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Abstract  After setting a realistic scenario of the Atmospheric Boundary Layer (ABL), through the wind and diffusivity 

parameterizations, an explicit approximate expression is provided for the ground level concentration, allowing an analytic 

simple expression for the position and value of the maximum concentration, that results as an explicit function of the 

parameters defining the ABL scenario and the source height. The proposed formula is useful as an additional tool for 

decisional as well as emergency responses. 
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1. Introduction 

The management and safeguard of air quality presupposes 

a knowledge of the state of the environment. Such 

knowledge involves both cognitive and interpretative aspects. 

Monitoring networks and measurements in general, together 

with an inventory of emission sources, are of fundamental 

importance for the construction of the cognitive picture, but 

not the interpretative one. In fact, air quality control requires 

interpretative tools that are able to extrapolate in space and 

time the values measured by analytical instrumentation at 

field sites, while environmental improvement can only be 

obtained by means of a systematic planning of reduction of 

emissions, and, therefore, by employing instruments (such as 

mathematical models of atmospheric dispersion) capable of 

linking the causes (sources) of pollution with the respective 

effects (pollutant concentrations). 

The processes governing the transport and diffusion of 

pollutants are numerous, and of such complexity that it 

would be impossible to describe them without the use of 

mathematical models. Such models therefore constitute   

an indispensable technical instrument of air quality 

management. 

Moreover, in cases of environmental accidents or even 

catastrophes one needs fast procedures, which yield 

immediate results as for instance the ground level 

concentration  of  pollutants,  especially  the  maximum  
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concentration and its position. Numerical simulation 

approaches may still be too slow to provide a map of 

concentrations in real time, when immediate decisions are 

necessary. The computational evaluation of numerical data 

of the concentration field or for a set of position have to be an 

instant task. In this line the present work presents a 

derivation of compact phenomenological formula extracted 

from the analytical GILTT (Generalized Integral Laplace 

Transform Technique) approach [1] which permits to 

determinate quickly the ground level concentration in terms 

of physical parameters. 

This paper is divided into six sections. In the following 

sections, the analytical solution of the advection-diffusion 

equation (ADE) and the turbulent parameterization used are 

presented. In section 4 the ground level concentration is 

obtained. Finally, sections 5 and 6 are reserved for the results 

and conclusions, respectively. 

2. The ADE Solution 

The crosswind integration of the ADE (in stationary 

conditions and neglecting the longitudinal diffusion) leads 

to:  
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with h the top of ABL, Q the emission rate at height Hs and δ 

the generalized Dirac delta function 

Following the work [1], we pose that the solution of 

problem (1) has the form:  

0
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where ( )n z  are the eigenfunctions of the associated 

Sturm-Liouville problem, we mean, ( ) cos( )n nz z   

where /n n h   (n=0,1,2,…) are the respective 

eigenvalues.  

To determine the unknown coefficient ( )nc x  we replace 

Eq. (2) in Eq. (1) and applying the operator 

0

( ) ( )

h

m z dz , 

we come out with the result in matrix form:  

' ( ) ( ) 0Y x FY x               (3) 

Here Y(x) is the vector whose components are ( )nc x  and 

1.F B E  ;  ,mnB b  and  ,mnE e  are the matrices 

whose entries are respectively ,

0
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' 2
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The source condition for the transformed problem (3) is 

obtained from Eq. (1b), and given by 
1(0) ( )n m sc Q H A  , 

where A-1 is the inverse matrix of A given by

,

0

h

n m n ma u dz   . 

The transformed problem represented by the Eq. (3) is 

solved analytically, combining Laplace transform technique 

and diagonalization of the matrix F . After some algebra, we 

come out with the result:  

1( ) . ( ). (0)Y x X G x X Y            (4) 

where X is the matrix of the eigenvectors of the matrix     

F and X-1 it is the inverse. G(x) is a diagonal matrix     

with components 
xdne


 (dn are the eigenvalues of the 

matrix diagonalization). Once ( ) ( )nY x c x , the final 

two-dimensional solution of problem (1) is determined by Eq. 

(2). 

3. Turbulent Parameterization 

The choice of the turbulent parameterization is set to 

account for the dynamics processes occurring in the ABL.  

In the further we restrict our discussion to simple vertical 

profiles of wind and eddy diffusivity, nevertheless still 

reasonably realistic, more specifically unstable regime. For 

an extension including stable regimens we refer to a future 

work.  

