorithm 

Back- 
propagation 

Levenberg- 
Marquardt 

Scaled 
Conjugate 
Gradient 

Transfer 
Function 

1 

AARE 0.030535 0.032557 0.031880 
SD (σ) 0.029594 0.028402 0.030316 
MSE 0.031182 0.029622 0.026532 

CCC (R) 0.991180 0.991500 0.991983 
χ² 0.160456 0.166903 0.154370 

Transfer 
Function 

2 

AARE 0.032572 0.038887 0.037129 
SD (σ) 0.026949 0.031369 0.031249 
MSE 0.029142 0.032413 0.027316 

CCC (R) 0.992230 0.990488 0.992732 
χ² 0.155365 0.199201 0.174421 

Transfer 
Function 

3 

AARE 0.036732 0.041200 0.042827 
SD (σ) 0.031993 0.029720 0.031144 
MSE 0.038905 0.033229 0.039119 

CCC (R) 0.988411 0.989875 0.989323 
χ² 0.207784 0.193134 0.238212 

Transfer 
Function 

4 

AARE 0.028767 0.032970 0.032194 
SD (σ) 0.025734 0.031528 0.026618 
MSE 0.025432 0.024983 0.027299 

CCC (R) 0.993117 0.992255 0.991913 
χ² 0.129603 0.155731 0.150052 

Tables 6 and 7 indicate that the value of the Average 
Absolute Relative Error (AARE), Standard Deviation (σ) 
and Cross Correlation Co-efficient (R) for the final predic-
tion shows that the best network for prediction of gas hold up 
is the transfer function 1 with 5 processing elements using 
LM algorithm in the hidden and output layer and the best 
network for prediction of pressure drop is the transfer func-
tion 4 with 15 processing elements using BP algorithm in the 
hidden and output layer. 

5. Conclusions 
A neural network based model was developed for the 

prediction of gas holdup and pressure drop for gas 
non-Newtonian liquid flow through horizontal pipe. A mul-
tilayer perceptron (one hidden layer) with three different 
algorithms namely Backpropagation, scaled conjugate gra-
dient and Levenberg-Marquardt were used for this analysis. 
The ANN model accurately predicts the gas hold up and 
pressure drop across the horizontal pipe. The Chi-square test 
confirms that the best network for prediction of gas hold up 
is the transfer function 1 with 5 processing elements using 

Levenberg-Marquardt algorithm in the hidden and output 
layer. The Chi-square test also confirms that the best network 
for prediction of pressure drop is the transfer function 4 with 
15 processing elements using Backpropagation algorithm in 
the hidden and output layer. Hence the developed ANN 
predictability should be useful in the scale-up of commercial 
pipeline. 
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