The choice of the vertical profile for the wind u  is set to 

be following a power law [2]: 
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where 1u  is the mean wind velocity at the height z1, while α 

is an exponent related to the turbulence intensity [3]. On the 

quantitative side, results will be provided setting α = 0.1, and 

the reference wind u1(0.01h) = 3ms-1; these values are quite 

consistent with the whole range of unstable regimes pointed 

out by [4]. 

The vertical diffusivity parameterization is chosen 

according to [5], which for an unstable ABL it is given as: 
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where h is the height of the ABL, k is the von Karman 

constant which is set to 0.4, and w* is the convective scaling 

parameter related to the Monin-Obukhov length LMO and the 

mechanical friction parameter u* as: 
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              (7) 

For convective scenarios LMO is limited to values such that 

the relationship h / LMO < -10 holds. Finally, u* is determined 

as [2, 6]  
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where z0 is the roughness (10-5 h). For an unstable ABL, ψ is 

defined as 
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The chosen profiles ensure simple functions and still 

rather realistic horizontal wind u  and turbulent eddy 

diffusivity Kz inside and both edges of the ABL. 

4. Ground Level Concentration 

Ground Level Concentration (GLC will be reported in 

terms of the dimensionless GLC as follows: 

( ) ( ,0)GLC

u h
C x C x

Q

 
        (9) 

where u   is the vertically averaged wind introduced in 

Eq. (5) 
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If we consider the definition of u  profile in Eq. (5) we 

have  1
1/
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Definition (9) has been introduced to obtain the unitary 

limit independent of a specific parameter choice 

lim ( ) 1GLC
x

C x


 , according to the theoretical expectation 

for the two-dimensional ADE solution. 

In [7, 8] the GILTT results are compared with 

experimental data. The scope of this paper is to provide a 

simple explicit expression for the maximum GLC, 

( )MGLC MC x , occurring at the horizontal distance Mx  as a 

function of the setting parameters for ABL scenario and 

source emission. As previously mentioned, in fact, although 

the sum (2) represents the exact solution of the Eq. (1), 

except for a round-off error, the series expansion misses 

manifest dependencies on ABL parameters and source height. 

Then the core of the problem leads to investigate on the 

behaviour of the series (2) after setting z = 0, and using the 

property of the Sturm-Liouville eigenfunctions for which 

(0) 1i   regardless the index i. An analysis of the 

behaviour and properties of the series (2) shall indicate how 

to synthesize the considerable expression into a more 

compact formula. The results based on such an approach are 

still profile depending. Nevertheless, the choice of a profile 

depending approximation still maintains the advantage of 

simplicity and permits for a specific case to explore the 

functional behaviours of the main physical parameters that 

drive atmospheric diffusion. So, we introduce empirical 

parameters which are determined by fit procedures to best 

reproduce the exact solution. 

Based on these facts, and being in mind the Gaussian 

solution and the GLC obtained with power low profile of 

wind and eddy diffusivity [9, 10], the dimensionless GLC 

defined in Eq. (9) can be approximated as follows: 
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Due to the negative values assumed by the 

Monin-Obukhov length, in the following it will be defined as 

the positive dimensionless parameter MO MOL L h  . 

Parameters b, c, κ and λ have been determined by least 

squares fittings procedures on Eq. (11) against the analytical 

solution and these result: 

5 2
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where the variables with   are normalized with respect to 

the ABL height h (e.g. s sh h h ). 

Equations (12) – (15) give the explicit dependency on the 

source height hs, the wind parameters α (it compares in k and 

λ), 1u  and the convection scaling parameter w* (it compares 

in λ  ̧see Eq. (15)) which is related to the Monin-Obukhov 

length LMO and the friction parameter u* by the relationship 

(7).  

Some considerations about the parameters b and c. The 

approximation of Eq. (11) reduces to the simple Gaussian 

GLC when b and c are such that bc = 0.5. In Figure 1 is 

shown the product bc versus hs, where for 0.5Sh   

reaches 0.6 , which is the closest value to the Gaussian 

solution value (0.5). It is worth to remind that the eddy 

diffusivity (6) is symmetric in respect of the middle of the 

ABL. The product tends to 0.5+ when turbulence reduces, 

meaning for this couple of parameters a dependency on LMO. 

Nonetheless such a dependency is always negligible 

compared to the dependence on hs, the λ parameter 

turbulence dependency compensates such a missing. Away 

from the ABL middle and for low sources bc ≈ 0.8 due to the 

high z-gradient on u  and Kz.  

 

Figure 1.  A scan of the product bc versus the source height hs/h 

To confirm the goodness of the approximation, in Figures 

2(a-c) the GLC versus x  is shown for three 

0.01,0.05,0.1Sh  . For each source height two extreme 

Monin-Obukhov lengths are used with MOL = 0.001, 0.099 

(empty squares and triangles respectively). The second value 

for MO
L  reflects the limit imposed by the eddy diffusivity 

given by Eq. (6). The GILTT-based GLC are superimposed 

on the approximation of Eq. (11) (dotted lines). Plots show 

that for near surface sources there is a slight difference 

between points and lines near the source position, where  

the horizontal gradient is most pronounced (a logarithmic 

scale enhance such a discrepancy), nonetheless, the GILTT 

results are reproduced fairly well in the area of maximum 

concentration. 
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From the explicit approximation for ( )
GLC

C x  one may 

evaluate the position where the maximum for GLC occurs, in 

fact putting equal to 0 the derivative of Eq. (11) in respect to 

x and with the assumption that:  
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Figure 2.  GLC versus x  for (a) 0.01Sh  , (b) 0.05Sh  , and (c) 

0.1Sh  . Points refer to the GILTT results, dotted lines to the 

approximation function of Eq. (11) 

we have: 
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Finally, putting Mx  in Eq. (11), the corresponding 

Maximum Ground Level Concentration ( ( )
MGLC M

C x ) is: 
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The expression for the position Mx  is valid provided that 

in the range of horizontal distances where a position Mx  

occurs. Such approximation affects an error when high 

sources are concerned, indeed above 0.35Sh  , but high 

convection driven turbulence enforces condition (16).  

5. Results 

Figures 3 and 4 show plots of the maximum GLC 

( )
MGLC M

C x  and its position Mx  for several source height 

S
h  and for a selection of turbulence parameter MO

L . In both 

figures the GILTT results (points) are superimposed on the 

approximations (17) (dotted lines).  

 

Figure 3.  Position of the maximum GLC versus the source height 

/S sh h h . Points refer to the GILTT results, dotted lines refer to Eq. (17) 

 

Figure 4.  Value of the maximum GLC versus the source height 

/S sh h h . Points refer to the GILTT results, dotted lines refer to Eq. (18) 

Figure 3 depicts the position where the maximum occurs, 

where GILTT results (dotted lines) and our approximations 

(solid lines) show good matching regardless the turbulence 

regime. The turbulence dependency shows that for a fixed 

S
h  the strength of convection causes Mx  to get closer to 

the source. From the physics point of view this result agrees 

with the mixing effect of turbulence. 

A final remark should be made about Figure 4. Both 

GILTT and expression (18) confirm that the maximum GLC 

value depends on the source height, regardless the turbulence. 

Based on the expression (18) and the parameters definitions 

(12)-(15), for b, c and  , the leading term for the maximum 

GLC results: 

1( )MGLC M SC x h ,             (19) 
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where the exponent -1 is a lower bound for the source term. 

These results broaden the well-known result obtained with 

the Gaussian approach for an unbounded ABL. Furthermore, 

this agrees with the two-dimensional Gaussian result that the 

maximum for the GLC is: 

1 2
2

( )MGLC MC x
e

 
  
 

         (20) 

6. Conclusions 

The results presented in this paper have shown the 

possibility to express the GLC from an emitting point source 

in a steady convective ABL, by a compact analytical 

expression. The function was determined analysing the 

behaviour of the series expansion provided by the GILTT 

solution. Despite the simplifications due to restricting to only 

unstable ABL regimes, the analysis allows to understand to a 

high extent the form of the ground level concentration. 

The principal progresses worth emphasizing is that for a 

function given in (11), within the setting choice for the ABL 

parameter set, the maximum GLC depends only on the 

source height, regardless the Monin-Obukhov length. On the 

other hand, turbulence can still affect the position where the 

maximum GLC occurs, which is also confirmed by the 

GILTT solution.  

On the operative point of view, the expression (11) and its 

related features are useful as an additional tool for decisional 

as well as emergency responses.  
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